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Abstract—Edge-enabled Internet of Things (IoT) services for 
users are subject to intelligent management of content-centric 
caching. Although managing edge caching can reduce storage 
cost and transmission latency, maintaining a high Quality of 
Experience (QoE) of caching is still a crucial challenge. In this 
environment, we study QoE-based content-centric caching. To 
evaluate the qualities of edge-enabled IoT, we introduce a QoE 
model which can grasp the influencing factors: (1) storage cost, 
based on available bandwidth, and (2) transmission latency, 
depending on the Signal-to-Interference-plus-Noise Ratio 
(SINR) and caching capacity. As the requirements and signals 
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are stochastic, we use a Reinforcement Learn-
ing (RL) architecture to jointly determine the 
Q-value. Estimating the Q-value, constrained 
by a maximum QoE, can be conducted in a 
Deep Neural Network (DNN) approximator, 
as the states and action spaces are on a large 
scale. Unfortunately, training DNN models can 
lead to RL instability. To address this issue, fixed 
target network, experience replay, and adaptive 
learning rate methods are proposed to balance the Q-value 
accuracy and accelerate stability in Deep RL (DRL). 
Experimental results indicate that our approach can gain a 
higher value of QoE, compared to existing methods.

I. Introduction

Current electronic devices (i.e., smart phones, note-
books, mobile vehicles, etc.) are connected to the 
Internet of Things (IoT), resulting in a never-before-
seen dataflow [1]. The growing number of edge users 

inclined towards popular content dataflow, such as social dia-
logue, video-streaming, online games, and web surfing, oblige 
service providers to purchase new technologies, offering a 
satisfactory Quality of Experience (QoE) [2]. Unfortunately, 
during peak periods of dataflow, backhaul links faced with 
congestion and a large-scale Signal-to-Interference-plus-
Noise Ratio (SINR) lead to a lower QoE for edge users.

Transferring peak hour dataflow to off-peak hours can ease 
the drawback. Caching technology achieves this transfer by 
grabbing popular content and storing it in Base Stations (BSs) 
during the off-peak, and re-using them during peak periods. To 
manage content-centric caching intelligently, BSs with a cach-
ing unit and a computing unit need to learn the available obser-
vations. Deep Reinforcement Learning (DRL) technology [3] 
can facilitate the management of BSs, in which the intelligent 
caching and computing units can be learned and estimated.

Most previous studies have focused on content-centric 
caching in edge-enabled IoT. Enabling BSs to learn and esti-
mate unknown popular content is necessary for a caching ser-
vice. Liu et  al. [4] introduced an approach, based on 
Reinforcement Learning (RL), to mold dataflow controlled by 
download-rate of video clients, cutting down bit-rate oscilla-
tions. Li et al. [5] proposed a model, based on a Markov Deci-
sion Process (MDP), which considered the energy efficiency 
for the decision of caching issue, where a distributed mecha-
nism hinging on the popularity of content updated the caching 
dataset in BSs. Morozs et al. [6] considered a local and global 
MDP model, as well as an RL-based algorithm, to seek the 
optimal policy, followed by a linear function approximation on 
the basis of Q-learning, used to reduce memory requirements. 
Wei et  al. [7] discussed an Actor-Critic DRL (AC-DRL) 
framework using the solutions of decision-caching, minimizing 
the average transmission latency. A Deep Neural Network 
(DNN) was used for the value-function estimates in the critic 
part. However, training that DNN in RL causes the learning 
algorithm to diverge or be unstable.

Few research efforts have been paid to the caching prob-
lem with the QoE optimal issue, as well as the metrics for 
caching performance. Note that, QoE can be understood as 
the evaluation of a Quality of Service (QoS) mechanism. The 
International Telecommunication Union (ITU) has defined 
QoE as the whole accepted application or service in some 
environments (i.e., Long-Term Evolution (LTE) networks, 
future 5G networks, edge networks, etc.). Considering the 
transmission parameters, the caching performance with QoE 
was studied for the failure probability and transmission laten-
cy. Cui et  al. [8] derived the QoE-based caching placement 
issue in mobile edge for dynamic video-streaming. Caching 
representations were selected in the edge environment for 
each edge server, in terms of reducing the storage cost of the 
BSs while maintaining a high value of QoE. Meanwhile, Liu 
et  al. [9] investigated the issue of optimal content caching 
management in an HTTP bit-rate streaming environment, 
maximizing the personal- content QoE under a limited stor-
age budget for edge users. Wu et  al. [10] jointly presented a 
co-operative mechanism with an improvement in content 
delivery efficiency, based on caching-coded methods, enhanc-
ing the value of QoE for users. Aiming to improve the energy 
efficiency, we establish a model of energy consumption. As a 
result, the caching issue needs to be optimized for the QoE 
performance with two metrics, that is, transmission latency 
and storage cost.

Motivated by the research efforts mentioned above, we pay 
particularly close attention to the issue of content-centric 
caching with QoE in an edge-enabled IoT. Aiming at caching 
intelligence in this environment, a novel model is proposed to 
balance the QoE and the caching management. Based on the 
analysis of RL, we give a decision-making model with the 
purpose of Q-value. Finally, improved DNN is used to esti-
mate the Q-value with the subject of maximizing QoE 
because of large states and action spaces. Furthermore, the pro-
posed algorithm can achieve a trade-off between Q-value 
accuracy and DRL-accelerated stability. We summarize our 
contributions as follows:

 ❏ In the framework of an edge-enabled IoT, we introduce a 
model aimed at improving the QoE value. By comprehen-
sively considering the influence factors of transmission 
latency and storage cost, we make a sustained effort to seek 
a trade-off between the content-centric caching quality and 
the user experience.

 ❏ To enhance the satisfaction of QoE for intelligent caching 
in this environment, a novel DRL algorithm for our studied 

The growing number of edge users inclined towards 
popular content dataflow, such as social dialogue, 
video-streaming, online games, and web surfing, 
oblige service providers to purchase new technologies, 
offering a satisfactory Quality of Experience (QoE) [2].
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issue of QoE-maximization is devised. Then, we intend to 
seek out a balance between Q-value accuracy and DRL-
accelerated stability.

 ❏ Extensive experiments are conducted to make evident the 
superiority of our proposal over existing approaches.
The organization of the rest of this paper is as follows. 

The relevant existing literature is summarized in Section II. 
Section III proposes some models for content-centric cach-
ing. A caching strategy is presented in Section IV. Some 
experimental evaluations are performed and the analysis of 
the results is given in Section V. Finally, Section VI con-
cludes this paper.

II. Related Work
In this section, the correlations of the literature can be seg-
mented into two classes: (1) Caching with QoE, and 
(2) DRL methods.

A. Caching with QoE
Many recent studies have paid attention to leveraging the 
caching in IoT. From the point of view of adaptive-rate, Fazio 
et  al. [11] investigated the issue of a sudden rate change and 
bit-rate oscillation occurring through the interaction between 
user clients and caching units, and an approach was proposed 
to eliminate oscillations by using shaping. Mork et  al. [12] 
studied the trade-off in the cloud between caching and com-
puting transcoding, and proposed a partial transcoding scheme 
of cost-efficiency with the purpose of caching content man-
agement on the basis of user points. To improve the user QoE, 
Tasaka et  al. [13] proposed a logarithmic QoE model driven 
by observational results. The work used a convex optimization 
problem to formulate a cache management problem in the 
context of adaptive streaming. Furthermore, the authors pro-
vided a framework to analyze this engineering problem. Mu 
et  al. [14] introduced an in-network policy of video caching 
for the information-centric network, enhancing user QoE 
depending on the distribution of content popularity, in terms 
of average user throughput. Aiming towards the decision-mak-
ing of the caching replacement, Pang et  al. [15] derived an 
adaptation algorithm of video caching driven by QoE, relying 
on the popularity of content chunks and the network band-
width of the downlink. Unfortunately, most existing studies 
did not analyze these works in a holistic manner and only 
concentrated on operational consumption or delivery latency. 
As the proposed works neglected the effect that the combina-
tion of cost and latency have in edge-enabled IoT, we intend 
to study content-centric caching.

B. DRL Methods
In contrast to the traditional methods of machine 
learning, a DNN has an advantage in terms of 
accuracy for value-estimation. As a result, we 
employ DRL to exploit DNN and RL for deci-
sion-making.

A value-based DRL was used for value 
function estimation of the state-action. This 

work derived a Deep Q-learning Network (DQN) as a 
common learning architecture, which was used to classify 
Atari games with a performance at a human level [16]. In 
order to reduce the error, the algorithm of double Q-learn-
ing [17] was proposed, due to Q-value over-estimation in 
the present state of potential actions caused by regular 
DQN. The over-estimation reduction was substantial and 
the training process was faster when using this algorithm, 
and the algorithm was also used for large function approxi-
mation. The function of advantages and state-value were 
shown separately by a dueling DQN architecture [18]. Two 
separate approximators were integrated with an individual 
Q-function of this algorithm at the final layer, as a conse-
quence, Atari games outperformed the results in this archi-
tecture. Compared with the existing works, which had made 
efforts to solve content-centric caching in terms of accuracy, 
tossing DNN at RL results in a poor algorithm and may 
make DRL unstable.

In the paper, we pay close attention to the issue of caching 
with QoE in an edge-enabled IoT. A novel QoE model and 
the improved DRL algorithm are studied jointly for intelligent 
content-centric caching.

III. System Model
In this section, we summarize the caching model for the 
QoE model with two metrics, i.e., transmission rate and 
storage cost.

A. Network Model
Suppose that a local edge-enabled IoT with a single BS is con-
nected to the backbone with low bandwidth, high latency, and 
the backhaul link, as shown in Figure 1. Note that, a BS is 
equipped with ,M  ,M N! +  local caching units to store con-
tent chunks. Each content chunk ,m Mt !  , , , ,t 1 2 3 f=  is 
assumed to have different bit-rates .L tm  Each ,mt  , , , ,t 1 2 3 f=  
is also assumed to contain mtx  seconds. We can see that the size 
of each mt  is .L L ·m

bit
m mt t tx=  Each caching unit works in a 

first-in-first-out method. That is, a new mt  replaces the old mt  
when an old mt  makes a decision to leave.

We further suppose that the BS selects M  content chunks 
from the number of total files F M$  in the cloud server, and 
stores them for possible utilization in time slot .t  The binary 
variable ,am

ca
t  denotes whether to store the requesting mt  or not. 

If ,a 1m
ca

t =  then mt  is cached in BS, incurring zero cost and 
reducing the transmission latency. Otherwise, the BS can grab 
mt  from ,F  leading to sizable cost and a large latency, along 
with the satisfaction of QoE for users. Note that, Lm

c
t  can be 

In the paper, we pay close attention to the issue of 
caching with QoE in an edge-enabled IoT. A novel 
QoE model and the improved DRL algorithm are 
studied jointly for intelligent content-centric caching.
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seen as the bit-rate of .mt  If mt  is not cached, we simply set 
Lm

c
t  as zero. The BS needs to intelligently select any mt  for low 

cost and latency in a caching service.

B. Caching Model
When an edge user requests mt  in ,t  then mt  is transferred 
from BS if it is cached. Otherwise, BS can grab the mt  
from the cloud server, and then the mt  is delivered to the 
edge user. The transmission latency from BS to edge user 
is relatively small, and it has a little effect on the caching 
decision. We assume that the wired round-trip transmis-
sion latency is the same constant d  [19] for transferring 
the requests from the cloud server to the BS. In addition, 

if the cache-hit-probability is increased, the requirements 
of the backhaul link can be reduced and the average 
transmission latency, in the same way. That is, the proba-
bility of caching a special mt  is in direct proportion to 
content popularity.

Suppose that the popularity of each requesting mt  is 
defined as [ , ].p 0 1mt !  We are more in favor of caching content 
chunks with higher popularity, as the popularity is known. 
Consequently, the function of transmission latency is denoted 
as follows:

 ( )( ),La M r
L

M d a p1 1 1 1
m

m
bit

m

M

m

M

m
ca

m
1 1t

t

t t

t t= + - -
= =

/ /  (1)
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FIGURE 1 Illustration of edge-enabled IoT architecture.
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where the left part is the average wireless transmission latency 
for all M  requirements, and rmt  refers to the SINR, which 
exists for different content chunks. The existing interference is 
inversely proportional to transmission latency in a certain pro-
cess. The right part is the average wired round-trip transmission 
latency, which is influenced by content popularity.

On the other hand, caching mt  can cause storage cost in M  
units of the BS, which is positively correlated to the size Lm

bit
t  of 

.mt  Note that, if the mt  is cached, only the increased parts of M  
in BS generate storage cost. Then, the average storage cost is cal-
culated as follows:

 ( ) ,Co M L L1 · ·
m

M

m m
c

m
1t

t t th x= -
=

+/  (2)

where h  is the parameter of storage pricing, indexed in [8], and 
( ) { , }maxx X0=+  [13].

C. QoE Model for Content-Centric Caching  
in Edge-Enabled IoT

The Index of QoE Level
To improve the experience of the user in an edge-enabled IoT, 
we measure QoE as the quality perceived by the service coming 
from content-centric caching. On the basis of this study, we 
show two metrics to assess QoE commonly. The first one is 
based on the transmission latency, which is related to the popular 
content chunks caused by the requirements of users. A lower 
transmission latency means a higher quality of experience for the 
user. The second part utilizes the storage cost, especially for 
diverse requirements. The higher the storage cost is, the lower the 
quality of experience for the user becomes. The effect on QoE 
in an edge-enabled IoT is exerted jointly by these two terms. 
Detailed evaluation methodologies are described as follows:

QoE Model
The transmission latency in an edge-enabled IoT can be relat-
ed to QoE. When the transmission latency La  is high, requests 
for a lower transmission latency will be made by users. In 
addition, the storage cost can be added as another term of 
QoE. If the storage cost Co  is not low, the BS can fetch more 
popular mt  to caching units at a lower cost. Therefore, we can 
obtain QoE as follows:

 ,QoE La Cop=- -  (3)

where 02p  is a weighting parameter between the transmis-
sion latency and storage cost.

D. Optimization Objective
One of the most critical issues in edge-enabled 
IoT for content-centric caching performance is 
QoE, which can be affected by many factors. 
Specifically, taking QoE into consideration from 
two perspectives is an emergency: transmission 
latency and storage cost are negatively propor-

tional to QoE. Finally, the objective of maximizing the QoE is 
as follows:

 ( , ).QoE La CoMaximize  (4)

IV. Learning-Based Caching Strategy
In this section, we resort to the RL method to obtain the 
Q-value by learning a stochastic policy ( ).r  Then, the improved 
DNN, based on fixed target network [20], experience replay 
[21], and adaptive learning rate [22] methods, is proposed to bal-
ance the Q-value accuracy and DRL-accelerated stability. Note 
that, Q-value denotes the value of QoE.

A. RL-Based Problem Formulation
In this paper, we consider an arbitrary state space. Therefore, the 
above stochastic optimization problem can be formulated as an 
MDP. We use the RL method to learn the best policy, with the 
objective of maximizing QoE through large-scale training. This 
training is in the context of the present state, which can be trans-
ferred, based on the transition probabilities to the other states, 
incompletely. The trait of RL architecture appears in that the 
decision-making by the agent is in a non-discretized approach. 
Therefore, BS can realize the RL agent and can gather all infor-
mation, containing states, and decision-making for all requests. 
Note that, the following parts give descriptions of state and action.

State: In ,t  the M  requests of mt  can be acquired by the BS. 
A series of SINR and bit-rate are included in every request. 
The RL agent obtains the state, value of popularity, and size for 
each .mt  Therefore, the state in our problem is denoted by 

,s St !  including
 ❏ :M  the amount of requested mt  in the case of the manage-
ment fields of the BS.

 ❏ :pmt  the popularity of .mt

 ❏ :am
ca

t  whether mt  is cached or not.
 ❏ :,m MtY  the M 1+  size-vector produced by requesting 

.m Mt !

 ❏ :Lm
c

t  bit-rate of the cached .mt  If mt  is cached, then .L 0m
c

t =

Action: Decision-making through the agent gives the cer-
tain ,mt  which can be served by a certain BS. The purpose of 
the agent is to achieve the minimum average transmission 
latency and storage cost, based on the caching conditions of the

.mt  Therefore, the action of RL is defined as ,a At !  including
 ❏ :am

ca
t  whether mt  is cached or not. If ,a 1m

ca
t =  the storage 

units cache it. If ,a 0m
ca

t =  the units do not cache it.
 ❏ :am

bs
t  the size-vector M 1+  of ,mt  indicating which mt  can 

be served by the BS.
 ❏ :amt  bit-rate selection of mt  (i.e., ).Lmt

Specifically, taking QoE into consideration from two 
perspectives is an emergency: transmission latency 
and storage cost are negatively proportional to QoE.
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Reward: In the state of taking the action ,at  
the reward rt  is obtained by the system. In the 
stochastic process, the value-expectation of a 
maximum long-term value which is accu-
mulated does not refer to the immediate val-
ue-maximum. Therefore, the action-state is the 
acceptance of considering a more and more 
timely reward. In the approach of RL, the next 
rewards in the next situations and the immedi-
ate rewards are affected by the actions. With the purpose of 
considerable rewards, an RL agent can incline towards 
actions that efficiently have attempted at reward-production. 
The issue needs to be externalized in the transmission laten-
cy and storage cost manner, and the objective is to maxi-
mize the value of QoE. Therefore, the reward can be 
written as follows:

 .r QoEt =-  (5)

Value: Decision-making in t  is intended to optimize the 
long-term performance. Suppose that, in the condition of 
the stochastic policy ( ) ( ),Pra s a a s st t; ;r = = =  the action at  
can be obtained. Taking the probability of taking actions in 
the system states constructs this policy, referring to a map-
ping. Due to the value function, ( )a s;r  can be evaluated and 
improved by the RL agent. Note that, the function refers to 
the cumulative value-expectation in the discounted rewards. 
The rewards can be received following ( )a s;r  in the entire 
procedure. The value function of state-action for an agent 
with ( )a s;r  is given by

 ( , ) , , ,Q s a E r s s a ak
t k

K
t t

0

;b r= = =
3

r
+

=

' 1/  (6)

which refers to (as in the above) the long-term reward of expec-
tation when started at state .s  The value ( , )0 1!b  is the dis-
count factor to index decisions in the way that can be expected. 
Then, the optimal Q-value ( , )Q s a)  can be denoted and calculat-
ed by the Bellman optimality equation [23] as follows:

 ( , ) { ( , , )}.maxQ s a E r Q s a s at t t a t t t t1 1t 1 ;b= +)
+ ++  (7)

As the state spaces are very large, it is impossible to calculate 
all Q values using the Bellman equation. Consequently, a neu-
ral network can be used to estimate value functions in RL, as 
the function approximator.

B. Q-Value Estimation with Improved DNN
According to the above-mentioned function approximators, 
DNN acts as the most efficient architecture for representation 
or feature learning [24]. Therefore, to estimate the value func-
tion, DNN is required.

A fully-connected DNN can be shown through the Q-val-
ue ( , ).Q s aw  A series of weights { , , , }w w w wn1 2 f=  are used 

to parameterize the DNN. Consisting of a variety of neurons 
in each hidden layer, we compute some elements. The ele-
ments in the condition of a non-linear activation function can 
output a value through transferring the weight-input. In the 
layer ,i  the definition in the value-output of the j-th neuron is 

,yij  which refers to

 ( ),y f w x b·ij i i ijact= +  (8)

where fact  is the activation function. In layer ,i  ,wi  , , , ,i n1 2 f=  
is the weight-input, ,xi  , , , ,i n1 2 f=  is the value-input, and 
bij  is the bias.

The parameters of the system are optimized using a loss 
function with updating .w  The loss function is denoted by 

( ).L w  Recall that, the loss function shows the mean-squared 
error of the value-target, that is,

 ( ) [ ( , ) ( , )] ,maxL w E r Q s a Q s at a w t t w t t1 1
2

t 1b= + -+ ++  (9)

where ( , )maxr Q s at a w t t1 1t 1b+ + ++  is the value-target, and rt + 
( , ) ( , )max Q s a Q s aa w t t w t t1 1t 1b -+ ++  is called the temporal- 

difference error.
However, due to the conflict between the targets and the 

relevance in a non-stationary environment, DNN can lead to 
instability, or cannot be able to learn effectively and cannot 
resolve the inconsistency of the RL algorithm. As a conse-
quence, we utilize the fixed target network (F), experience 
replay buffer (E), and adaptive learning rate (L) methods to 
construct an FEL-DRL algorithm with the goal of accelerated 
stability in DRL.

The following proposal is the issue of the target in a 
condition of non-stationarity: at each iteration of the train-
ing procedure, the parameters of the value-target and the 
present parameter-estimation of DNN can synchronously 
change. If the variational value-target is changed with tun-
ing parameters, the tendency of value-estimation is not to 
be inconsistent and the procedure of learning tends to be 
destabilized. Aiming to alleviate the condition of non-sta-
tionarity, another neural network is selected by the fixed 
target network to utilize as the target. The parameters of the 
target neural network are fixed by w)  at each procedure of 
the iterations. In addition, the parameters which are fixed by 
the target network in the time slot can update the values of 
the network parameter-estimation in the characteristics of 
the slower cycle.

Combining RL process with DNN estimation, the 
proposed FEL-DRL algorithm can be summarized.  
The main algorithm steps of FEL-DRL, with experience 
replay buffer, fixed target network, and adaptive 
learning rate at,h, are as follows.
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The experience replay buffer is used to terminate the rela-
tivity of time within different training slots. The dataset is built 
because the experience of the agent is stored. To train the net-
work, the batches of dataset are delivered in a random way. As a 
result, learning about what it is doing in a timely manner of the 
network is prevented. Then, the RL algorithm can be allowed 
to learn from a variety of past experiences. The replay buffer of 
experience stores , , ,I s a r st t t t 1G H= +  as a tuple. Finally, the 
parameter w  can be updated by a mini-batch sample of I  
tuples in the DNN.

The transition probability and reward, following the distri-
bution, are created by samples in the past .t  The hth experience 
sample is , , , .s a r st

h
t
h

t
h

t
h

1G H+  We propose the adaptive learning rate 
as follows:

 ,,t h
t t

0 0
h

a a b= -  (10)

where the constant parameters 0a  and 0b  satisfy ,0 01 a  .101b
Sample-failure is updated exponentially by the adaptive 

learning rate a ,t h  in .t  The shorter the sample which is generated, 
the smaller the mistakes are in the transition probability and the 
average reward made. In the extreme case, when the sample is 
produced, the adaptive learning rate can achieve the maximum 
value of .0a

The loss function appears in the following, with the accep-
tance techniques of the fixed target network and the experi-
ence replay buffer.

 ( ) [ ( , ) ( , )] ,maxL w E r Q s a Q s aD t a w t t w t t1 1
2

t 1b= + -+ +)
+  (11)

where w)  is the network-target parameter, D  is the experience 
replay buffer, and the value-expectation is a mini-batch of sam-
ples coming from D  (i.e., , , , ~ ).s a r s Dt t t t 1G H+

To calculate the loss function in the process of each itera-
tion, the target neural network with the adaptive learning rate 
a ,t h  and the old fixed parameter is proposed. In addition, to 
minimize the loss function, the technology of the gradient 
descent method is given to update the parameter ,w  as follows:

 [ ( , )] ( , ),a Q Q s a Q s a,w t h t w t t w w t t3 4= -  (12)

where ( , )maxQ r Q s at t a w t t1 1t 1b= + + +)
+  denotes the value-tar-

get, and w4  refers to the partial derivative with respect to w.

C. FEL-DRL Algorithm
Combining RL process with DNN estimation, the proposed 
FEL-DRL algorithm can be summarized. The main algo-
rithm steps of FEL-DRL, with experience replay buffer, fixed 
target network, and adaptive learning rate ,a ,t h  are as follows:

Step 1: The stochastic policy ( )a s;r  with parameters is ini-
tialized by the agent. Then, the definition of the value function 
approximation ( , )Q s aw  is proposed to parameterize. The net-
work-target is initialized using the weights ,wt  , , , .t n1 2 f=

Step 2: The agent produces an action ,at  in light of current 
state st  and policy ( ).a s;r

Step 3: The next state st 1+  in the environment and the reward 
rt  are observed in the RL. Then, the RL is employed to the expe-
rience replay buffer D  for storing the tuple , , , .I s a r st t t t 1G H= +

Step 4: A mini-batch of I  is sampled from the replay buffer 
at random.

Step 5: For any sample ,h I!  the DNN estimates the 
Q-value ( , ).Q s aw t

h
t
h  Then, the DNN calculates the error and 

adaptive learning rate .a ,t h  Finally, the DNN with the averaged 
value updates its parameter w  over the mini-batch, minimizing 
the loss function.

V. Performance Evaluation
In this section, a performance evaluation is conducted to vali-
date the QoE model and the caching strategy algorithm.

A. Experimental Settings
In this evaluation, the caching capacity is set as .M 100=  Each 
requested mt  is divided into s4  and is encoded at 5 different 
bit rates. Then, h  is set as . .0 03 10 3# -  Finally, the average 
SINR is discretized into the set {1, 4, 9, 16, 32} in .t  A variety 
of content chunks can be set, with the total number being 

, .F 1 001=  The Zipf distribution is appropriate for the popu-
larity of these .F  Each edge user, with the random probability, 
selects the mt  which is required. Note that, the probability is in 
direct proportion to the popularity of .mt  The transmission 
latency, using a wired-transmission round-trip, is set as .d 1=

Considering low complexity for good performance, the 
amounts of neurons are set as 301 in the hidden layers of the 
DNN. To regularize the learning algorithm, the network-target 
is generated by the agent. The agent can stand in place of the 
parameters for the network-target, using the current parame-
ter-estimation of their primary networks. Note that, the adap-
tive learning rate ,t ha  is set as {0.00005, 0.00008, 0.0001, 
0.00012, 0.00015}, once every 301 iterations. The size of an 
experience replay buffer is set as 10,001 for the training DNN. 
The buffer can randomly return a mini-batch of experiences 
chosen by the agent. The maximum beam is set as 1,001. In 
addition, the size of the minimum batch is set as 64. The maxi-
mum amount of steps in t  is set to be 1,001.

Finally, we implement the algorithms named RL, DRL, 
AC-DRL, FE-DRL, and FEL-DRL in Matlab, and evaluate 
them using Tensorflow. Recall that, FEL-DRL is the scheme 
proposed in this paper. RL, DRL, AC-DRL, FE-DRL, and 
FEL-DRL are introduced in other studies. The useful simula-
tor is adopted since it is designed to input realistic traces from 
all varieties of data sets in databases. We also use the Federal 
Communications Commission (FCC) [25] dataset, consisting 
of millions of nationwide broadband performance records in 
an edge-enabled IoT.

B. Experimental Results
Figure 2 compares the performance of the QoE models with 
different metrics. We can see that the QoE model using storage 
cost and transmission latency metrics obtains the best perfor-
mance. The one-metric QoE model using the storage cost or 
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the transmission latency achieves a low performance. When we 
adopt three metrics, the rewards of the QoE model are the 
lowest. It appears that the performance of the QoE model 
relies, in a certain way, on those two metrics.

Figure 3 compares the performance of the schemes with 
different parameters. The ratios of RL, AC-DRL, and FE-
DRL are 0.9, 0.6, and 0.8, respectively. However, the average 
ratio of FEL-DRL shows the best performance with changes 
of the adaptive learning rate .,t ha  That is, the FEL-DRL 
scheme has the highest stability. Figure 4 shows the compari-
son of the transmission latency in the condition of the diverse 
mechanisms. With an increase of SINR, the average transmis-
sion latency decreases. Specifically, the average values of trans-
mission latency under the RL, DRL, AC-DRL, FE-DRL, 
and FEL-DRL mechanisms are 6.0, 5.0, 4.8, 4.5, and 4.6 sec-
onds, respectively.

Figure 5 compares the transmission latency, based on con-
tent popularity under different schemes. To clearly see the con-
tent-centric caching on the basis of FEL-DRL, five caching 
strategy categories are compared, with an increase of caching 
capacity from 100 to 1,000. We can see that the caching strate-
gy, based on FEL-DRL, outperforms the other four mecha-
nisms. Note that, the smaller the caching capacity is, the better 
our proposed method performs. The performance of the cach-
ing strategy, based on the content popularity, is very close to 
the proposed method, subject to the caching capacity being 
larger than 501. In other words, in an edge-enabled IoT, half of 
the content chunks can be cached. The average transmission 
latency using the caching method with FEL-DRL is inversely 
proportional to an increase in the caching capacity. Not all 
content-centric caching strategies has different performance 
when the caching capacity is over 1,001. That is to say, any mt  
can be cached in the edge.

Figure 6 compares the storage cost under different schemes. 
Randomly-selected traces are set to be 5,000, from the FCC 
dataset. The average bandwidth is from 1 to 5 Mbps, avoiding 

simple cases so the maximum bit-rate can be chosen. We can 
see that the FEL-DRL approach outperforms the other base-
line approaches. Especially, our proposed method achieves an 
average improvement of storage cost, compared to FE-DRL. 
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With an increase in bandwidth, the improvement of the storage 
cost contributes to our proposed method significantly.

In the literature [10], it has emerged that the value of QoE 
in a satisfactory environment is usually above 60. The content-
centric caching method, based on the FEL-DRL algorithm 
with the best choice of the transmission latency La  and storage 
cost ,Co  brings the edge user a satisfactory QoE. In detail, we 
can see, from Figure 7, that the average QoE of FEL-DRL is 
64, the maximum QoE of FEL-DRL is 70, and the minimum 
QoE of FEL-DRL is 62. In contrast to the other algorithms, 
the FEL-DRL algorithm generates a better QoE. From what 
has been discussed above, the QoE values are negatively pro-
portional to transmission latency and storage cost.

VI. Conclusions
In this paper, we study content-centric caching in an edge-
enabled IoT with the constraint of improvement of QoE. The 
main influencing factors for the QoE are analyzed. An RL 
method is used for Q-value decision-making, considering 
transmission latency and storage cost. Moreover, an FEL-DRL 
method is proposed to balance the Q-value accuracy and the 
DRL-accelerated stability, due to the large action spaces and 
states. Finally, the experimental results evaluate the high value 
of QoE given by the FEL-DRL algorithm.
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