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In recent years, biometrics (e.g., fingerprint or face recognition) has replaced traditional passwords and PINs
as a widely used method for user authentication, particularly in personal or mobile devices. Differing from
state-of-the-art biometrics, heart biometrics offer the advantages of liveness detection, which provides strong
tolerance to spoofing attacks. To date, several authentication methods primarily focusing on electrocardio-
gram (ECG) have demonstrated remarkable success; however, the degree of exploration with other cardiac
signals is still limited. To this end, we discuss the challenges in various cardiac domains and propose future
prospectives for developing effective heart biometrics systems in real-world applications.
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1 INTRODUCTION

User authentication, referred to as human-by-machine validation, has become vital for secure
transfer of credentials in various life domains, including access control, healthcare, monetary
transactions, and many others. Traditional recognition that utilizes methods dependent on knowl-
edge (e.g., PIN, password) and controlled assets (e.g., ID card, token) has become more vulnerable
to attacks from malicious third parties and has spurred development of more secure authentication
methods such as biometric recognition. Biometric recognition uses the inherent physiological and
behavioral traits that are unique to the individual. However, existing state-of-the-art approaches
are not ideal for commercial biometric products as shown in Table 1. Furthermore, there are many
applications in the present literature that show the vulnerability of these modalities against cir-
cumvention, replay attack, and biometric obfuscation [74, 108].

To overcome issues with commercial viability and security, we investigate the promise of im-
proved biometric recognition methods by determining the unique characteristics internal to the
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Table 1. Comparison among Biometric Techniques Based on Recent Advancements

Modality Universality Security Acceptability Performance Measurability Permanence

Traditional

Iris High Medium Low High Medium High

Fingerprint High Low High High Medium High

EEG Medium High Low Medium Low Low

Face High Low High Medium High Medium

Heart-based
ECG High High High Medium Medium Medium

PCG High High Medium Low Medium Low

EEG, electroencephalogram.

Fig. 1. Heart biometrics utilize the inter-individual variations in cardiac characteristics for user verification.

body, in particular, the inter-individual variability of the heart [48]. Heart biometrics, also referred
as cardiac biometrics, rely on cardiac signals, i.e., electrocardiogram (ECG), photoplethysmogram
(PPG), seismocardiogram (SCG), phonocardiogram (PCG), and others, which are universal and
non-invasively measured through the surface of a human body. The heart waveform arises from
multiple “sympathetic and parasympathetic factors” [7] of the human body and governing or mor-
phing this physiological phenomenon is more challenging than traditional biological traits (e.g.,
fingerprint and face). The most critical advantages of heart biometrics are as follows: (1) intrinsic
liveness detection ensuring that only a living subject can be recognized by the sensing modality,
which further improves tolerance to malicious attacks. Other biometrics require additional pro-
cessing to enable this feature, which comes at the price of computation cost and still does not
provide sufficient security to the system. (2) Conventional biometrics such as fingerprints employ
static biometric samples and can be spoofed as long as the sample, regardless of the time period,
is leveraged by the adversary. Heart biometrics are preferable for continuous authentication due to
their capability of providing a new biometric sample periodically.

The combination of these advances opens the door for new innovative research on reliable,
robust, and secure cardiac biometric applications (refer to Figure 1) that are likely to revolutionize
our everyday lives. However, there are three notable and upcoming challenges that need to be
further addressed to make this vision a reality. First, the cardiac signals are prone to noise caused
by human dynamics (e.g., breathing, body motion) and suffer from instantaneous variations due
to a drastic change in the environment. These variables not only affect the accuracy of the system
in recognizing the cardiac recordings but also endanger biometric security with increased risk
of attack such as Denial-of-Service. Second, it is challenging to design a sensing application for
cardiac biometrics that is capable of inexpensive and unobtrusive data acquisition and requires
low time complexity during classification. Last, cardiac signals can destabilize with respect to the
biometric template due to body’s physiological and psychological conditions, evolving over time.
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To highlight the important contributions of the existing literature in addressing the above chal-
lenges, our work is summarized as follows:

• We provide the first comprehensive characterization study (Section 4) on diverse cardiac
sensing methodologies by describing the unique and prominent attributes of their biometric
signals. We perform an extensive analysis (Section 5) of different sensing modalities by
enlisting the comparison among their cardiac signal, setup, and working mode based on
the proposed taxonomy.

• We thoroughly review the existing approaches for processing raw signals and generate
valuable features to be further utilized in different biometric classifications. Moreover, we
extend our study (Sections 6 and 7) by analyzing the different configurations of cardiac
biometric models to identify existing challenges and propose future prospectives.

• We describe the various applications (Section 8) for cardiac biometrics to provide motivation
for future research. We also explore the feasibility of malicious attacks (Section 9) with
varying threat levels against all cardiac domains to highlight the open issues that require
immediate attention.

Note that the existing surveys on heart biometrics primarily focus on ECG-based approaches
and provide no information regarding other cardiac domains and related research [7, 121]. Other
literature on individual methodologies, such as SCG and ballistocardiogram (BCG), specifies the
theoretical implications but does not elaborate on the unique attributes that can aid in biometric
applications [71]. Furthermore, other research does not highlight the vast sensing modalities that
can be employed for cardiac identification. To the best of our knowledge, this is the first survey
that highlights all prominent cardiac domains and their related challenges and open issues when
applied to biometric applications. The goal of this article is to bring the novice or practitioner not
working in this field quickly up to date with the advances in the cardiac biometrics domain.

To establish the relevant literature for this survey work, we have employed key publication
databases and search engines, including IEEEXplore, ScienceDirect, ACM Digital Library, Google
Scholar, and Dblp. A representative combination of keywords include “electrocardiogram” and
“ECG,” “seismocardiogram” and “SCG,” “photoplethysmogram” and “PPG,” “phonocardiogram”
and “PCG,” “ballistocardiogram” and “BCG,” “echocardiography,” “impedance cardiogram” and
“ICG,” “cardiac motion” together with “biometric”; “authentication,” “identification,” “sensor,”
“feature extraction,” “preprocessing,” “classification,” “security,” “application,” and “attacks.” In
addition, other research regarding cardiac physiology is also utilized.

2 CARDIAC PHYSIOLOGY

2.1 Background

2.1.1 Anatomy. The heart is the most critical organ, providing replenished oxygen and nutri-
ents to the entire body and aiding in expelling metabolic wastes. It is typically the “size of a fist,
weighing between 250 and 350 g and beats approximately 100,000 times a day and 2.5 billion times
during an average lifetime” [142]. It is located in the middle mediastinum on the left portion of the
chest, in line with the thoracic vertebrae. The heart’s structure is mentioned in Figure 2. Physiolog-
ically, it comprises four chambers: the upper two atrias for receiving venous blood and lower two
ventricles for pumping oxygenated blood into lungs and arteries [142]. The two atrioventricular
valves are the tricuspid valve and the mitral valve; these separate the atrium from the ventricle
on the right side and the left side of the heart, respectively [75]. The two semilunar valves are
the aortic valve and the pulmonary valve. The endocardium, myocardium, and epicardium layers
constitute the wall around the heart, and the pericardium, a double-membraned sac, provides a
further layer of protection.
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Fig. 2. Anatomy of a human heart.

2.1.2 Cardiac Cycle. In general, the array of events of contraction (systole) and relaxation (dias-
tole) of ventricles with every heartbeat is referred to as cardiac cycle. The cardiac cycle begins with
a diastole stage, where the the blood flowing via the open atrioventricular valves, thereby occu-
pies the ventricles. The atria contract, forcing the blood further into the ventricles after which they
begin to contract. The atrioventricular valves are forced shut due to an increase in pressure. An
excessive pressure results in the opening of semilunar valves thereby allowing blood to traverse in
left and right atrium via pulmonary veins and vena cavae, respectively. Last, the semilunar valves
close due to the decreasing ventricular pressure with respect to the arteries [62]. This process
completes a cardiac cycle.

2.1.3 Cardiac Conduction. Each time the heartbeats, the ventricular contraction is triggered by
a wave of electricity, which arises spontaneously in a collection of specialized cells in the right
atrium. These cells, namely the sinoatrial node, are the source of rapid electrical impulses through
the left and right atria, which are further accumulated in the atrioventricular node. Specialized con-
ducting fibers, i.e., the bundle ofHis , transmits the signal to ventricles along the bundle branches to
trigger contraction [109]. Afterward, the Purkinje fibers convey the respective signal and transfer
the electrical charge to the heart muscle.

2.2 Inter-individual Variation

Cardiac signals depict the diverse physiological characteristics of the cardiac muscle. Existing lit-
erature mentions that factors including “heart mass orientation, conductivity, and the activation
order of the heart are sources of significant variability among individuals” [7]. These variations
provide the primary challenges and advantages in biometric applications.

2.2.1 Static Cardiac Features. The contrast in geometrical relations of the heart with respect to
its location and orientation, structure, and sensing position contributes to a significant variabil-
ity [69, 83]. These factors are more pertinent depending on the body’s habitus, gender, and age.
Physiological variability includes “differences in the Purkinje system, the heart muscle fiber ori-
entation, the electric conductivities of different parts of the heart and the activation order of the
heart” [70]. Other geometrical factors constitute every prospect of volume conduction among the
origin of heart activity and the associated sensing modality recording the cardiac signal.

2.2.2 Dynamic Cardiac Features. The electrical volume conduction within the thorax is im-
pacted by the variations of the other organs. Furthermore, the timing of depolarization and re-
polarization is not consistent among individuals, which contributes to the inter-heart variability.
Physical activities also influence the low-frequency components in signals [18], while the domain
measures relative to heart rate variability are higher in active compared to sedentary individuals
[97].
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Fig. 3. A taxonomy for the cardiac sensing domain.

3 CARDIAC TAXONOMY

We employ the taxonomy, illustrated in Figure 3, to provide valuable insights into the categoriza-
tion of cardiac sensing in different dimensions.
• Physical Signal: It conveys the information about the behavior and attributes of the heart

and can be actively captured by a sensor. For instance, the ECG resemble the heart’s electrical
activity, the PCG recognizes acoustic signals, while the SCG can be used to evaluate the mechanical
vibrations generated by heart movements. The characterization study of cardiac methodologies is
grouped based on the physical signal in Section 4.
• Sensing Location: It describes the position at which the sensor is established. Generally,

the placement of the sensor depends on the physical signal; however, a physical signal can be
periodically measured from different positions (e.g., PPG from either face or finger). We categorize
various sensing modalities based on their location in Section 5.
•Working Mode: Depending on the application, cardiac sensing can be performed continu-

ously, such as electrodes for ECG or unobtrusively by using Doppler radar. To enhance security,
there are many existing studies that focus on combining different biometrics, such as fingerprints
and PPG, which are commonly referred to as multimodal biometrics. Different types of working
modes are further elaborated on in Section 7.

The taxonomy presented in our work can be generalized to overall heart-based applications,
since multiple sensors can be utilized to simultaneously perform diverse functions (e.g., the elec-
trical signal from the heart is prominently used for diagnosis of cardiovascular diseases as well as
biometrics).

4 CARDIAC CHARACTERIZATION STUDY

In this section, we comprehensively characterize the different methodologies that utilize body
sensors to acquire cardiac signals, in addition to their unique attributes.

4.1 Electrophysiological-based Approach

4.1.1 Electrocardiography. ECG relies on the phenomenon of measuring the electrical activity
of the heart. Conventionally, 12-lead electrodes are fixed on the upper body, where they recog-
nize the variations from the electrophysiologic model of cardiac muscle due to repolarization and
depolarization in the course of every heartbeat. The primary features of the ECG signal, i.e., the
P wave, QRS complex, and the T wave, are illustrated in Figure 4. The P wave and QRS complex
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Fig. 4. Illustration of cardiac signals with fiducial features of a single individual whose arterial blood pressure

(ABP) is recorded relative to the finger region [71].

depict the depolarization of atria and ventricle, respectively, while the T wave depicts the repolar-
ization of the ventricles [63]. The ECG signal possesses a low-amplitude (100–300 uV) feature, i.e.,
the U wave, from the repolarization of inter-ventricular septum. However, it is frequently absent
or obscured from power-line interference or baseline error.

The ECG demonstrates an immense potential for biometrics in terms of integrity by being de-
pendent on the individual physiology and psychology. However, the system requires either phys-
iological activity in the same fashion as in the enrollment stage [38] or periodical resampling of
the training dataset.

4.1.2 Impedance Cardiography. The impedance cardiography (ICG) is a study of variations in
the thorax impedance during the cardiac cycle. For the sensor placement, four electrodes are placed
at the neck and the diaphragm level, eliminating the effect of skin-electrode impedance [115]. De-
pending on the system design, an excitation source is required, since the ICG signal is significantly
weaker than the raw measured impedance recorded from the body [169]. The signal comprises
components depicting contraction of the atrium (A wave), opening of the aortic and mitral valve
(B and O wave), maximum systolic flow (C wave), and closing of the aortic and pulmonary valve
(X and Y wave). Other than the previously described cardiodynamic parameters, these waves also
provide insights into the ventricular ejection period.

Existing studies of ICG contrast with each other and have conflicting results due to their method-
ologies involving “devices of different generations, physical models, and equations” [95]. Moreover,
any surgery affecting the thorax can significantly reduce the accuracy of the ICG system. Employ-
ment of ICG for biometric applications is severely underexplored and comprehensive investiga-
tions to address these challenges can result in valuable contributions to the research community.

4.2 Acoustic-based Approach

4.2.1 Phonocardiography. Human heart sounds are natural signals that are widely used in the
medical domain for health monitoring. The stethoscope is a common instrument that converts the
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vibrations from the chest to acoustic signals that convey information about the individual’s car-
diovascular system. The PCG signal comprises two components, S1 (Lub) and S2 (Dub), produced
from the traversal of blood through the valves in each cardiac cycle. S1 is low (around 40 Hz) and
prolonged (about 150 ms) and generated from the closure of atrioventricular valves, while S2 is
high pitched (around 50 Hz) and short (about 120 ms) and arises from the closure of semilunar
valves [75]. Others, such as the third (S3) and fourth (S4) components, are also observed, although
the possibility is low. S3 generates at the start of diastole, immediately after S2, when the left
ventricle is obstinate [17], and is common among children and young adults.

For every individual, the details of time and frequency-domain waveforms in the PCG signal
differ [119], thereby highlighting its potential as a biometric.

4.2.2 Echocardiography. Echocardiography constructs heart images utilizing the common
multi-dimensional or Doppler ultrasound. It is often abbreviated as cardiac echo, i.e., a sonogram
of the heart. An echocardiogram is primarily used in the medical domain to estimate cardiac out-
put, diastolic function, ejection fraction, and hypertrophic cardiomyopathy. It can also provide a
precise assessment of abnormality of blood flow through the heart. In a typical setup, the trans-
ducer is placed on the chest wall and transthoracic images of the heart are taken. An alternative
method is to place the probe on the subject’s esophagus to allow Doppler evaluation from the rear
of the heart. A three-dimensional (3D) echocardiography can “reconstruct the heart chamber in all
dimensions and aid in measuring left ventricular volume and ejection fraction accurately without
any geometric assumptions” [113].

To employ the 3D echocardiography in biometric applications, an anatomical intelligence sys-
tem would be required to distinguish between anatomies of the heart by learning from generic
models.

4.3 Mechanical-based Approach

4.3.1 Seismocardiography. The SCG signal derives from the vibrations in the chest wall gener-
ated from the contraction of heart and discharge of blood into the cardiovascular system. Conven-
tionally, a multi-axial accelerometer is placed near the heart on the sternum or apex where each
axis portrays a specific pattern [100]. The majority of the literature in SCG domain focuses on
the signal acquired from the dorso-ventral component, i.e., the Z-axis of accelerometer [168]. The
Y-axis readings can be employed as a reference signal to reduce the noise from human dynamics
(e.g., motion artifacts) [112], while the spatial distribution aids in identifying cardiovascular dis-
eases [116]. An SCG signal possesses waves that depict the physiological activities of the heart:
mitral valve closure (MC), isovolumetric contraction (IC), aortic valve opening (AO), rapid ejection
(RE), mitral valve opening (MO), and rapid filling (RF).

The ability to non-invasively measure the heart activity increases the scope of application for
SCG in the clinical and biometric domain. However, unlike the steady environment in clinical
settings, SCG usually suffers from lower performance compared to ECG due to the exposure from
environmental noise and motion artifacts during daily activities.

4.3.2 Ballistocardiography. During every cardiac cycle, an individual’s center of mass varies
with the acceleration of discharged blood into the vessels. BCG is the measure of recoil forces
generated by the body to maintain overall momentum. It possesses distinct patterns in all three
axis where the longitudinal and transverse BCG depicts the head-to-foot deflection and the dorso-
ventral vibrations of human body, respectively [71]. The BCG waveform can be categorized into
three groups: pre-systolic, systolic, and diastolic. The pre-systolic group (F and G wave) precedes
the systolic and is rarely observed. The most prominent signal measured is the systolic group
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(H, I, J, and K waves) while the diastolic components (L, N, and M waves) are smaller and less
perceptible due to artifacts from device architecture or subject movement [120].

There are two important facts that need to be considered. First, there is much existing literature
that uses the BCG and SCG terms interchangeably. However, these are two different cardiac sens-
ing methodologies, having different characteristics and waveforms. Second, the ideal environment
for BCG measurement is micro-gravity, since it is affected by any gravity force and contact with
external objects [128]. Although a conventional sensing system employs the use of a bed, chair,
and weighing scale, with recent advancement in this domain, wearables are increasingly explored
to capture the real-time signal using on-board inertial sensors [52].

4.3.3 Full Cardiac Motion. The self-excitement of heart muscle leads to a “3D automatic heart
deformation” [92] known as cardiac motion (CM). It is composed of atrial and ventricular contrac-
tion and relaxation that occurs amidst the cardiac cycle. Cardiac motion is a unique identifier for
each person, as no two individuals have the same size, position, or anatomy of the heart. The signal
can be categorized into the contraction of atrial muscles (AFP), maximum blood flow in ventricles
(VFP), and atrial contraction/ventricular expansion (ASP).

A recent study [92] demonstrated the capability of CM as a biometric by employing a biomedical
radar to measure the signal phase shift caused by the physiological motion. Furthermore, it is chal-
lenging to counterfeit and robust against replay attacks. However, the performance of biometric
systems working on CM for people with cardiovascular diseases requires further investigation.

4.4 Optical-based Approach

4.4.1 Photoplethysmogram. PPG is a biometric signal obtained from the illumination (using
a light emitting diode (LED)) of specific body parts such as fingertip or face and acquiring the
reflected light by a photo-diode. It can assess the variations in the volumetric blood flow in the
peripheral circulation [140]. A PPG waveform comprises alternating (AC) and static (DC) compo-
nents, where the AC with frequency around 1 Hz presents valuable insights into the heartbeat of an
individual [75]. The DC is coherence with the respiration system and is often used for measuring
blood oxygen saturation because of the precise difference between “red and infrared absorption
spectra of reduced and oxygenated hemoglobin” [158]. However, the PPG signal evolves with time,
since there exist fluctuations in the amplitude of the signal from the autonomic nervous system
[140].

The PPG offers an advantage of non-invasive and passive monitoring, since the sensor does not
hinder the daily activities of an individual. Moreover, the sensors (e.g., pulse oximeters or camera
in smartphone) are cost-effective and compact, unlike the other methods (i.e., ECG, BCG, and PCG)
[22]. These attributes enhance its potential to be used in mobile biometrics applications.

5 CARDIAC SENSING MODALITIES

To perform effective cardiac sensing, the precise placement of sensors is critical, as they have a
direct influence on sensing performance. Some of the sensors have the capability of providing
continuous measurements, while others can be used for one-time authentication, similarly to tra-
ditional biometrics. Based on the sensing location illustrated in Figure 5, we further categorize the
sensors in Table 2.

5.1 Non-invasive Surface Sensing

5.1.1 Electrode. The electrodes are the primary sensor for measurement of ECG signals as they
can transform the bio-electric activity inside the human body into measurable electrical current
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Fig. 5. Comparison between the location of cardiac signals with respect to the human body. The decision is

allocated to different near body devices such as a smartphone.

Table 2. Characterization of Sensors Based on Proposed Taxonomy

Sensors

Electrode Microphone Stethoscope Accel./Trans. LDV Radar Camera Probe Oximeter

Method ECG/ICG PCG PCG SCG/BCG HRV CM PPG Echo. PPG

Signal Electrical Sound Sound Mechanical Light Radio Light Ultrasound Light

Location UP/Neck LW UP UP Chest/LW Chest/Neck Chest Finger/Face Chest Finger

Working Mode Cont. Unob. Cont. Cont. Unob. Unob. Unob. Cont. Cont.

Cost Low Low Medium Low High Medium Low High Low

Signal Quality Medium Low Medium Low High Medium Low High Medium

Range Contact Contact Contact Contact Long Medium Medium Contact Contact

Setup Size Medium Small Medium Small Medium Medium Small Large Small

Mobility Medium High Medium High Fixed Fixed High Medium High

Setup difficulty Medium Low Low Low High Medium Low High Low

•Cont. = Continuous; Unob. = Unobtrusive; Accel. = Accelerometer; Trans. = Transducer.
•HRV = Heart-rate variability; LDV = Laser Doppler Vibrometer; UP = Upper Body; LW = Lower Body.

[10]. The electrode contact noise and motion artifacts directly affect the sensing performance,
thereby highlighting the importance of selecting the proper type of electrode and its location.

Wet Electrodes: This conventional type is widely used for ECG measurement in the clinical
domain. The wet Ag/AgCl electrodes are affixed to the surface skin, specifically on the chest, arms,
or legs, using a conducting medium of electrolyte gel. The working principle relies on a half-cell
potential, double layer capacitance coupled with parallel and series resistances [33]. While the wet
electrodes provide satisfactory signal quality, they require additional care due to the possibility
of skin irritation [103], which severely impacts the mobility of the user and could create cross-
coupling between neighbouring electrodes [127].

Dry Electrodes: To eliminate the requirement of electrolyte gel, dry electrodes were proposed.
Perspiration that gathers on the skin substitutes for the electrolyte medium. It also results in an
increase of electrode surface area and enhances the conduction as a result of penetration of elec-
trolyte into the stratum corneum [99]. The dry electrodes increase the long-term performance and
cause low skin irritation. However, they have high impedance between the electrode and skin and
are susceptible to motion artifacts [55].
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Capacitive Electrodes: This type of electrodes provides non-contact ECG measurement,
thereby having long-term convenience. A narrow insulator is positioned separating the body and
metal-plate sensing electrode while the combination of electrode, skin, and insulator acts as a ca-
pacitance to deliver the cardiac information to the sensor [75]. This method results in no skin
irritation and, more importantly, can be installed in different working environments (e.g., bed,
chair, and clothing). However, the observed signal quality is inferior compared to wet electrodes
while respective electrodes are highly sensitive to environmental noise.

The traditional setup for ECG placement requires 12 electrodes [19]. Based on the application,
there are other configurations, such as five, three, or one lead placement, that are increasingly
used to provide the performance close to the gold standard [67, 80, 163]. Furthermore, ECG shirts
[21] and armbands [129] can be employed to enhance convenience for the user during ECG mea-
surements and enable continuous monitoring of cardiac signal. There is a plethora of research that
explores the use of mobile applications for ECG measurement for medical and biometric purposes
[61, 143].

5.1.2 Stethoscope. A stethoscope is the most prominent device used by healthcare profession-
als for cardiac auscultation. To address the low sound level of conventional acoustic stethoscope,
electronic stethoscopes were introduced, which amplify the heart and lung sounds using various
filters and amplifiers [8]. The electronic stethoscope comprises a microphone and piezoelectric
sensor with a frequency range between 0 and 2,000 Hz. Unlike the acoustic stethoscope, different
transducers are employed for an electronic stethoscope, such as a piezoelectric crystal in Welch-
Allyn’s Meditron stethoscope, the capacitive transducer in Thinklabs One Digital, and a micro-
phone in Cardionic E-scope 2 [89]. Some of these types also provide portability by connecting
with handheld devices (e.g., smartphone) or transmitting the information to a remote location
using Bluetooth.

5.1.3 Integrated Microphone. A cost-effective method to measure the PCG signal is by utiliz-
ing a microphone having good response characteristics for low-frequency sounds and tolerance
to noise from motion or the environment [154]. Recently, a number of studies have focused on us-
ing highly sensitive microphones with wireless sensor networks (WSN) as an improvement over
the developments focused on signal transmission via Bluetooth technology [135]. However, it is
challenging to measure cardiac murmurs (between 20 Hz to 20 KHz) at a higher frequency using
a WSN and thus requires a high-performance microprocessor [134].

5.1.4 Ultrasound Probe. The echocardiogram employs Doppler ultrasound to generate images
of the heart for assessment of cardiac conditions. An ultrasound probe having a small footprint
is positioned on the chest wall of the subject. It generates high-frequency sound waves while
determining the characteristics of blood flow using the Doppler effect. Cardiac imaging requires
intercostal acoustic windows, which can be addressed by ensuring the footprint of the transducer
is as small as possible. Moreover, narrow beam width can lead to improvement in image resolution
acquired by the probe [1]. Even though this sensor is highly deployed in the medical domain, its
applicability to biometrics is challenging due to expensive instrument cost and setup difficulty.

5.1.5 Accelerometer. The dynamic vibrations are the foundation for both SCG and BCG signals
that are recorded using an accelerometer or transducer. The majority of accelerometers rely on the
piezoelectric effect; however, the use of a micro electromechanical system (MEMS) accelerometer
is becoming increasingly prominent in biomedical applications [51]. The MEMS accelerometer
is manufactured using a microelectronic fabrication technique offering great usability due to its
small size and can measure frequencies close to 0 Hz [117]. Moreover, the measurement of SCG sig-
nal typically requires a 3-axial MEMS accelerometer, since the information, pertinent to biometric
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identification, is present in the dorso-ventral direction (Z-axis) while other axes (X and Y) can pro-
vide useful information about cardiac activity [71]. Other sensors, such as hydraulic testbed using
transducers and optical sensors [136], including microbend fiber, fiber Bragg grating, piezoresistive
fabric, electromechanical, and polyvinylidene fluoride film, can measure BCG signals.

5.1.6 Pulse Oximeter. A pulse oximeter is one of the conventional non-invasive sensors used for
monitoring individual blood oxygenation (SpO2) and heart rate. It is primarily placed on a patient’s
fingertip, earlobe, or forehead to obtain the PPG signal. The sensor projects two wavelengths of
light using a pair of LEDs to the photodetector via a specific body part. The phase shift in the
wavelength due to absorption of light during variation in blood perfusion [11] is measured by the
transmissive pulse oximeter. Another oximeter type (reflectance) can sense reflected light, allowing
PPG to collaborate with other biometric, e.g., face, for multimodal biometrics [105]. Moreover, due
to their compact size and superior usability, pulse oximeters are increasingly applied in wearables,
such as Apple Watch, for smart health monitoring.

5.2 Non-contact and Remote Sensing

5.2.1 Doppler Radar. The use of Doppler radar has shown immense potential for unobtrusive
heart rate monitoring. Unlike the laser Doppler vibrometer, which can only sense the motion at the
body surface, Doppler radar can measure the motion of the heart [92]. The working principle relies
on the Doppler effect, where the reflected radio-frequency (RF) wave undergoes a shift in frequency
relative to the subject’s velocity. Since the movement of the chest is limited, the transmitted and
reflected waves are coupled to produce a low-frequency signal corresponding to the movement
[174]. The cardiac radar has been explored for biometric applications due to its non-invasiveness
and requires no subject cooperation or knowledge [133]. However, it is challenging to employ large
antennas with high gain in systems where mobility is crucial, whereas smaller antennas [14] would
require a higher-power signal source or RF amplifier during transmission and is worth exploring.

5.2.2 Laser Doppler Vibrometer. Besides Doppler radar, another method of long distance heart-
rate measurement is through laser Doppler vibrometer (LDV). It is a non-contact technique that
employs a low-power laser, projected toward the vibrating surface (e.g., chest or neck) and the
reflected signal is measured to categorize the fluctuations induced by cardiovascular activities.
Specifically, the LDV signal provides insight into the heart rate variability (HRV) [36] and in-
formation about heart-valve sounds [149] while offering comparable performance with ECG in
correspondence with the carotid artery [37]. Moreover, the LDV signal is adequately textured to
provide authentication among individuals using features that are preserved even during physical
activities and mental stress [31]. Although LDV can be leveraged for unobtrusive and non-contact
biometric applications, it suffers from inadequate training data and complicated probability and
requires extensive setup compared to other cardiac sensing modalities.

5.2.3 Camera. A non-contact method for monitoring of PPG signals is desirable for biometrics
and ubiquitous health tracking. The camera is explored as a feasible solution to monitor the minute
variation in skin color caused from the inconsistent volume of blood in arteries and capillaries. De-
pending on the application, the camera can be either used for remote or surface sensing. However,
the PPG signal acquired using a camera suffers from low signal strength, specifically for individ-
uals with darker skin complexion, and motion artifacts due to body movement. Furthermore, the
surrounding light conditions significantly impact the signal quality while several studies explore
the use of ambient light for PPG imaging [160]. Therefore, the utilization of the camera requires
the careful employment of techniques including a weighted average of signals across face regions
[85], improved acquisition of light intensity, and precise feature tracking under motion.
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Fig. 6. Overview of heart-based biometric system.

5.3 Discussion

With the rise of sensors designed for unobtrusive monitoring, the future implications would rely
on leveraging these sensors for robust cardiac biometric schemes with comparable or even greater
performance than other biometrics (e.g., fingerprint, face). However, unlike the vast research per-
formed on optimizing traditional modalities (e.g., electrodes in ECG or stethoscope in PCG), several
problems as presented in this section still persist for upcoming sensor applications in the cardiac
domain. To ensure that these low-cost or non-contact sensors can replace conventional methods,
the constraints (refer to Table 2) related to their signal quality and setup difficulty needs to be
addressed. Solutions may be explored from the modification of sensor hardware, integration of
multiple sensor setups or a careful selection of processing techniques for acquired cardiac signal
and underlying features that is further mentioned in the next section. The future resides in low-
cost, robust and reliable products that can seamlessly monitor the cardiac signals to effectively
meet the application requirements (e.g., continuous face PPG through video, privacy-oriented
chest SCG through accelerometer or unobtrusive lower body BCG through a transducer) set by the
user.

6 CARDIAC SIGNAL PROCESSING SCHEME

A heart-based biometric system is described in Figure 6, which comprises three primary modules:
(1) Pre-processing, (2) Feature Extraction, and (3) Classification. Generally, the first step consists
of acquiring the raw data from the sensor, at a particular sampling rate, while ensuring proper
placement and the least environmental noise. Application of pre-processing techniques allows
reduction of noise in the signal from which multiple features are extracted for matching. Last,
the obtained features are leveraged to classify the input signal with the previously trained data to
authenticate the individual.

6.1 Biosignal Pre-processing

To acquire a specific cardiac signal, different sensors are employed with varying hardware con-
figurations, placement locations, sampling frequencies, and other technical constraints. The pre-
processing module reduces the inevitable accumulated during measurement and ensure that suf-
ficient features can be extracted from the processed signal. Specifically, the low-frequency noise
arises from several factors such as baseline wander, surface contact, motion artifacts, and physi-
ological state while high-frequency noise arises from power-line interference and digitization of
analog potential [155]. The selection criteria for a pre-processing technique significantly relies on
the application and overall domain and choosing the optimal technique is essential for achieving
exceptional performance for the biometric system. A comprehensive analysis of pre-processing
methods with future prospectives is elaborated in the supplementary materials.
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Table 3. Summary of Domain, Statistical, and Frequency-based Features

for Cardiac Biometric Applications

Signal Features Feature Count Subjects Sensor/Database Performance

ECG

P,QRS,T
wave-based

8 [34] 175 Neurosky CardioChip EER = 1.87%

15 [73] 29 — Acc. = 97%

19 [145] 50 PhysioNet QT Acc. = 99%

21 [162] 26
PTB Diagnostic MIT-BIH

Normal Sinus
Acc. = 94.4%
Acc. = 97.8%

53 [38] 77 PhysioNet PTB HiMotion
Acc. = 99.8%
Acc. = 99.5%

DCT, Haar Wavelet 215 [122] 6 N/A EER = 2.66%

DCT, MFCC, QRS 153 [59] 30 PTB Diagnostic Acc. = 97.3%

STFT 2048 [106] 269 Biopac TEL-100 EER = 5.58%

PPG

Peak-to-peak interval/slope 4 [56] 17 — Acc. = 94%

Systolic Peak
Diastolic peak

Augmentation index
Pulse width

40 [82] 30 DCM03 Reflective Acc. = 94.4%

NN Parameters 8 [118] 30 HTC S510e BAR < 10%

Statistical Features 11 [79] 12 TROIKA Acc. = 96.1%

SCG

HRV spectrum
AO peaks/intervals

— [151] 20
MMA8451Q

Accelerometer
r > 0.98

AO peaks 1 [167] 10
Shimmer 3 Kionix

KXRBS-2042
Acc. = 98.7%

BCG
H-I-J-K-L 300 [58] 25 Custom Chair Acc. = 96%

PSD, R-I
R-J, R-K interval

4 [78] 13 Analog Amplifier —

PCG

CMS — [119] 10
Wireless Electronic

Stethoscope
Acc. = 96%

WPCC 24 [5] 206 HSCT-11 Acc. = 91.05%

Marginal Spectrum 100 [173] 40 Digital Stethoscope Acc. = 94.4%

r, Linear Relationship; BAR, Bland-Altman Ratio; EER, Equal Error Rate; Acc., Accuracy.

6.2 Cardiac Feature Extraction

To perform a comparison of the cardiac signals of different individuals, features relative to a do-
main, time, or frequency dimension are extracted and further utilized for classification. Table 3
summarizes the feature representations with number of subjects, sensor/database used, and their
performance in existing literature. While a comprehensive selection of multiple features can im-
prove the accuracy of the biometric model, it may also lead to higher computational cost. To over-
come this scenario, we further list the methods that can be leveraged to lower the feature dimension
in this section.

6.2.1 Domain-based Features. These types of features rely on the overall knowledge of the car-
diac domain and are often based on fiducial points of ECG, PPG, SCG, and other signals. For an ECG
signal, the P, QRS complex, and T waves are among the dominant features from which other infor-
mation relative to interval, amplitude, and angle can be acquired. The amount of fiducial features
for ECG signal can vary from 8 [34], 15 [73], 19 [145], and 21 [162] to a feature space dimension of
53 in Reference [38]. Pan-Tompkins QRS detection [111] is one of the most widely used techniques
for locating the QRS complexes centering around R-peaks in the ECG signal. Other studies [156]
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propose peak valley extraction and adaptive thresholding as a decision rule for effective peak
detection. The features in PPG signal rely primarily on the time domain characteristics such as
peak-to-peak interval and slope [56], systolic peak, diastolic peak, augmentation index and pulse
width [82], and NN parameters [118]. As mentioned in Section 4.3.1, aortic valve open (AO) peaks
are detected in SCG signal to specify cardiac intervals [167], while the H-I-J-K-L components [58]
of BCG signals are shown to incorporate more information pertinent for human identification.
• Intuitive: These features have a physical meaning and can be effortlessly comprehended by

even non-medical professionals.
• Informative: Besides the inter-person individuality, other characteristics such as heart rate

variability, existing cardiovascular diseases, and susceptibility to heart attack can be revealed.
• Sensitive to diseases: The subject’s physical state can induce error during biometric identi-

fication, thereby leading to low permanence.
•High complexity: These features require precise localization of fiducial points in the signal,

which further raises the complexity of the algorithm.

6.2.2 Statistical-based Features. In the signal processing domain, statistical features are typi-
cally used as they can be extracted from all the signals, with no dependency on its domain. They
represent the mean, median, standard deviation, maximum and minimum value of a segment,
skewness, kurtosis, and many others [79] and are coherent with the time series of the signal.
Compared to domain or frequency-based features, these are computationally inexpensive. How-
ever, for superior performance, the statistical features needs to be computed from a segment of
satisfactory length.
• Computationally efficient: As mentioned, these features can be calculated quickly and di-

rectly after pre-processing the raw signals.
• Less reliable: For real-world applications, relevant features should be acquired from both the

time and frequency domain prior to selection and transformation.
• Prone to noise: Variations in the ambient environment, sensor misplacement, and human

artifacts can introduce errors in the raw signal, which are also reflected in statistical features.

6.2.3 Frequency-based Features. After applying the frequency normalization to maximize the
resolution, frequency-based features are computed using fast Fourier transform (FFT) of the signal.
They include spectral roll-off, spectrum energy, spectral centroid and flux [43], and other features
depending on the power spectral density of peak-to-peak intervals in the cardiac signal. Coeffi-
cients of discrete cosine transform (DCT) from ensemble heartbeats and second-level decomposi-
tion with DWT using Haar wavelet transform can provide a selection of multiple frequency-based
features [122]. Mel-frequency cepstrum coefficients (MFCC), while extensively applied in speech
recognition, demonstrate strong potential for human authentication through ECG signals [59]. A
Kubios software environment can also be applied for analysis of the HRV spectrum in SCG sig-
nals [151]. Techniques such as power spectral density and discrete Fourier transform (DFT) can
serve in the identification of the posture-induced differences [78], which are vital for ensuring the
reliability of BCG-based systems. In addition to FFT, a hamming window is primarily utilized for
short-time Fourier transform (STFT), whose logarithmic value generates a spectrogram for mod-
eling the time-frequency samples of each subject [106]. It is worth mentioning that the frequency-
based features have shown immense potential for the PCG domain, with existing application of
MFCC [13], CMS [119], wavelet packet cepstral coefficients (WPCC) [5], and marginal spectrum
analysis [173]. Prior to acquiring these features, it is necessary to perform sufficient pre-processing
to reduce incorrect matching results by the biometric model.
• Robust: In contrast to statistical and domain-based features, frequency-based attributes are

more robust to cardiovascular conditions and intra-session variability.
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• Flexible: There is no necessity to trace the accurate location of fiducial points or perform any
restrictive segmentation process.
• Less intuitive: As a tradeoff to flexibility, these features have an inferior meaning to human

perception and require machine learning models for classification.
• High dimension: A sufficient feature dimensional space is necessary to achieve superior

performance in cardiac biometric systems.

6.2.4 Other Feature Extraction Techniques. Wavelet analysis provides valuable insight by de-
composing the time-series cardiac signals into multi-level coefficients at different frequency sub-
band. Besides the widely used DWT, other wavelet techniques such as cross wavelet transform
[15], flexible analytical wavelet transform [84], and continuous wavelet [6] can additionally be
explored for cardiac signals in individual authentication. Other studies describe the potential of
Radon transform [65], AC/DCT [59, 124], Llyod-max quantisation [38], pulse active ratio [137],
random projections [35], one-dimensional multi-resolution local binary patterns [96], bivariate
empirical mode decomposition [49], fuzzy logic discriminator [94], ensemble empirical mode de-
composition [104], and Baum-Welch algorithm [161] for cardiac sensing and biometric applica-
tions.

6.2.5 Feature Selection and Transformation. In past few years, the dimensionality of features,
particularly in machine learning, has increased exponentially and is one of the primary concerns
in cardiac analysis. To address the curse of dimensionality, feature selection is widely adopted,
which selects a minimum subset of important features from the overall ones based on specific
evaluation criteria. Similarly, feature transformation is also leveraged and relies on shifting the
initial space in minor subspace. A careful selection of these techniques, based on the feature set and
domain knowledge, is crucial for achieving better learning performance and model interpretability
[153] for machine learning classification and minimized computational cost preferred for cardiac
biometric systems. We further describe the widely adopted techniques to accomplish this goal.

Linear Discriminant Analysis (LDA): This technique focuses on determining the projection
hyperplane that reduces the interclass variance and maximizes the ratio of inter and intra-class
scatters of the training sample sets. In biometric problems, studies have used this technique for
better class separation among spectral coefficients initially subjected to Mel-frequency filter bank
[48] and to obtain LDA-feature representation from a linear projection of input heartbeat [162].

Independent Component Analysis (ICA): This relies on a statistical model where the multi-
variate data is assumed as nonlinear or linear combination of latent variables. While the use of ICA
can enable classification of desired signal components from the associated noise, the elimination
of noisy components can lead to loss of essential cardiac data. Therefore, it is critical to ensure that
the cardiac signals are spatially stationary and independent, deficient of Gaussian distribution and
preferably have components characterized by overlapping topography [30].

Principle Component Analysis (PCA): This is an unsupervised learning method, which pro-
vides an ideal representation of input features with lower dimensionality, in terms of least mean
squares [162]. This is accomplished by solving an eigenvalue problem by finding the least recon-
struction error from depicting the “variance of data matrix with a set of orthogonal directions”
[66]. Generally, cardiac signals comprise a high degree of correlation between some of the fiducial
features, thereby making the PCA technique optimal for de-correlating and reducing the dimen-
sion while keeping the morphology of the original signal. However, the PCA can only determine
the linear subspace of initial data and is inadequate against nonlinear space configuration [30].
Furthermore, LDA is often applied after PCA [90], since the latter is able to preserve the majority
of variance after the projection but does not ensure better discrimination representation of related
coefficients. Although few studies report the comparison of system performance with/without
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data compression [26], it can demonstrate the usability of cardiac biometric system in real-world
scenarios.

Other techniques involve shift invariant transformation [72], normalized relative compression
[29], Walsh-Hadamard transform [148], Kanade-Lucas-Tomasi feature tracker [32], and correlation
[93] that are primarily explored for ECG and PPG signals and can provide valuable insights for
other cardiac signals.

6.2.6 Future Prospectives. Although the application of fiducial-based methods, primarily rely-
ing on time domain-based information, has shown excellent performance and remains the optimal
choice for feature extraction, the attributes of non-fiducial methods are often superior in the pres-
ence of chaotic cardiac signals. Furthermore, an optimal feature extraction method is difficult to
determine, since the existing datasets incorporate several subjects with irregular cardiac activi-
ties. Before designing the system, researchers need to carefully think about the problem domain,
computational cost and data acquisition process when choosing the feature extraction technique.
The feature selection and transformation can significantly aid in reducing the features’ dimen-
sion, which is essential for reducing the computational cost, particularly when adding a lengthy
classification approach.

6.3 Biometric Classification

Upon receiving the optimized feature vector comprising the domain, statistical or frequency fea-
tures, a matching algorithm is implemented to finalize a decision. In the biometric system, if the
purpose is authentication, then the classification will result in either authorized user or an im-
poster. For identification, the classified values among all the classes will be returned. In a typical
scenario, the cardiac biometric system is designed for authentication purpose rather than identi-
fication, since the latter requires a large scale setup to store training data for subjects that can be
heavily taxing during tracking and maintenance. Moreover, the design of a scalable cardiac system
is still an active topic of research in the biometric field.

The location of the feature extraction and classification model is essential for a secure biometric
system. For instance, off-the-person ECG or PPG via smartphone typically embeds the classifi-
cation software with the sensor modality. This ensures the low possibility of an attack across
a communication channel. Other sensors, such as BSN for ECG, MEMS accelerometer for SCG,
or microphone for PCG, require an exclusive communication channel to accumulate information
from various sources and transmit to the software, often increasing the vulnerability of the bio-
metric system. This becomes more pertinent for multimodal biometrics.

The matching algorithms employed for heart biometrics can be broadly categorized into signal
matching and machine learning techniques with computational complexity described in Table 4.

6.3.1 Signal Matching. The techniques under this category involve a comparison between the
signals obtained by the sensor through distance and correlation measures.

Distance Functions: The Euclidean distance is the typical distance function [20], and its nor-
malized form among feature vectors, x1 and x2, can be computed as:

Dnorm-euclidean (x1,x2) =

√
(x1 − x2)T (x1 − x2)

V
, (1)

whereV is the feature vector dimension, i.e., the amount of DCT coefficients employed in various
biometric problems [124, 162].

To compare the resemblance between wavelet coefficients, a wavelet distance can be computed
using a Matlab function “Wavelet Dist” or through Equation (2). The shortest wavelet distance [2]
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can be used to find the template of cardiac data as:

WaveDISTn =

P∑
p=1

Q∑
q=1

���γ
p,q
a − γ p,q

b

���
max
(
γ

p,q
0 ,τ

) , (2)

where γ a
p,q and γ b

p,q are detail coefficients of DWT, q, at the pth level of decomposition, and
τ is the threshold for minimum overemphasis of difference between two signals by the wavelet
coefficients.

To perform a comparison among coarse-grained structures acquired from different individuals,
a Euclidean distance is computed from each point (xp) in first structure (X) to its nearest point (yNp)
in other structure (Y). Similarly, the opposite is applied from point (yp) in Y to nearest point (xNp)
in X. The sum of individual means is known as mutual nearest point distance, a proven metric for
QRS free detection in ECG signals [47] and can be explored for fiducial independent detection in
other cardiac signals,

MutualDIST (X ,Y ) =

∑NX

p=1 Deuclidean (xp ,yNp)

NX
+

∑NY

p=1 Deuclidean (yp ,xNp)

NY
. (3)

In the scenario when the assumption of Gaussian distribution holds, the Gaussian log likelihood
can be employed as a distance function [124]. Given that prior probabilities are consistent for oc-
currences and variances of a specific subject i , the normalized Gaussian log likelihood is computed
as:

NGLLi (x ) = − (x − x i )T S−1 (x − x i )

2C
, (4)

where x i represent sample mean vectors, S is the overall covariance matrix, and the factor C en-
sures modest comparisons. The higher the log likelihood value, the higher the possibility that the
respective feature belongs to subject i . While some distance functions (e.g., Euclidean function)
are computationally fast, they may employ additional constraints to the biometric model. Others,
such as WaveDIST, can lead to more effective results but have superior cost and time complexity.

Correlation: It is a technique to identify a degree of coherence between two feature vectors
(X and Y) by analyzing the dependency among the variables [65]. The Karl Pearson correlation
coefficient is calculated using:

Correlation(X ,Y ) =

∑p
i=1

∑q
j=1 (X − X ) (Y − Y )

√[∑p
i=1

∑q
j=1 (X − X )2

] [∑p
i=1

∑q
j=1 (Y − Y )2

] , (5)

where X and Y represents the respective means and the correlation value lies between −1 and 1. If
the value is 1, then the features are fully related, 0 if they are independent, and −1 for the inverse
relationship. A threshold is set on the correlation value for achieving the desired level of security,
typically as 0.9 for an authentication model.

Dynamic Time Warping (DTW): The DTW determines the point-to-point relation among the
time-series signals by satisfying the constraints relative to boundary, continuity, and windowing
[159] and producing a minimum cost associated with the matching of data points. It utilizes dy-
namic programming to effectively determine the wrapping path. To further optimize the cost of
DTW, a multilevel approach, namely FastDTW [139], was proposed that shrinks the time-series
signal without significantly altering the morphology, determines the wrapping path at a lower
resolution, and refines it further through local adjustments. However, the FastDTW is an approxi-
mate technique and may be unreliable for finding an optimal solution depending on the biometric
problem. In such a case, Viterbi algorithm [50] can be used, which provides the most likely path
through hidden Markov model (HMM) and has comparable performance with stochastic DTW.
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Spectral Coherence: This technique identifies the frequency-based correlation between two
signals where a coherence value of 0 depicts uncorrelated signals while a value of 1 indicates that
frequency components are correlated. In the frequencies where the spectral coherence is high,
additional information about the relative phase among correlated components can be computed
through the cross spectrum phase.

6.3.2 Machine Learning and Other Classifiers. The selection criteria for the classification algo-
rithm relies heavily on the biometric problem. For instance, if the goal is to design a traditional
or hybrid system for biometric identification, then multi-class classifiers are the optimal choice,
whereas the binary classification is pertinent to biometric verification, i.e., increasingly employed
in wearables and handheld devices. Although some multi-class classifiers are capable of substitut-
ing binary classifiers, the reverse is infeasible. Specific to cardiac biometrics, the classifiers utilized
in the existing studies are summarized in Table 5.

Artificial Neural Network (ANN): An ANN is a computational structure, inspired by the net-
works functioning of biological neurons within the human brain. A neural network is a powerful
tool for modeling, specifically when the relationship among the underlying data is unknown [64].
To solve the classification problem of cardiac signals among individuals, ANN employs an activa-
tion function for non-linearly mapping of inputs and outputs. Although the statistical approaches
are effective for linear biometric problems due to the assumption of linear time-series signal, ANN
is preferred, since they can efficiently model the low frequencies of the cardiac signal, which are
typically non-linear [76]. Furthermore, from the signal processing perspective, ANN possess two
primary advantages: (1) adaptiveness to the variability in signal due periodically and (2) effective
learning capability from the arbitrary noise in the cardiac signal following their removal. We fur-
ther describe the various techniques using different types of ANN employed in current cardiac
biometric studies.
•Convolutional Neural Networks (CNN): The CNN is a widely used neural networks in image pro-

cessing and shows great promise for application in cardiac signal classification. CNNs are simple
neural networks that utilize convolution instead of general matrix multiplication in the respec-
tive layers. The convolution improves the performance of the associated system through sparse
interactions, parameter sharing, and equivariant representation and further provides a platform
for input data of variable size [54]. Due to the noninvariance of convolution to transformation in
input data, an activation function (e.g., sigmoid, softmax, tanh and rectified linear unit (ReLU)) is
applied to restrict the output within a certain range while pooling modifies the output at a cer-
tain network location with the aggregate of nearby outputs. After several convolution and pooling
layers, fully connected layers are leveraged for classification purposes.

A recent study [42] proposed a non-fiducial method for off-the-person ECG classification in a
biometric model based on 1D CNN for raw heartbeat signal and 2D CNN for heartbeat spectro-
gram. The study provides the lowest equal error rate (EER) for the CYBHi and UofTBD databases
compared to other state-of-the-art techniques. However, performance restricted from the fusion
techniques employed by the study can be outperformed by other complex feature levels. Another
study [171] employed a multiresolution 1D CNN for learning the multi-scale feature hierarchies
of ECG data processed through wavelet transform. A careful selection of topology among CNN
and wavelet assisted their system to reach an overall accuracy of 93.5% on eight ECG datasets.
Nevertheless, the researchers raise the challenge of data availability compared to other widely
used biometrics such as a fingerprint. To extract fine-grained features from the cardiac signal, a
two-level 1D CNN and a dynamic feature, i.e., RR interval difference, of arrhythmia was employed
for the MIT-BIH and INCART databases and shown to achieve an overall accuracy of 97.8% [165].
However, the evaluation against irregular data containing arbitrary noise is not comprehensive
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and requires further exploration. The performance of deep CNN was examined for three tasks, in-
cluding “closed-set identification, identity verification and periodic re-authentication” [86], using
real and binary templates and standard distance functions. For 52 subjects in the PTB Diagnostic
ECG database, an accuracy of 100% was reported, although extensive analysis is required for the
technique to be scalable to other databases, especially with subjects suffering from cardiovascular
diseases. A three-stage CNN was proposed for 2D signal representation using a softmax function
with an accuracy of 98.4% for single-arm ECG authentication [172]. Nevertheless, only 10 subjects
were examined with the requirement of expensive computational resources.

Respective to other cardiac signals, BiometricNet [46] was proposed for user identification lever-
aging the wrist-worn PPG, involving two CNN in addition to two layers of long short-term mem-
ory (LTSM). Even though a satisfactory accuracy of 96% was observed for the TROIKA dataset, the
total amount of subjects were low and the evaluation did not comprise robustness tests that are
crucial before application in wearable devices. More importantly, the proposed algorithm utilizes
a complex deep neural network further requiring efforts to reduce its computational cost and en-
ergy consumption. CNNs are also capable for automatic quality assessment [3] of echocardiogram
by scoring the apical four-chamber view containing cross-longitudinal sections of the heart cham-
bers. However, the application of the system is limited, since the framework does not acknowledge
the entire cardiac cycle but only a single frame.
• Multilayer Perceptron (MLP): It is a feedforward ANN that is typically used for supervised

learning problems. It comprises an input layer to obtain the cardiac signal, a number of hidden
layers, and an output layer for prediction. During the training phase, the error corresponding to
weights and bias are backpropagated through MLP. The main advantage of MLP is its capability
to differentiate among non-linearly separable data. Its potential was examined against logistic re-
gression and Bayesian network for face authentication inherent with PPG signals with the result
showing the superior performance of MLP under low ambient light conditions and other physical
factors [32]. However, no clear indication was provided regarding the most optimal algorithm for
the associated biometric model. Another study [122] evaluated the performance of ECG classifica-
tion on the steering wheel by comparison among MLP, support vector machines (SVM), K-nearest
neighbor (KNN), and Gaussian mixture models (GMM). SVM outperforms MLP in the authentica-
tion model while comparable results were observed among SVM through DCT and MLP through
Haar transform in the identification model.
• Recurrent Neural Networks (RNN): This is another class of ANN that is an upcoming area of

interest for cardiac biometric systems. In contrast to traditional feedforward networks, RNN can
be used for processing of sequential data (e.g., cardiac signal) due to their internal state of memory
and connection between the nodes. Given the prior knowledge of adjustment between input and
output, it can map various sequences with sequences [150]. However, it is challenging to apply
RNN in scenarios where input and output sequences have a complex relationship, in addition to
possessing different lengths. Long short-term memory (LSTM) is widely adopted in RNN, collec-
tively known as LSTM networks, to address the problem of vanishing gradients [68]. Specific to
cardiac biometrics, the LSTM networks have been explored for authentication purpose using ECG-
ID and MIT-BIH databases to observe an EER of 3.5% for 15% of subjects utilized during training
[138]. The model required no feature extraction through fiducial- or frequency-based techniques
and achieved 100% accuracy during identification. While a comprehensive study is essential to
assess the presented system’s practicality and usability, it shows the potential of LSTM networks
for further exploration in cardiac authentication and identification systems. RNN has also been
applied with deep residual neural networks (ResNet) for automatic characterization of the car-
diac cycle in echocardiograms [44]; however, its potential application toward biometrics requires
further exploration.
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Support Vector Machines (SVM): Existing studies have widely acknowledged the excellent
performance of SVM due to its exceptional performance observing reduced generalization errors
in detection and classification problems [66]. It is a statistical learning method that determines an
optimal hyperplane to divide two classes by maximizing the margin between the closest points.
The points lying on the boundary are referred to as support vectors. SVMs are primarily used
for solving binary classification problems, i.e., authentication; however, they can be employed for
multi-class classification (e.g., identification) using one-against-one technique [98] by fitting all
binary subclassifiers.

In Reference [91], the Hermite polynomial expansion and SVM are proposed to model the inter-
heart variability among individuals by utilizing linear kernel function. The results using SVM in-
dicate an accuracy of 98.11% but from only analyzing 18 ECG recordings. A novel study [41] was
performed using off-the-person ECG data collected several months apart to analyze the impact
of permanence on the cardiac signal with result showing an EER of 9.1%. With the integration of
kernel functions [93], this classifier can also be explored for individual identification during phys-
ical exercises by leveraging chaotic cardiac signals. However, the SVM is challenging to employ
for unstable signals due to their sensitivity toward the morphology of the signal. Furthermore,
factors such as data overfitting and bias are some of the primary concerns that adversely affect the
performance of the SVM model.

K-nearest Neighbor (KNN): In the scenario when little to no prior knowledge is present for
the distribution of cardiac data, KNN, being a fundamental classifier, is widely applied. It is referred
to as a lazy algorithm, since it “memorizes” the features stored in the training dataset while the
computations are deferred until classification. Upon obtaining the test data, KNN relies on com-
puting the distance (e.g., Euclidean) between the specified training samples and the testing dataset,
and the test samples are classified to the class that has nearest k neighbors. It is widely used in
cardiac biometric systems for authentication with the value of k = 1 [144].

Apart from aforementioned, studies have explored different settings such as k = 3 [41, 59] and
k = 5 [159] for QRS complex in ECG signals and 3 <= k <= 40 [82] for systolic and diastolic peaks
in PPG signals. For an extensive evaluation, it is ideal to first empirically evaluate the best settings
for the KNN classifier. Furthermore, algorithms based on feature ranking can also be applied for
boosting classification accuracy. However, a few drawbacks of KNN are that it is computationally
expensive because of the usage of the entire set of training samples, heavily dependent on the
training set, and no weight difference is present between the samples. To overcome this, k amount
of samples can be chosen for each iteration and classification accuracy can be further calculated
to record the highest accuracy during each time.

Gaussian Mixture Model (GMM): These are commonly used in biometric systems as a
parametric probability distribution of cardiac signals and related features and characterizes the
weighted sum of Gaussian components as a density function. The weights of each parameter are
obtained from the Expectation-Maximization algorithm [102] and Maximum A Posteriori estima-
tion [132] while the classification scheme involves calculating the likelihood that the input sample
is associated with the respective class. One of the significant advantages of GMMs is that they
generate smooth approximations to densities of randomized shape.

In Reference [91], researchers used GMM in combination with cepstral feature extraction for
segmentation and normalization independent modeling of short-time attributes of ECG signals.
An identification accuracy of 95.90% was achieved; however, the number of samples was highly
limited. Multivariate Gaussian distribution [26] can also be applied to the model estimation to de-
termine a statistical model capable of providing insightful score function in biometric verification
using SCG signals. Moreover, GMM is one of the first choices for classifiers for PCG signals [119,
147], due to its effectiveness in modeling frequency-based features. Nevertheless, the application
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Table 4. Comparison of Complexity between Classification Methods [20]

Distance Complexity Algorithm Learning Complexity Query Complexity

Euclidean O (n) ANN O (m2 ∗ r ) O (m2)

Wavelet O (p ∗ q ) SVM O (m ∗ r 2) O (m)

Mutual Nearest Point O (n) KNN O (1) O (r ) ∗O (distance function)

Correlation O (n) GMM O (m ∗ r ∗ д) O (m ∗ д)

DTW O (n2) HMM O (m ∗ s2) O (m)

FastDTW O (n) Bayesian Network O (m2 ∗ r ) O (m2)

Coherence O (n ∗m) Naive Bayes O (m ∗ r ) O (m)

n is the length of feature vector; m is the number of features; s is states in the HMM model.
p is the number of coefficients; q is level of decomposition.
r is the number of trained samples; д is number of gaussian distributions.

of GMM in cardiac biometric systems needs to be further explored, since the component densities
have the chance to model the underlying hidden classes, which may be valuable for individual
characterization.

Hidden Markov Model (HMM): An HMM is a method for predicting the probability distri-
butions over a sequence of observations. It comprises three primary assumptions [53], including:
(1) a process with state St generates an observation that is hidden; (2) state of the hidden process
satisfies the Markov property; and (3) the discreteness of state variable, i.e., St can occupy N values.
While the present use of HMM is more focused on speech recognition [131], it can also be utilized
for cardiac signal classification.

An HMM-based approach was proposed for processing SCG signals by dividing the cardiac
vibration into hidden states traversed sequentially [161]. Features such as heart rate, HRV in-
dices, and cardiac intervals are estimated for 67 subjects with results validating the superior per-
formance of HMM over the envelope and spectral-based methods. Moreover, the use of HMM
for SCG signals demonstrates comparable accuracy against time and frequency domain methods
[24] in BCG signals and optical sensor-based techniques utilized for BCG [23] and PPG signals
[114]. However, it is crucial to consider that a fully-connected model can lead to overfitting. The
HMM also requires a significant number of parameters and training data, which may be difficult to
gather in cardiac signals such as echocardiography, BCG, CM, and ICG due to insufficient public
databases.

Others: In addition to the aforementioned techniques, studies have explored the use of bayesian
network [32, 143], naive bayes [143], logistic regression [32, 91], bag-of-words [35], Bagging
[96], kernel classifier [60], quadratic discriminant classifier [141], random forest [152], and fuzzy
logic discriminator [94] for cardiac-based biometric problems. The Bland Altman plot is widely
used for comparison among different cardiac techniques, e.g., SCG and ECG monitoring systems
[88, 166].

6.3.3 Future Prospectives. The conventional classification approaches, i.e., SVM and KNN, have
shown excellent usability in several biometric problems. However, these are yet to be extensively
explored for SCG, BCG, CM, and ICG signals as well as echocardiography, which are the potential
domains for future cardiac authentication and identification systems. With the advancement of
ANN, it is possible to overcome the constraints of conventional techniques; nevertheless, a careful
pre-evaluation is necessary to ensure that the corresponding approach does not incorporate addi-
tional burdens to the system. As observed from Table 4, there is a tradeoff between the complexity
of the classification method and the accuracy. It would be ideal if a system could overcome these
constraints and concurrently meet the desired application requirements.
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Table 5. Performance of Machine Learning Classifiers

Signal Subjects/Database/Sensor Preprocessing/Feature Extraction Classifier Performance

ECG

CYBHi (65 subjects)
UofTBD (100 subjects)

Heartbeat segmentation
Outlier removal

1D CNN on raw ECG
2D CNN on Spectrogram

EER =
1.33–14.27 [42]

CEBSDB, WECG, Fantasia
NSRDB, STDB, MITDB AFDB,

VFDB (220 subjects)

Filtering, Scaling
Blind segmentation
Wavelet Transform

1D CNN
Acc. = 93.5 %

[171]

MITDB (47 subjects) INCART
(75 subjects)

Heartbeat normalization
RR interval difference

Two-level 1D CNN
Acc. = 97.8%

[165]

E-HOL (185 subjects)
PTB (52 subjects)

Notch IIR filter, 3rd order
high-pass, QRS vector

CNN
Acc. = 100%

[86]

10 subjects 2D Data representation Three-stage CNN
Acc. = 98.4%

[172]

6 subjects
Heartbeat segmentation

Outlier removal
DCT, Haar transform

MLP
EER = 2.66%

[122]

ECG-ID (90 subjects)
MITDB (47 subjects)

R-peak detection LSTM, RNN
EER = 3.5%

[138]

NSRDB (18 subjects)
Hermite polynomial expansion,

cepstral features
GMM, SVM, Logistic

Regression
Acc. =

95.9–98.1% [91]

63 subjects
Partially fiducial, Mean and

median wave, Outlier removal
SVM

EER = 9.1%
[41]

26 subjects Time/frequency/chaos features SVM
Acc. = 81.7%

[93]

PTB (30 subjects) AC/DCT, MFCC, QRS complex KNN
Acc. = 97.31%

[59]

NSRDB (15 subjects)
Band-pass filter, Zero crossing

DTW, Fisher’s LDA
KNN

Acc. = 97%
[159]

NSRDB (21 subjects) R-peak detection, QRS complex
Bayesian network

Naive Bayes, MLP, KNN
Acc. =

98.3–99% [143]

PTB (290 subjects)
CYBHi (65 subjects)

DCT, DWT, Random projection Bag-of-words Acc. = 98% [35]

UofTDB (1012 subjects)
PTB (290 subjects)

1DMRLBP, Sequential sampling Bagging
EER = 7.89%

[96]

NSRDB (18 subjects)
4th order Butterworth bandpass

DCT coefficients
Nonlinear Kernel Acc. = 94% [60]

47 subjects
Noise filtering, Alignment using

angular position,
Sum-of-Gaussians

Quadratic
Discriminant

Acc. = 97%
[141]

184 subjects
FFT, R-peak detection

P-QRS-T complex delineation
Fiducial/non-fiducial features

Random Forest
Acc. = 99.5%

[152]

PPG

TROIKA (12 subjects) — DNN and LSTM Acc. = 96% [46]

18 subjects
ROI selection, Maximum cross

correlation, Statistics of amplitude
ratio

MLP, Bayesian
network

EER = 5.98%
[32]

DCM03 sensor (30 subjects)
Systolic and Diastolic peaks

Peak-to peak and pulse interval
KNN

Acc. =
87.2–94.4% [82]

Firstbeat Bodygaurd sensor (10
subjects)

Beat-to-beat interval HMM
Acc. = 99.5%

[114]

12 subjects
Wavelet filter

Correlation detection
Fuzzy Logic

Discriminator
RMSE = 5.15

[94]

(Continued)

ACM Computing Surveys, Vol. 53, No. 6, Article 114. Publication date: December 2020.



A Survey on Heart Biometrics 114:23

Table 5. Continued

Signal Subjects/Database/Sensor Preprocessing/Feature Extraction Classifier Performance

SCG

20 subjects
Low-pass filter, Normalization

Autocorrelation
GMM

Acc. = 98.8%
[26]

67 subjects
State-space model, Baum-Welch

algorithm, HRV indices
HMM

MAE = 5 [ms]
[161]

MEMS accelerometer
(30 subjects)

Cubic-spline interpolation,
Savitsky-Golay filter, Sparse FFT,

Peak-to-peak interval
Bland-Altman plot

RMSE =
3.41–8.41 [88]

Shimmer 3 (10 subjects)
LPF, NLMS adaptive filter, Peak

detection
Bland-Altman plot

Acc. = 98.7%
[166]

BCG EMFi sensor (8 subjects) HRV indices, interval estimation HMM r > 0.9 [24]

CM
2.4GHz Doppler radar

(78 subjects)

Butterworth bandpass filter,
Extented differentiate and

cross-multiply algorithm, Fiducial
descriptors

SVM
EER = 4.42%

[92]

PCG
128 subjects

STFDT, Filter-bank Dimension
compression, CMS

GMM
Acc. = 99%

[119]

HSCT-11 (206 subjects) S1/S2 detector, LFCC GMM-UBM
EER = 13.66%

[147]

Echo
VGH (6916 subjects) — CNN MAE = 0.71 [3]

1868 subjects — ResNet, LSTM
EER = 3.7%

[44]

MAE, Mean Absolute Error; Acc., Accuracy; EER, Equal Error Rate; r, Correlation.

7 CARDIAC IDENTIFICATION WORKING MODE

With the advent of cardiac sensors possessing different attributes such as off-the-person, non-
contact and wearable, the biometric system can be designed to meet various application require-
ments demanded in important domains. In this section, we categorize three primary working
modes, based on the taxonomy illustrated in Figure 3, that are increasingly used in biometric
applications.

7.1 Continuous Authentication

User authentication is highly essential for ensuring the security of computer, network, and cyber-
physical systems. Presently, the existing systems relying on fingerprint or voice authentication
require the user to login at the initial session and does not reauthenticate until the user termi-
nates the activity or there is a substantial time interval among the activities, as shown in Figure 7.
The associated individual is denoted as a trusted party and can access the underlying information
present in the system with no obstruction. These induce several security flaws as an adversary
can access the resources by masquerading or replaying the stolen biometric feature of the autho-
rized user. Continuous authentication relies on continuously monitoring and verifying the user
throughout the entire span of activity. Due to the long time periods of the cardiac signals during
data acquisition, they can be ideally employed for authentication, provided that the data can be
acquired seamlessly.

To begin the research initiative of employing cardiac signals for continuous authentication, fur-
ther elaborated in Table 6, a novel framework based on the Mahalanobis distance was proposed
to identify the individuals using ECG signals [57]. Following this, studies explored the use of cor-
relation and score fusion techniques for 24-hour authentication [87], data stream mining for ECG
streams in real-time applications [28], and sequential sampling with local binary patterns in cardiac
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Fig. 7. Three events: (a) The system remains unlocked during access by the legitimate user; (b) the system

locks when the legitimate user is away; and (c) the system remains locked when accessed by the adversary.

Radar is used as an example to measure the biometric signals.

Table 6. Summary of Continuous Authentication Techniques Proposed for Cardiac Biometrics

Signal Off-the-person Sensor Subjects Threshold Performance

Guennoun et al. [57] ECG Yes AliveCor 16 Predefined Acc. 83.3%

Labati et al. [87] ECG No Electrodes 185 Predefined EER 5.36%

Camara et al. [28] ECG — Various 10 Predefined Acc. 96%

Louis et al. [96] ECG No Electrodes 1020 Dynamic EER 7.89%

Pinto et al. [122] ECG Yes — 6 Dynamic EER 2.66%

Bonissi et al. [22] PPG No Oximeter 44 Predefined EER 9%

Sadek et al. [136] BCG Yes MFO 50 Predefined MAE 7.31%

Lin et al. [92] CM Yes Radar 78 Various EER 4.42%

MAE, Mean Absolute Error; Acc., Accuracy; MFO, Microbend Fiber Optic.

signals for dynamic allocation of decision thresholds [96]. The application of continuous authen-
tication was also shown in driving environments by recognizing the driver during each 5-second
interval through ECG signals and applying a weighting function for minimizing the outliers in
the recent score using past scores [122]. With respect to other cardiac signals, a preliminary study
[22] was performed to investigate the PPG signals for continuous authentication based on corre-
lation analysis; however, the features suffer from low durability, thereby leading to high EER and
requiring further investigation. Despite focusing on user authentication, researchers have instead
explored the feasibility of BCG signals for continuous vital signs monitoring through a remote
connection between servers and the sensor [136], and correlation analysis between BCG and ECG
signals [40]. However, the remote monitoring relied on an unreliable setup environment while
strains due to hemodynamic responses were prominent, respectively. Last, a novel continuous au-
thentication scheme [92] was designed with the non-volitional and geometric features of CM that
are extracted from radar signal demodulation.

Presently, the cardiac continuous authentication suffers from two primary challenges. First, the
frequent or continuous streaming of cardiac signals by the sensor raises the computational cost and
energy consumption of the hardware. While short cardiac segments can be analyzed, rather than
a seamless sequence, the accuracy of the system suffers from inadequate information. Second, a
unique challenge arises from the errors accumulated over the runtime of the system. However, the
implementation of continuous authentication using cardiac signals is still in infancy and requires
further efforts to address the mentioned constraints.
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7.2 Unobtrusive Monitoring

Conventional cardiac sensing modalities such as electrodes and stethoscope can provide adequate
signal quality but arrive at the cost of user comfort. To ensure acceptability and comfort to the user
during data acquisition, unobtrusive monitoring is becoming the ideal choice in existing applica-
tions and literature. Sensors such as a camera or radar can enable the respective measurements of
PPG and CM signals without influencing the user’s activities. Sensors, including microbend fiber
optic for BCG [136], serve the purpose of both continuous and unobtrusive measurement of vital
signs; however, limited studies have been performed for their application in user authentication.
The domain of ICG still primarily relies on the use of electrodes due to the difficulty of designing an
unobtrusive sensor for the required acquisition of signals through the thorax region. Nevertheless,
unobtrusive monitoring has successfully closed the gap between methodologies and commercial
applications with the development of wearable technologies, e.g., Nymi Band and Fitbit.

For the advancement of unobtrusive monitoring in various cardiac domains, several limitations
need to be addressed. As mentioned previously, there is a tradeoff between the signal quality and
the processing difficulty. Low-quality signals suffering from motion artifacts, power-line interfer-
ence, and baseline wander are evident in cost-effective, non-invasive sensors such as microphones
and accelerometers, which further increases the challenge of effective denoising and feature ex-
traction. In addition, the majority of unobtrusive sensors (e.g., accelerometer for chest SCG) require
the user to hold them at a fixed location without influencing the sensing process. This may still
obstruct the user during physical activities while losing its effectiveness due to gradual misplace-
ment from user’s lack of attention. Based on the application, the user might be required to wear
the sensor for a long time and provide extended signals in a frequent interval, which would reduce
the acceptability of the overall system. These concerns must be solved to reach the ideal scenario
of obtaining a viable cardiac sensing modality satisfying all application requirements.

7.3 Multimodal Biometrics

Unimodal biometric systems rely on knowledge of a single source, in our case the cardiac signal,
for user authentication. However, these systems rarely demonstrate exceptional performance due
to the influence of noise, inter-class variations (i.e., based on user’s interaction with sensor), intra-
class similarities (i.e., overlap of feature space), incomplete training, non-ideal learning algorithms,
or spoof attacks employed specifically for the particular cardiac signal domain. Furthermore, some
portion of the population may not be able to provide the data due to health problems or disabil-
ities. To overcome these limitations, multimodal cardiac biometric systems rely on concurrently
acquiring different cardiac signals and fusing them during the authentication process. The fu-
sion can be employed at various locations in the biometric model depending on the application
requirements.

Feature-level fusion combines the independent feature vector of different biometric signals as
a single feature vector for the matching process. To enhance security, voice and ECG features
were combined for non-invasive user identification [25]. An implementation of binaural brain en-
trainment [110] was proposed to minimize the inter-session uncertainty between the respective
features of ECG and EEG and increase the classification performance. Score-level fusion based on
the weighted sum rule is a widely adopted technique for merging the outputs of matching algo-
rithm and has been proposed for ECG and fingerprint biometrics [9, 126] and shows exceptional
performance utilizing ECG, face, and fingerprint information [146]. Decision-level fusion relies
on combining the decisions from the individual matching algorithms and is optimal in scenarios
when the training data have partial information about the user. It has shown significant capability
for ECG with fingerprint [12] and ECG with PCG [48] multimodal biometric systems.
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Table 7. Summary of Multimodal Techniques Proposed for Cardiac Biometrics

Signals Fusion Cardiac Database Subjects Performance

Alajlan et al. [9] ECG + Fingerprint Score Private 78 EER 4.28%

Singh et al. [146]
ECG + Fingerprint +

Face
Score

European ST-T,
MIT-BIH, PhysioBank

78 EER 0.98%

Bugdol et al. [25] ECG + Voice Feature Private 30 Acc. 92%

Palaniappan et al. [110] ECG + EEG Feature Private 5 Acc. 98.6%

Pouryayevali et al. [126] ECG + Fingerprint Score Private 45 EER 0.084%

Arteaga et al. [12] ECG + Fingerprint Decision
European ST-T, QT,

MIT-BIH, PhysioBank
73 EER 0.46%

Fatemian et al. [48] ECG + PPG Decision Private 21 Acc. 97%

Acc., Accuracy.

Due to the characteristic of liveness detection, cardiac signals are increasingly explored as a
supplement to state-of-the-art methods to further enhance the security of the biometric model
and improve classification accuracy. However, the existing research on cardiac multimodal bio-
metrics solely focuses on utilizing ECG with other biometrics as mentioned in Table 7. It would
be valuable if other cardiac signals (e.g., SCG, BCG, ICG, CM, or echocardiography) are leveraged
in a multimodal setup to gain insights into the optimization of fusion layers. Nevertheless, for
the advancement of the above criteria, it is essential to ensure the growth in the cardiac dataset
that is lacking in comparison to fingerprint or face datasets. Careful selection criteria would be
required to obtain the benefits of the multimodal system and avoid overhead due to increased
computational cost, delay, or energy consumption from the processing of different cardiac signals.
Moreover, researchers should provide further effort into the development of a secure, robust, and
non-invasive cardiac multimodal system that can concurrently utilize various cardiac signals from
different regions of the body for user authentication.

8 APPLICATION SCENARIOS

Cardiac sensing has excellent performance and measurability with much potential beyond its cur-
rent use for adoption in many biometric applications. The ECG, PPG, and PCG signals are heavily
leveraged for biometrics [4, 107, 140]; however, we argue the potential of other methodologies in
specific scenarios.

8.1 Access Control

The logic of access control refers to obtaining entry into the location, network, or application from
either the place of the access point or a remote location. The use of biometrics (e.g., fingerprint and
face recognition) for this application is well explored; however, they can be easily spoofed as the
biometric sample of the legitimate user can be obtained secretly and fed to the system to generate a
false positive result [146]. The heart-based methods involve liveness detection, which requires the
physical presence of the respective user for authentication. The applications of cardiac biometrics
in access control can be pertinent to two categories:

8.1.1 Physical Domain. In a general scenario, valuable documents, commodities, or monetary
funds are stored inside a secure location. The level of security differs, from employing keys, badges,
or identification cards to biometric authentication. Similarly, in numerous institutions or corpo-
rations, the employees or attendees are required to sign in when starting the event and sign out
when exiting using key cards, but there is a shift toward using biometrics for maintaining the time

and attendance records [130]. Smart ECG cards with statistical algorithms were proposed as a
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secure solution [157, 170]; however, they are constrained by the requirement that they must be
carried, and therefore there is a risk of theft. Cardiac signals, including ECG, PPG, and PCG, are
commonly used for human identification; however, not every cardiac methodology can be adapted
for physical access control. For instance, consider a scenario where the authentication system is
placed on the wall at a stationary location. Assuming the system is based on cardiac sensing, the
ECG signal can be recorded off-the-person through fingers [42] while the camera can be used to
record the PPG signal from a user’s fingertip video [32]. However, the PCG signal will not have
considerable usage or performance due to the requirement of the proximity of the microphone. The
SCG and BCG will require using accelerometers, while electrodes need to be placed on the neck
for the ICG signal, both of which are uncomfortable for the user and can be tampered with because
of detached sensors. A similar situation would be observed for echocardiography measurement.
The employment of radar can also enable CM to be leveraged in the authentication system [92];
however, its specific application in this domain has yet to be explored.

8.1.2 Digital Domain. To obtain the access into the network or application, conventional meth-
ods such as passwords are commonly used in present computing systems. Besides the active em-
ployment of ECG, PPG, and PCG signals for user verification, the deployment of SCG signals as a
biometric in smartphones is still at a preliminary phase [26] and needs comprehensive investiga-
tion. The BCG signal possesses the inter-individual variability based on physiological factors and
can be measured through modern systems requiring the user to sit in a chair in a fixed position.
However, specialized sensor placements and the stationary individual state would be a necessity,
which is not feasible in many real-world application scenarios [58]. A biometric modality for digital
access control comprising either ICG or echo would incorporate the use of electrodes and probes,
which are not possessed by the majority of people and are often uncomfortable while measur-
ing. The CM requires a high learning curve due to radar technology. Moreover, the acquisition of
training data for a mass population in larger applications would be difficult due to a limited cardiac
database.

The exploration of secure data transmission using biometrics also falls under the domain of
digital access control. Conventionally, symmetric and anti-symmetric key generation methods are
used to ensure privacy and security during data transmission [77] but require complex and com-
putationally expensive key generating techniques. The ECG was leveraged as a biometric feature
for securing the physiological information processing in body sensor networks (BSN) by using the
ratio between the standard deviation between two R-R peaks and root mean square of the succes-
sive differences [123] for generating the authentication key. Another study explored the interpulse
interval for securing BSN via leveraging the ECG and PPG signals [125]. However, there is an ex-
isting research opportunity to explore other cardiac sensing methodologies to utilize for secure
data transmission. Moreover, it has been observed that biometric data visualization can affect the
interactions among viewer and the proprietor [39], serving as a motivation for implementing a
secure solution to manage the biometric information for the online medium.

8.2 Law Enforcement and Forensic Investigation

A prominent limitation of cardiac sensing modalities is that they cannot be acquired from the
forensic scenes posterior to the crime, in contrast to fingerprints. In addition, they are infeasible
for surveillance due to the proximity of sensors required for measuring cardiac signals. Never-
theless, the different types of cardiac signals can be used for lie detection for precise heart rate
and cardiac output measurement to identify any abnormal changes in the cardiac activity or blood
flow. Furthermore, remote sensing of CM from radar, PPG signals from cameras, and HRV from
laser Doppler vibrometry without the need of surface contact can lead to monitoring of a suspect’s
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Table 8. Examination of Attack Potential against Each Cardiac Methodology

with Decreasing Order of Difficulty

Imitation* Replay* Morphing Denial-of-Service Comm. Channel System Mod.

ECG ✗ ✗
√

✫ ✗
√

PPG ✗ ✗ ✗ ✗ ✗ ✫

SCG ✗ ✗ ✫ ✫ ✫ ✫

BCG ✗ ✗ ✗ ✫ ✫ ✗

PCG ✗ ✗ ✗ ✫ ✫ ✫

Echo. ✗ ✗ ✗ ✗ ✫ ✗

CM ✗ ✗ ✫ ✫ ✗ ✗

ICG ✗ ✗ ✫ ✫ ✗ ✫

Left to Right.
•✫= Requires exploration; ✗= Low possibility;

√
= Already adapted;

•Mod. =Modification; Comm. = Communication.
* Performed without significantly altering the original cardiac signal.

heart conditions without their knowledge. This has the potential to be effective in various forensic
investigations and requires further investigation to be deployed in real-world scenarios.

9 OPEN ISSUES IN PRIVACY AND SECURITY METRICS

Due to the drastic shift of cardiac sensing applications toward the biometric domain, it is criti-
cal to ensure the security of the underlying system against varying threat levels. An adversary
can exploit various channels in the cardiac biometric system to perform the attacks described in
Table 8. At present, few studies have explored attacks on cardiac modalities to examine their vul-
nerabilities. To this end, we further elaborate on the potential of specific attacks in the presence
of each cardiac methodology. These opportunities require in-depth exploration and are still the
open issues to address for strengthening the security of cardiac biometric systems, thus aiding
their deployment in real-world scenarios.

9.1 Imitation and Replay Attack

In the preliminary phase, the user’s cardiac sample is either registered (if first time) or measured
by the sensor for authentication. An adversary can compromise the system’s security by using
a fake biosignal sample by imitating the authorized user or from replaying the trusted sample
to the sensor. Examples from other recognition techniques include recording the voice of the
proprietor and replaying it to bypass the security of a voice recognition system [164], gelatin
fingers for fingerprint recognition modalities [16], or imitating gait movements [101]. However,
the characteristic of cardiac signals to provide liveness detection demonstrates great potential for
security enhancement. The static and dynamic features of the heart (refer to Section 2.2) results
in a highly complex and inter-person variable cardiac signal, thus leading to a low possibility of
imitation attack through brute force methods for any cardiac methodology. Furthermore, due to
the attribute of liveness detection, replay attacks are infeasible unless the authorized user him- or
herself feeds the cardiac signal to the sensor. Presently, several studies leverage this attribute by
integrating their system initially based on behavioral biometrics with cardiac sensing. Although
this might enhance the security, it would increase the overhead of the system due to additional
processing required for the cardiac signal, similarly to the case of multimodal biometrics. For
future advancement, it would be vital to exclusively employ cardiac signals acquired from different
regions of the body to improve the system’s security. For instance, to mitigate video-based and
photo-based forgery attacks against a face verification system, PPG signals from face and fingertip
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were employed concurrently for mobile device authentication [32]. The related research is just
beginning, and we can imagine considerable development in this area over the next few years.

9.2 Morphing Attack

The belief of cardiac signal being unclonable has been challenged recently by spoofing the sys-
tem through signal injection attacks. A subset of these attacks, i.e., morphing, has been explored
that relies on mapping the biosignal of the adversary to that of the authorized user by training
the model with the small templates of victim’s cardiac signals. An online and offline morphing
attack [81] using a single ECG beat as a template has been proposed with results showing a 90%
accuracy for the online scenario with limited resources. However, to achieve high accuracy, the
heart rate and HRV are required to be similar between the authorized user and the adversary. To
the best of our knowledge, Reference [45] is the only study that has successfully shown the vul-
nerability of a commercial product, i.e., Nymi Band, through a systematic attack using a mapping
function for impersonating the authorized user by presenting ECG signals acquired from different
devices. While significant results were observed, the proposed attack can be mitigated by using
liveness detection. Furthermore, the morphological alterations can also be detected by comparing
the cardiac signals acquired from various parts of the human body, since they possess compara-
ble inherent characteristics, and alterations of one signal would not affect the others. Moreover,
other correlated physiological signals (e.g., ABP) [27] can aid in the detection of morphing attacks
when analyzed in addition to cardiac signals. Considering cardiac signals other than ECG, it is es-
sential to analyze their vulnerabilities to morphing attacks. Due to the influence of gravity in the
recording and high variability in signals due to noise arising from environmental factors, the pos-
sibility of morphing BCG and PCG signals, respectively, is low. Echocardiography utilizes imaging
of the heart, which is distinct for each individual and resistant to these types of attacks. While it
is possible to explore the mapping function for PPG signal for morphing attack on oximeters, the
potential of the same attack on measurements through the camera is low due to the variability
in reading added by the ambient light and other dynamical factors in the adversary and victim’s
environment. The domain of SCG, CM, and ICG is upcoming and requires in-depth exploration to
verify the security of related biometrics systems.

9.3 System Attack

In the scenarios when the adversary has access to the biometric system or related components,
the potential attacks can be categorized into three types: (1) System Modification, (2) Communi-
cation Channel, and (3) Denial-of-Service. The system modification attack is pertinent in physical
access control devices where the adversary can directly modify the intermediate components to
sabotage the cardiac biometric system. As mentioned, even though the study [45] employing map-
ping function was categorized into a morphing attack, it performed system modifications to the
original Nymi Band to carry out the attack. Due to the increasing employment of unobtrusive
monitoring, the majority of cardiac sensing modalities (mentioned in Section 5) are separate from
the processing system, thereby increasing the threat of exploitation of the communication channel
by the attacker. Finally, Denial-of-Service attacks are one of most severe forms of threat to bio-
metric systems that results in denial of access to the legitimate users. These are often achieved by
flooding the resource with superfluous requests, such as enrollment of noise samples, to degrade
the performance of cardiac biometrics. Table 8 highlights the potential of these attacks in each car-
diac domain with certain low possibilities due to upcoming off-the-person systems with integrated
sensor and processing schemes, intricate configurations of the sensor, or intrinsic characteristics
of the respective biosignal. Given the emerging significance of cardiac security, researchers should
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investigate and reduce the vulnerabilities of the corresponding system to enable future research
and advancement.

10 CONCLUSION

In this survey, we have detailed the existing cardiac domains and associated sensing modality
based on the proposed three-dimensional taxonomy. We also reviewed the state of the art for car-
diac biometrics by extensively characterizing the general model for individual classification into
sensors, signal processing units, and the matching algorithms. Cardiac biometrics have gained im-
mense attention due to intrinsic feature representation and liveness detection providing superior
security compared to other behavioral biometrics. To aid future research, we described various
application scenarios and existing challenges toward security and privacy of underlying systems.
Although the research of heart-based methods in biometrics is still nascent, the following aspects
can be explored for gaining further insights:

• Fusion of cardiac signals: The majority of the existing work in cardiac biometrics is fo-
cused on ECG or PPG. The optimizations related to signal processing, application security,
and real-world deployment that were previously performed for these domains have yet to
be explored for other cardiac methodologies (e.g., SCG, CM, ICG, and others) that can be
combined for multi-biometric applications. For instance, when a user positions his or her
finger on the smartphone camera, PPG and BCG can be simultaneously analyzed from the
optical variations in the recorded images. Electrical signals, i.e., ICG and ECG, can be ex-
amined by developing a necklace-type interface with off-the-person sensors at neck and
upper-chest locations.

• Large-scale evaluation: The lack of biometric samples in the cardiac database, compared
to fingerprint, poses challenges in effectively comparing the performance of the two un-
derlying systems. Moreover, a large-scale evaluation is highly necessary before deploying
a cardiac approach into a commercial product, specifically the ones that require high com-
putational resources. In scenarios where data acquisition is expensive, researchers should
utilize existing publicly available databases such as UofTBD (with 1,020 subjects), MGH/MF
(with 250 subjects), and PPG-BP (with 219 subjects) to ensure the scalability of their pro-
posed systems.

• Biometric signal quality: With the increasing employment of off-the-person, unobtru-
sive, or wearable data acquisition modalities, the impact of noise on the cardiac signal is
significant enough to render the processing scheme infeasible. Denoising-aware methods,
including level-dependent wavelets, multi-band spectral subtraction, and robust neural net-
works, should be actively explored for cardiac biometrics. Furthermore, the signal quality
after the preprocessing stage should be verified for raw signals collected in different work-
ing environments.

• Permanence: One of the primary challenges that limits the growth of cardiac biometrics
is the aging of corresponding signals. Future applications should consider this factor dur-
ing system design and explore the employment of generative approaches that can model a
relationship between periodical samples of an individual. Other countermeasures include
improving the analog-to-digital conversion rate and sampling frequency on the hardware
level, incorporating spectral features on the software level and training the model on data
collected across extended time-frame (greater than one month).

• Biometric security: The evaluation of tolerance to malicious attacks of varying threat
levels is as crucial as achieving high accuracy for any biometric system. Researchers
should further explore novel techniques (e.g., cancelability, just-in-time privacy, and secure
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sensing) for eliminating any false sense of security of existing or new cardiac applications.
Given that the cardiac signals originate due to heart activity, it is worthwhile to explore
attack scenarios where an adversary morphs difficult-to-acquire signals (e.g., ECG) from
easy-to-acquire signals (e.g., PPG) to breach the biometric security.
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