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The microwave Doppler radar sensor enables a non-contact approach
for measuring movement in various applications. One of the most chal-
lenging issues is radar signal demodulation because it requires accurate
DC offset compensation. Existing works either require a complicated
setup procedure or are sensitive to environmental changes. In this
reported work, a compressed sensing based approach to effectively
demodulate a radar signal is discussed. Through ℓ1 minimisation, the
proposed method can reliably demodulate noisy signals with large
measurement residuals. To validate the algorithm, three sets of experi-
ments were run to evaluate the demodulation performance.
Experimental results show that the proposed method is promising in
both simulation and real-case studies.

Introduction: Microwave radar is an important remote sensing techno-
logy. In recent years, it has been widely applied in various domains
including instrumentation, geology and healthcare. Among diverse
radar designs, Doppler radar with a quadrature (I/Q) homodyne archi-
tecture technique is commonly used owing to the avoidance of the
‘null’ point issue and the benefit of the range correlation effect.
However, Doppler radar suffers from challenges in the arctangent de-
modulation method, which requires accurate DC offset compensation [1].
The DC offset comes from reflections from stationary objects and
circuit imperfections such as the self-mixing effect of the mixer.
Therefore, DC offset values are unpredictable and their compensation
is challenging. There are some existing works on DC offset compen-
sation in Doppler radars [1, 2]. However, these methods are either inac-
curate or sensitive to environmental changes. In this Letter, we present a
novel DC offset compensation algorithm for accurate Doppler radar
demodulation. Differing from existing methods, our algorithm is
based on compressed sensing (ℓ1 minimisation), which is an effective
robust technique towards large interference.

Doppler radar sensor: Fig. 1a shows the system structure of traditional
Doppler radar sensors. There are three layers in the system: the RF layer
(transmitter and receiver), the baseband layer (signal amplification and
ADC) and the digital signal layer (demodulation). Fig. 1b shows the pro-
totype of our radar sensor system. Doppler radar transmits a single-tone
signal S(t):

S(t) = A0 cos(2pft + f(t)) (1)

where f is the oscillation frequency, t is the elapsed time, and f(t) is the
phase noise of the oscillator. The received I/Q signals at the radar
quadrature mixer output are:

BI (t) = AI cos[4px(t)
l

+ Df] + DCI (2)

BQ(t) = AQ sin[4px(t)
l

+ Df] + DCQ (3)

where AI and AQ are the amplitudes in channel I and channel Q, Df rep-
resents the phase shift of propagation and system phase noise. DCI and
DCQ are DC offset values in I/Q channels, respectively. 4px(t)/l is the
phase where the target movement information is modulated, in which
x(t) is the target displacement information. In the baseband layer,
BI (t) and BQ(t) are boosted by a baseband amplifier and then quantified
by an analogue-to-digital converter (ADC). Radar data demodulation is
performed in the digital signal layer. In this Letter, we neglect the
amplitude mismatch in the quadrature mixer and focus on DC offset
compensation.
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Fig. 1 Example of Doppler radar structure and prototype

a Radar structure
b Radar prototype
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To demodulate x(t), we calculate DC offset values, (DCI , DCQ), in I/Q
channels such that:

RI (t) =
BI − DCI

A
= cos[4px(t)

l
+ Df] (4)

RQ(t) =
BQ − DCQ

A
= sin[4px(t)

l
+ Df] (5)

In this way, the displacement information x(t) can be extracted by an
arctangent function:

C(t) = arctan
RI (t)
RQ(t)

= 4px(t)
l

+ Df (6)

Because Df is constant, the movement x(t) is linearly proportional to the
demodulated result C(t). We can see that accurate DC compensation
with (DCI , DCQ, A) is pivotal in Doppler radar demodulation. With
respect to the fact that RI

2 + RQ
2 = 1, DC offset compensation can be

formulated into a circle fitting problem stated as follows.
Formulation 1: (circle fitting) Given a set of {I/Q} quadrature

measurements kBI (1 : n),BQ(1 : n)l = {(I1,Q1), (I2,Q2), . . . , (In, qn)},
there is a tuple (a, b, r) such as

min
∑n

1
‖di‖2

2 (7)

where

di =
�����������������������
(Ii − a)2 + (Qi − b)2

√
− r

a, b, r [ R

(8)

Note that di represents the fitting residual between the measurement
(Ii,Qi) and the circle (a, b, r).

Proposed algorithm: The circle fitting problem has been studied intens-
ively in the past decades. The original form in Formulation 1 is non-
convex and cannot be solved effectively. The state-of-the-art method
for this problem is to relax the calculation of residual di to:

di = (Ii − a)2 + (Ii − b)2 − r2 (9)

With (7) and (9), the radar demodulation can be reformulated to an ℓ2

minimisation problem:

min ‖Ax − b‖ℓ2
(10)

where

A =

2I1 2Q1 1

2I2 2Q2 1

· · ·
· · ·
· · ·

2In 2Qn 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x =

a

b

r2 − a2 − b2

⎡
⎢⎣

⎤
⎥⎦, b =

I1
2 + Q1

2

I2
2 + Q2

2

·
·
·

In
2 + Qn

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

It is well-known that (10) (ℓ2 minimisation) is an over-determined
system and can be solved efficiently. However, this method is quite
sensitive to outliers with large residuals because ℓ2 always blindly con-
siders all measurements including outliers. When outliers in measure-
ment appear (such as huge noise or errors), ℓ2-based demodulation
results will be off from the optimal solution.

In this Letter, we attempt to tackle the above issue for robust demodu-
lation results. Assuming that most of the measurements are accurate, and
outlier numbers are comparably not large, we can use the following form
to guide the demodulation procedure:

min ‖Ax − b‖ℓ0
(12)

Equation (12) is ℓ0 minimisation, which explores the fitting circle (a, b,
r) that has the maximal number of perfect matching points (i.e. zero-
residual points). In other words, this heuristic is to optimise the sparsity
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of fitting residuals. It works because it has been proved that sparsity
pursuit (i.e. ℓ0 minimisation) is robust to outliers in fitting problems
[3]. ℓ0 minimisation is intractable because it is an NP-hard problem.
However, it is proved that the solution in (12) is highly probabilistically
the same to ℓ1 minimisation. Therefore, the radar demodulation problem
can be formulated as follows:

min ‖Ax − b‖ℓ1
(13)

Since (13) belongs to the class of linear programming problems, radar
demodulation is well-posed and can be solved in polynomial time.

Experiments: We evaluated the performance of the proposed algorithm
in three experiments. The first is using the synthesis testbench demodu-
lation. The testbench consists of two parts. One part is the sample points
on a unit circle, denoted as clean data; the other is random points dis-
tributed around the unit circle with large offset, denoted as noisy data.
As shown in Figs. 2a and b, the green squares represent clean data,
and the red asterisks represent noisy data. We can see that clean data
are exactly on an arc track, and noisy data distribute around the arc.
We can set the ratio number of clean data and noisy data (RCN) with
different values. We evaluated the proposed method (ℓ1 minimisation)
and the state-of-the-art method (ℓ2 minimisation) on the same testbench.
Figs. 2a and b show the demodulation results. We can see that ℓ1 min-
imisation is robust to the red outliers, and the demodulation result (the
black circle) perfectly fits the clean data (see Fig. 2a). In contrast, ℓ2

minimisation is interfered by noisy data, and there is an obvious mis-
match between the demodulation result and clean data (see Fig. 2b).
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Fig. 2 Demodulation results on synthesis data via ℓ1 and ℓ2

a Demodulation via ℓ1

b Demodulation via ℓ2

c Residual against RCN
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Fig. 3 Fig. 3a is result of sinusoidal motion measurement. Fig. 3b is results
of human vital sign detection, where (I) is raw data from I/Q quadrature
outputs, (II) is demodulated results with our proposed algorithm, (III) and
(IV) are respiration and heart beat after demodulation

a Motion measurement
b Vital sign measurement
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Furthermore, we investigated the performance with nine different
RCNs, changing the value from 0.1 to 9.00. Fig. 2c illustrates residual
curves from ℓ1 and ℓ2, respectively. It shows that ℓ1 minimisation is
more robust and has zero residual when RCN is greater than 2.33
(with a ratio of roughly 7:3 between clean data and noisy data). Also,
we can see that ℓ1 outperforms ℓ2 when RCN is larger than 0.42
(roughly 3:7), which is the case in most applications. Considering that
ℓ2 minimisation is the most used method for Doppler radar demodula-
tion in the literature [2], we believe that our proposed algorithm is an
alternative promising approach for robust radar signal demodulation.

The second experiment was to measure the motion of linear actuators.
A linear actuator was programmed to perform standard sinusoidal move-
ment with 0.2 Hz and 10 cm amplitude, while the Doppler radar is
placed 1.2 m away to measure actuator movements. Fig. 3a shows the
demodulation result, where blue dots denote the actual pre-set actuator
motion, and red dots denote measured motion of the Doppler radar.
As illustrated in Fig. 3a, the measured motion is coherent with the
pre-setup motion, and the root mean squared error is less than 1%.

The last experiment was to detect human vital signs. The subject was
seated in front of a Doppler radar which measured his chest-wall move-
ment (respiration) and heart motion (heart beat). Fig. 3b shows the
demodulated results (respiration in (III) and heart beat in (IV)) close
to ground truth from traditional contact medical devices. We performed
the experiments with eight subjects, and similar results were observed
for all cases.

Conclusion: In this Letter, we propose a compressed sensing (ℓ1 min-
imisation) based approach for accurate radar signal demodulation. We
designed three experimental setups for performance evaluation, includ-
ing one simulated dataset and two actual datasets. Experimental results
show our proposed method outperforms state-of-the-art methods in
simulation and holds promise in real applications.
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