
Scalable and parameterised VLSI
architecture for efficient sparse
approximation in FPGAs and SoCs

F. Ren, W. Xu and D. Markovic ́
Techset Com
A parameterised and scalable very large scale integration (VLSI) soft
intellectual property (IP) is presented that can be implemented in pro-
grammable logic devices, such as field programmable gate arrays
(FPGAs) or a system-on-chip design for efficient sparse approxi-
mation. The proposed architecture is optimised based on the orthog-
onal matching pursuit algorithm by both algorithm reformulation and
architecture resource sharing techniques. The soft IP core supports a
floating-point data format with 10 design parameters, which provides
the necessary flexibility for application-specific customisation. The
soft IP is evaluated on various FPGA platforms. The evaluation
results show that design can achieve up to 30% higher throughput
than the existing solutions while offering a larger dynamic range capa-
bility and better design flexibility.
Introduction: In recent years, the principles of sparse approximation
have been widely exploited and applied to a wide range of research
problems, including compressive sensing (CS), classification, data sep-
aration etc. However, due to the high computational complexity of the
sparse approximation algorithms, existing software solutions based on
general-purpose computing platforms are neither energy-efficient nor
cost-effective for real-timing processing purposes. To enable efficient
computation, several dedicated very large scale integration (VLSI)
designs have been proposed [1–4]. Nonetheless, these solutions are cus-
tomised towards a certain problem and lack the flexibilities for accom-
modating other different application specifications, such as problem
size, throughput, power budget etc. Such a deficiency in flexibility has
largely limited their application scope.

In this Letter, we present a flexible and reusable VLSI soft intellectual
property (IP) for efficient sparse approximation. It can be implemented
in programmable logic devices, such as field programmable logic gate
arrays (FPGAs) or a system-on-chip (SoC) design for a variety of real-
time embedded applications. The IP core supports a floating-point data
format with 10 design parameters, providing the necessary flexibility for
design space exploration and application-specific customisation. The
proposed architecture is designed based on the orthogonal matching
pursuit (OMP) algorithm [5] considering both algorithmic and architec-
ture level optimisations.

OMP algorithm optimisation: Our previous paper has shown that the
least-square (LS) solving task of the OMP algorithm plays a pivotal
role in the efficiency of the implementation [4]. To improve the effi-
ciency of the IP core, we manage to significantly reduce the complexity
of the LS task through a combination of algorithm reformulation
techniques.

Square-root-free Cholesky factorisation: The LS problem to be solved
at iteration t of the OMP algorithm is given by min y− ALt x Lt()∥∥ ∥∥2

2,
where (in the context of CS) y [Rm is the measurement, Λt is the
current active set, ALt [Rm×t are the active atoms of the sampling
matrix and x Lt() [Rt is the current estimation of the original
k-sparse signal x [Sn

k . The solution to the LS problem has an analytical
form and can be computed by solving the normal equation

Ftxt Lt() = AT
Lt
y (1)

whereFt = AT
Lt
ALt [Rt×t is a positive definite matrix. Note that if QR

decomposition is used to solve (1) as ALt = QtRt, a memory space of
mk + k2/2 words will be needed for storing both Qt and Rt.
Alternatively, Cholesky factorisation is used as Ft = L′

tL
T
t in our

design. In this case, only k2/2 words are necessary for storing L′
t.

Given m > 2k [1–4], over five times memory size reduction can be
achieved by choosing the proper factorisation method. Since the OMP
algorithm is a heavily memory-bounded algorithm, such memory size
saving can lead to significant area reduction for the overall design.

In the conventional Cholesky factorisation method, t square-root
operations are involved in computing the diagonal elements of L′

t.
Note that an explicit implementation of this nonlinear operation is not
cost-effective as it requires a large amount of logic resources and
cannot be reused by other tasks. To address this design challenge, we
positionLtd, Salisbury
adopt an alternative Cholesky factorisation method, which essentially
takes out the square-rooted factors D′

t from both L′ and L′T as

Ft = L′
tD

′−1
t

()
D′

tD
′
t

()
D′−1

t LD′T
t

()
= LtDtL

T
t (2)

where Lt [Rt×t is a lower-triangular matrix with diag(Lt) = 1, and
Dt [Rt×t is a diagonal matrix that no longer requires square-root oper-
ations. This reduces the computation primitives in the IP core and sim-
plifies the resource sharing scheme in the architecture design.

Incremental Cholesky factorisation: At iteration t of the OMP algo-
rithm, we have ALt = [ALt−1 aw], where ϕ is the index of the new
active atom. Therefore, Φt in (1) can be partitioned as

Ft =
Ft−1 AT

Lt−1
aw

aTwALt−1 aTwaw

[]
(3)

In correspondence to (3), the Cholesky factorisation matrices in (2) must
have the same property that

LtDtL
T
t = Lt−1 0

lT21 1

[]
Dt−1 0

0T d22

[]
Lt−1 0

lT21 1

[]T
(4)

where l21 [Rt−1 is a column vector and d22 is a scalar. Equation (4)
indicates that we can utilise the previous results of the factorisation
matrices to simplify the computation. Specifically, instead of recomput-
ing Lt and Dt in every step, we can update them from Lt−1 and Dt−1
incrementally by adding only l21 and d22 at each iteration. The compu-
tation methods for l21 and d22 can be derived by expanding (3) and (4).

Incremental estimation update: At iteration t of the original OMP algo-
rithm, a new estimation xt is made by solving (1), and the residue rt is
updated as rt = y− ALt xt(Lt). According to (1), we can derive that
AT
Lt
rt = AT

Lt
y− AT

Lt
ALt xt Lt() = 0. It indicates that the updated residue

is always orthogonal to the current active atoms in the OMP algorithm.
In our design, we take into account this special property to further sim-
plify the LS task. By substituting y in (1) with ALt xt Lt() + rt , we can
derive an incremental estimation update method as the following two
steps. First, the updating direction d can be computed by solving the
new normal equation

Ftd(Lt) = c(Lt) (5)

where c Lt() = AT
Lt
rt−1. Secondly, rt and xt can be updated based on

their previous values and d, as rt = rt−1 − ALt d Lt() and xt = xt−1 + d.
Note that c(Λt) must be a one-sparse vector, where only the last
element is nonzero. Consequently, the computation for c(Λt) and the
subsequent forward substitution (FS) can be completely bypassed.

Overall, with a combination of the above reformulation techniques,
the total computational complexity of solving a LS problem in the
OMP algorithm is reduced from O(mk3) to O(mk2). Specifically, after
the reformulation, the LS task only involves t + 2 inner products, a
single FS and a single backward substitution (BS) at iteration t.
Therefore, the operational complexity in terms of data flow control
and scheduling also gets reduced.

Architecture design: The proposed VLSI architecture is shown in
Fig. 1. The vector core (VC) integrates multiple PEs in parallel, and
each of them can be dynamically configured through a microcode.
This enables the VC to support a selected set of vector operations.
A shift register logic unit is used in the feedback path of each PE for pro-
viding the folding capability to process long vectors. The scalar core
(SC) integrates a comparator, a sequential divider and two adders.
Depending on the top-level data-path configuration, the SC can either
post-process a selected result from the VC (e.g. inner product) or
process independent data in parallel. When the two cores are connected
as a processing group, more advanced operations, such as correlation
sorting, FS and BS can be executed. As shown in Fig. 1, the compu-
tation cores are linked by seven data-path memories. The complex
data flow of the OMP algorithm is enforced by customised local
memory controllers, which are synchronised by a top-level finite-state
machine. Note that for achieving high performance and resource utilis-
ation efficiency, all the computing resources in the VC and SC are
shared by all the tasks of the OMP algorithm through dynamic
configuration.
Doc: {IEE}El/ISSUE/49-23/Pagination/EL20132978.3d
Circuits and systems

The proposed architecture features great scalability. Table 1 summar-
ises all the user-defined parameters supported in our soft IP. For circuit
level optimisation, the user can specify the word-length (WM, WE) and
the pipeline stages (SA, SM, SD and SC) of each arithmetic unit to
meet different precision and performance requirements. In addition,
the user can also tune the memory size and the parallelism of the PEs
through the architecture parameters (M, N, K and P) for accommodating
different problem size and throughput specifications.

temp result

C
h

o
lesky

facto
r.

m
atrix

fix to
 flo

atin
g

 co
nv.

sam
p

lin
g

 m
atrix

active
set

residue
data path
memory

SRL

SRL

D X

≥

±

∏

vector core

scalar core

Fig. 1 Overall architecture of VLSI IP core. It supports a floating-point data
format and can be configured with 10 design parameters.

Table 1: User-defined parameters in soft IP
Parameters
 Descriptions
Circuits

{WM, WE}
 Word-length of mantissa, exponent
{SA, SM, SD, SC}
 Pipe. stages of adder, mult., div. and comp.
Architectures
P
 Parallelism of PEs in VC
N
 Signal dim. n
M
 Measurement dim. m
K
 Signal sparsity level k
Evaluation results: To validate the flexibility and efficiency of the soft
IP, we implement multiple instances of our design with different
problem sizes on different FPGA platforms. Table 2 summarises the
evaluation results in comparison with recent work [1–3]. For each
implementation, we take advantage of the circuit and architecture
level flexibility of the soft IP to efficiently explore the mapping
results of different parameter settings. Then, the one with the maximal
performance and resource utilisation is selected for the final implemen-
tation. As a result of the design space exploration, our implementations
are able to outperform the prior work in terms of throughput by up to
30%. In addition, as a floating-point data format is used, our design
offers a much larger dynamic range capability.

Table 2: Implementation results in comparison with prior work
Designs
 [1]

Our
work
[2]

Our
work
[3]

Our
work
Platforms
 Virtex-5
 Virtex-6
 Spartan-6
N, M, K, P

128, 32, 5, 32
 1024, 256, 36,

256

1024, 512, 64a, 32
P
 32
 32
 256
 256
 32
 32
Data formatb

FP
(32)
FLP
(8, 23)
FP
(25)
FLP
(8, 16)
FP
(30)
FLP
(8, 21)
Frequency (MHz)
 39
 59.3
 100
 77.6
 41.2
 64.4
Slices
 N/A
 12 330
 32 010
 62 026
 3525
 15 769
DSP48s
 N/A
 64
 261
 256
 132
 98
Dec. time (μs)
 24
 18.5
 630
 581.6
 21 378
 17 611
Throughputc

(K samples/s)

5333
 6919
 1625
 1761
 47.9
 58.1
aSupported signal sparsity level is not disclosed in [3]
bFixed point (FP) (word-length) and floating point (FLP) (WM, WE)
cThroughput calculated as N divided by decoding time.
Conclusion: In this Letter, we present a parameterised and scalable
VLSI soft IP for implementing efficient sparse approximation in
FPGAs or a SoC design. The soft IP core supports a floating-point
data format with 10 design parameters, which provides the necessary
flexibility for application-specific customisation. The evaluation
results on various FPGA platforms confirm that by exploring the
design space through parameter tuning, our design can achieve up to
30% higher throughput than the existing solutions while offering a
larger dynamic range capability and better design flexibility.

© The Institution of Engineering and Technology 2013
9 September 2013
doi: 10.1049/el.2013.2978
One or more of the Figures in this Letter are available in colour online.

F. Ren and D. Markovic ́ (Electrical Engineering Department,
University of California, Los Angeles, CA 90095, USA)

E-mail: renfengbo@ucla.edu

W. Xu (Computer Science and Engineering Department, University at
Buffalo, The State University of New York, Buffalo, NY 14214, USA)

References

1 Septimus, A., et al.: ‘Compressive sampling hardware reconstruction’.
Proc. Int. Symp. Circuits and Systems (ISCAS), Paris, France, 2010,
pp. 3316–3319

2 Bai, L., et al.: ‘High-speed compressed sensing reconstruction on FPGA
using OMP and AMP’. Proc. 19th Int. Conf. Electronics, Circuits and
Systems (ICECS), Seville, Spain, 2012, pp. 53–56

3 Patrick, M., et al.: ‘VLSI design of approximate message passing for
signal restoration and compressive sensing’, IEEE J. Emerg. Sel. Top.
Circuits Syst., 2012, 2, (3), pp. 579–590

4 Ren, F., et al.: ‘A single-precision compressive sensing signal reconstruc-
tion engine on FPGAs’. Proc. 23rd Int. Conf. Field-Programmable Logic
and Applications (FPL’13), Porto, Spain, 2013

5 Tropp, J., et al.: ‘Signal recovery from random measurements via ortho-
gonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12),
pp. 4655–4666

	Introduction
	OMP algorithm optimisation
	Architecture design
	Evaluation results
	Conclusion
	References

