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Abstract

Classification of electrocardiogram (ECG) signals is obligatory for the automatic diag-

nosis of cardiovascular disease. With the recent advancement of low‐cost wearable

ECG device, it becomes more feasible to utilize ECG for cardiac arrhythmia classifica-

tion in daily life. In this paper, we propose a lightweight approach to classify five types

of cardiac arrhythmia, namely, normal beat (N), atrial premature contraction (A), pre-

mature ventricular contraction (V), left bundle branch block beat (L), and right bundle

branch block beat (R). The combined method of frequency analysis and Shannon

entropy is applied to extract appropriate statistical features. Information gain criterion

is employed to select features that the results show that 10 highly effective features

can obtain performance measures comparable to those obtained by using the com-

plete features. The selected features are then fed to the input of Random Forest,

K‐Nearest Neighbour, and J48 for classification. To evaluate classification perfor-

mance, tenfold cross validation is used to verify the effectiveness of our method.

Experimental results show that Random Forest classifier demonstrates significant

performance with the highest sensitivity of 98.1%, the specificity of 99.5%, the pre-

cision of 98.1%, and the accuracy of 98.08%, outperforming other representative

approaches for automated cardiac arrhythmia classification.
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1 | INTRODUCTION

According to World Health Organization statistics, the global death is more than 50 million people and nearly 20 million people die because of

cardiovascular diseases (CVDs; World Health Organization, 2017). CVDs are the serious diseases and increasing mortality worldwide especially

in developing countries may threaten to human life (Weiwei et al., 2016). Cardiac arrhythmia disease is an imperative group of diseases in CVDs,

which can lead to abnormal heartbeats and sudden death such as premature contraction and bundle branch beats (Theis & Meyerbäse, 2002). The

circumstances are prompting researchers to investigate the method of classification for cardiac arrhythmias.

Electrocardiogram (ECG) as a vital tool for heart status diagnosis contains a wealth of heart rhythm and physiological information (Bie et al.,

2017). Research studies develop in automatic ECG diagnosis have made positive contributions to the timely detection and better management

of cardiac arrhythmias. However, traditional clinical ECG signals are long and impossible to be diagnosed in real time. Body sensor networks have

opened up a great door for medical application and real‐time monitoring (Zhang, Sun, Song, & Cao, 2014). ECG monitoring is a prodigious way of

diagnosing CVD. Therefore, it is crucial to develop real‐time ECG monitoring system in advance. To realize the real‐time medical analysis, the
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wearable ECG signals are digitalized and transmitted to a smartphone via Bluetooth (Hu, Shao, & Tan, 2012). Meanwhile, to comprehend ubiqui-

tous monitoring with low‐cost wearable ECG devices, a lightweight classification algorithm for cardiac arrhythmia is of great importance.

Substantial methods for automated classification of cardiac arrhythmia have been proposed in recent years. These methods for classifying

cardiac arrhythmia use a variety of features, including time‐domain features, frequency‐domain features, time‐frequency domain features, and

morphological features (Bogovski, 2012; Huang, Liu, Zhu, Wang, & Hu, 2014; Lin & Yang, 2014; Jatmiko, Nulad, Matul, Setiawan, & Mursanto,

2011; Ince, Kiranyaz, & Gabbouj, 2009; Übeyli, 2007; Giri et al., 2013; Jayachandran, Joseph, & Acharya, 2010; Li, Yuan, Ma, Cui, & Cao, 2017;

Qin, Li, Zhang, Yue, & Liu, 2017). Bogovski et al. presented a method that used time‐domain features and support vector machine (SVM) to classify

five types of ECG heartbeats (Bogovski, 2012). Random projection with SVM and RR interval features were proposed by Huang et al. to classify

five types of ECG heartbeats (Huang et al., 2014). A method based on linear discriminant classification and RR interval features was applied to

classify five types of ECG heartbeats by Lin and Yang (2014). ECG time‐domain features is acquired easily for classification; however, it is suscep-

tible to external interference. Wavelet transform (WT) can analyse the signal and makes feature extraction in the time‐frequency domain. The ECG

signals can be decomposed for obtaining a multiresolution representation. Jatmiko et al. utilized back‐propagation and fuzzy‐neuro learning vector

quantization as the classifier and WT coefficients to classify four types of ECG heartbeats (Jatmiko et al., 2011). Ince et al. proposed a method that

combined discrete WT (DWT), principal component analysis (PCA), and multidimensional particle swarm optimization to classify five types of ECG

heartbeats (Ince et al., 2009). Feature extraction using DWT and classification using SVM were combined for four types of ECG heartbeats clas-

sification by Übeyli (2007). Giri et al. utilized DWT, PCA combined with SVM and K‐Nearest Neighbours (KNN) to classify two types of ECG heart-

beats (Giri et al., 2013). A method based on DWT and entropy was used to classify two types of ECG heartbeats by Jayachandran et al.

(Jayachandran et al., 2010). Genetic algorithm (GA) and the back propagation neural network (BPNN) were employed to classify six types of

ECG heartbeats by Li H et al. (Li et al., 2017). Q. Qin et al. used low‐dimensional wavelet features and SVM for six types of ECG heartbeats clas-

sification (Qin et al., 2017). From the aforementioned studies, it can be seen that the computation become more complex and costly for obtaining

the high accuracy. So a lightweight algorithms is demand to be proposed for wearable ECG classification.

In this paper, the motivation is to develop a system with low computational cost and best performance. Selection of features and classifiers is

vital to realizing the lightweight detection algorithm. First of all, 24 features are extracted using DWT method in the five frequency subband. Then

information gain (IG) criterion as a feature selection method is used to select the dominant features. At last, the selected features are then fed to

the Random Forest (RF), KNN, and J48 for classification. The ECG heartbeats from different patients are used for the experiment, and the results

show that our proposed approach would be a good solution for the diagnosis of CVD. Figure 1 shows the block diagram of the proposed method.

The contributions of the proposed method include the following:

1. We propose the combined frequency analysis and Shannon entropy (CFASE) approach to extract 24 effective features for cardiac arrhythmia

classification.
FIGURE 1 The block diagram of the proposed method
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2. In wearable ECG monitoring, for the purpose of reducing computational complexity, we use IG to select most important features without los-

ing classification accuracy.

The other sections are structured as follows: In Section 2 the materials are described in detail. Section 3 presents the proposed method includ-

ing frequency domain analysis, segmentation, CFASE feature extraction, feature selection, and performance measures. In Section 4, the explana-

tion of experiment and results are provided. Conclusion is drawn in Section 5.
2 | MATERIALS

In this study, ECG signals are obtained from the Massachusetts Institute of Technology‐Beth Israel Hospital (MIT‐BIH) arrhythmia database

(Moody & Mark, 2002) where 48 ECG records from 47 subjects are included. Each record contains a 30‐min ECG signal, and signals are sampled

at 360 Hz with 11‐bit resolution over the 10‐mV range. There is an annotation file associated with each record, giving the interpretation for each

heartbeat. In this work, five types of ECG heartbeats from the MIT‐BIH arrhythmia database for one lead MLII from 10 subjects are collected,

namely, normal beat (N), atrial premature contraction beat (A), premature ventricular contraction beat (V), left bundle branch block beat (L), and

right bundle branch block beat (R). The normal beats dominate the MIT‐BIH dataset, so we choose a part with normal beats orderly to avoid bias

in the experiment result. Similarly, the remaining four types of beats we chose appropriately to avoid bias toward any one of the type. Details of

data information are listed in Table 1. The specific information of the patients is as follows:
3 | METHODOLOGY
3.1 | Frequency domain analysis

The raw ECG signals are introduced high‐frequency noise caused by power line interference and low‐frequency noise, for example, baseline

wander. At the beginning of the experiment, we design Butterworth filter to remove high‐frequency component and low‐frequency component.

However, the ECG signals' characteristics are removed as well especially when eliminating the high‐frequency noise. Thus, in this work, WT is uti-

lized to analyse the component of frequency subbands and further remove the noise (Mallat, 1989; Li et al., 2018). First of all, the Daubechies‐5

(db5) mother wavelet is adopted to decompose the signal into nine high‐frequency subbands and one low‐frequency subband as shown inTable 2.

Moreover, we get rid of the top three high‐frequency sub‐bands and that the remaining wavelet coefficient subbands of fourth, fifth, sixth,

seventh, eighth, and ninth levels are used to reconstruct by using wavelet inverse transform.
3.2 | Segmentation

According to the annotation file, we segregate the continuous ECG signal into individual heartbeats. First of all, the location of the R‐peak as a

reference point of different types of heartbeats is labelled. Then use R‐peak to take 99 points forward and 200 points backward to form a sample

(Pan & Tompkins, 1985). The ECG beat of 300 points that we obtain is shown in Figure 2, which demonstrates the characteristic of the ECG heart-

beats in the time domain. The ECG heartbeats can be seen apparently, and the morphology of different types of heartbeats is very similar. The

four subfigures in the first row of Figure 2 describe the normal signals, and the four subfigures in the second row of Figure 2 describe atrial
TABLE 1 Description of the ECG data in this work

Type of ECG beat Number of beats Name of record

Normal beat (N) 1,000 100, 101

Atrial premature contraction (A) 1,000 209, 232

Premature ventricular contraction (V) 1,000 106, 200

Left bundle branch block beat (L) 1,000 109, 111

Right bundle branch block beat (R) 1,000 118, 124

Abbreviation: ECG: electrocardiogram.

Record 100 (male; age 69; Medications: Aldomet, Inderal); Record 101 (female; age 75; Medications: Diapres); Record 106 (female; age 24; Medications:

Inderal); Record 109 (male; age 64; Medications: Quinidine); Record 111 (female; age 47; Medications: Digoxin, Lasix); Record 118 (male; age 69; Medica-

tions: Digoxin, Norpace); Record 124 (male; age 77; Medications: Digoxin, Isordil, Quinidine); Record 200 (male; age 64; Medications: Digoxin, Quinidine);

Record 209 (male; age 62; Medications: Aldomet, Hydrodiuril, Inderal); Record 232 (female; age 76; Medications: Aldomet, Inderal).



TABLE 2 Frequency band of ECG signal using nine‐level decomposition

Decomposed signal Decomposition level Frequency band (Hz)

d1 1 180–360

d2 2 90–180

d3 3 45–90

d4 4 22.5–45

d5 5 11.25–22.5

d6 6 5.625–11.25

d7 7 2.8125–5.625

d8 8 1.40625–2.8125

d9 9 0.703125–1.40625

a9 9 0–0.703125

Abbreviation: ECG: electrocardiogram.

FIGURE 2 Segmented heartbeats from N, A,
V, L, and R with 300 points (0.83 s)
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premature contraction signals, etc. Therefore, selecting appropriate and effective features is particularly important for the different types of ECG

heartbeats classification (Osowski & Linh, 2002).

3.3 | CFASE feature extraction

Biomedical signals such as ECG signals of the human body are nonlinear and nonstationary. Because of the nonstationary nature, Fourier trans-

form is not suitable for analysing the ECG signals; subsequently, WT is proposed (Lai & Tsai, 2010; Abo‐Zahhad, Al‐Ajlouni, Ahmed, & Schilling,

2013). WT is a method that could be capable of analysing the ECG signals from the time domain and frequency domain simultaneously with

multiresolution analysis of the function. WT consists of continuous WT and discrete WT (DWT). In many aspects, DWT can be used for the

ECG signal feature extraction (Mohamed & Deriche, 2014; Hazarika, Chen, Tsoi, & Sergejew, 1997). DWT is defined as follows:

DWTx j; kð Þ ¼ ∫Rx tð Þψj;k tð Þdt; (1)

ψj;k tð Þ ¼ 1ffiffiffiffi
2j

p ψ
t − 2jk

2j

 !
; (2)

where ψj,k(t) is a wavelet function, the scaling is parameter aj = 2j, and the translation parameter isbj,k = 2jk.
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In this work, DWT is exploited to extract the statistical features. Each individual ECG heartbeat is divided into five subbands by applying

Daubechies‐2 mother wavelet (db2), Daubechies‐4 mother wavelet (db4), and Daubechies‐6 mother wavelet (db6). Feature extraction is within

QRS complex frequency range from the detail wavelet coefficients (dk,k = 1,2,3,4,5) and the approximation wavelet coefficients (a5). Table 3

illustrates the corresponding frequencies to different levels of DWT for the ECG data. CFASE analysis method is employed to extract frequency

features. A total of 18 frequency features are extracted by applying the frequency analysis, namely, median (Wmed), mean (Wmean), and standard

deviation (Wstd) from DWT coefficients for each subband. Details of frequency features are shown in Table 4.

Meanwhile, Shannon entropy (SE) analysis is applied in this work. The SE equation solves the problem of quantitative measurement of

information. The definition of the formula is as follows:

SE ¼ −∑is
2
i log2 sið Þ2; (3)

where s is the signal and Si is the coefficients of s in an orthonormal basis. The SE value is calculated from DWT coefficients for each subband. Six

features of SE are obtained from each level (d1, d2, d3, d4, d5, and a5) that presents in Table 4. By using the CFASE feature extraction method, a

total number of 24 statistic features are achieved.

3.4 | Feature selection

To reduce the computational cost, feature selection is essential, which is generally perpetrated after the quantification of the important features,

and how to quantify the important feature becomes the biggest difference among the various approaches. In order to select effective features, IG

criterion is adopted for the feature selection (Rahman et al., 2015). The measure of the importance about IG is to see how much information the

feature can bring to the classification system, the more information it conveys, the more important. For each feature, the IG measures how much

information is obtained about the heartbeat‐class when the value of the feature is acquired. Equation 4 gives the entropy of Y, and Equation 5

gives the entropy of Y after observing X.

H Yð Þ ¼ − ∑
y ∈ Y

p yð Þ log2 p yð Þ; (4)

H YjXð Þ ¼ − ∑
x ∈ X

p xð Þ ∑
y ∈ Y

P yjxð Þ log2 p yjxð Þ; (5)

where X and Y are discrete random variables.

IG is the amount measured by the entropy of Y decreases that reflects the additional information of Y given by X (Quinlan, 1993). IG is defined

as follows:
TABLE 3 Frequency band of ECG signal using five‐level decomposition

Decomposed signal Decomposition level Frequency band (Hz)

d1 1 22.85–45

d2 2 11.77–22.85

d3 3 6.24–11.77

d4 4 3.47–6.24

d5 5 2.09–3.47

a5 5 0.70–2.09

Abbreviation: ECG: electrocardiogram.

TABLE 4 Description of the features in this work

No Extracted features in each level

1 Median of the wavelet coefficients (Wmed)

2 Mean of the wavelet coefficients (Wmean)

3 Standard deviation of the wavelet coefficients (Wstd)

4 Shannon entropy of the wavelet coefficients (SE)
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IG ¼ H Xð Þ − H XjYð Þ ¼ H Yð Þ − H YjXð Þ
¼ H Xð Þ þ H Yð Þ − H X; Yð Þ: (6)

For a given value of the feature, it can be computed the difference between the unconditional entropy of the heartbeat‐type and the

conditional entropy of the heartbeat‐type. After computing the IG for each feature, the one least‐informative feature is deleted and repeated

the tenfold cross‐validation experiment. We continue reducing the procedure gradually deleting one feature at a time until we obtain the decline

performance. The details of the selected 10 features that are gained by using IG are explained in Section 4.

3.5 | The performance measures

To evaluate the performance of the heartbeat classification, several performance measures have been used, namely, sensitivity, specificity, precision,

and accuracy (Powers, 2011). Tenfold cross validation is selected to evaluate the performance measurement. For the tenfold cross validation,

the entire dataset will be divided into 10 subsets. Every time, a single subset is used for testing the model and nine subsets are used for training.

The cross‐validation process is needed to repeat 10 times. At last, average measures of all folds are calculated. These performance measures are

defined below:

Sensitivity ¼ TP
TPþ FN

× 100%; (7)

Specificity ¼ TN
TN þ FP

× 100%; (8)

Precision ¼ TP
TP þ FP

× 100%; (9)

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

× 100%; (10)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
4 | EXPERIMENT AND RESULTS

4.1 | Experiment

The proposed model has been trained and tested with the ECG dataset on PC workstation with 2.50‐GHz CPU and 8‐GB RAM. In our work,

the training delay was up to 3.58 s for the RF classifier, 0.004 s for KNN classifier, and 0.14 s for J48 classifier when using the selected 10 features

and db6.

In this section, the experiment and results based on the proposed method are described in the details. The first step is frequency domain anal-

ysis, and through this step, the raw ECG signals become clean. Afterwards, the denoised ECG signals would be divided into individual heartbeats.

Then for extracting significant features, the CFASE feature extraction method is used to complete this step. In this approach, the total 24 features

are extracted from db2, db4, and db6, which described in section 3.3. The 10 selected features by IG are presented in Table 5. By employing

classifiers RF, K‐NN, and J48 classifier we compare the performance of the features extracted from three mother wavelets db2, db4, and db6
TABLE 5 The features are selected using information gain method

Level Features

d1 SE1, Wstd1

d2 SE2, Wstd2

d4 Wmean4

d5 SE5, Wmean5, Wstd5

a5 SE6, Wstd6
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on aspects of sensitivity, specificity, precision, and accuracy, as shown in Tables 6–8. In addition, a confusion matrix is used to analyse the results

(Pal, 2005; Zhang & Zhou, 2007; Townsend, 1971).
4.2 | Results

It is observed fromTables 6 to 8 that db6 obtains the best performance compared with db2 and db4 using the extracted features and RF classifier,

which provides the highest accuracy of 98.34%, sensitivity of 98.3%, specificity of 99.6%, and precision of 98.3%.

Accuracy with varying number of features in different classifiers based on db6 is shown in Figure 3. It can be realized that the best perfor-

mance is achieved by 10 features approximately. In addition, the classification accuracy of RF and KNN is better than that of the J48.

The features in Table 9 are extracted by db6, and 10 features are selected using IG. It is observed from Table 9 that db6 combined with RF

classifier obtained the best performance, and it provided an average accuracy of 98.08%, average sensitivity of 98.1%, average specificity of

99.5%, and average precision of 98.1%.

Detailed analysis of the relationship between performance measures and feature number using RF, KNN, and J48 based on db6 is indicated in

Figures 4–6. These results illustrate the necessity of the feature selection. When we select 10 features, the values of both sensitivity and precision

are around 98% and it almost invariable. Meanwhile, the performance measure of specificity gain 99.6% lightly changed with more than five

selected features. The above analysis demonstrates that it is the number of 10 features that is appropriate using db6 and RF.

In addition, performance measurement of the classifier can be evaluated using confusion matrices. Confusion matrices are calculated for the

proposed method with the different classifiers (RF, KNN, and J48), which is depicted inTable 10. In confusion matrix, diagonal elements represent

the appropriately classified ECG heartbeats. From this table, we can observe that db6 mother wavelet with RF classifier gained the best perfor-

mance. The classification results describe above show that we can obtain high‐performance outcomes while identifying patients with cardiac

arrhythmia by classifying individual ECG heartbeats using a set of 24 features.
TABLE 6 The classification results obtained for db2 when the ECG heartbeats were classified using RF, KNN, and J48

Classifier Sensitivity Specificity Precision F1‐score ROC area Accuracy

RF 0.98 0.995 0.981 0.98 0.999 0.9804

KNN 0.973 0.993 0.973 0.973 0.983 0.973

J48 0.95 0.987 0.95 0.95 0.975 0.9498

Abbreviations: db2: Daubechies‐2 mother wavelet; ECG: electrocardiogram; KNN: K‐Nearest Neighbours; RF: Random Forest; ROC: receiver operating

characteristic.

TABLE 7 The classification results obtained for db4 when the ECG heartbeats were classified using RF, KNN, and J48

Classifier Sensitivity Specificity Precision F1‐score ROC area Accuracy

RF 0.98 0.995 0.98 0.98 1 0.9798

KNN 0.972 0.993 0.972 0.972 0.983 0.9722

J48 0.966 0.991 0.966 0.966 0.982 0.9656

Abbreviations: db4: Daubechies‐4 mother wavelet; ECG: electrocardiogram; KNN: K‐Nearest Neighbours; RF: Random Forest; ROC: receiver operating

characteristic.

TABLE 8 The classification results obtained for db6 when the ECG heartbeats are classified using RF, KNN, and J48

Classifier Sensitivity Specificity Precision F1‐score ROC area Accuracy

RF 0.983 0.996 0.983 0.983 1 0.9834

KNN 0.975 0.994 0.975 0.975 0.984 0.9748

J48 0.968 0.992 0.968 0.968 0.981 0.9678

Abbreviations: db6: Daubechies‐6 mother wavelet; ECG: electrocardiogram; KNN: K‐Nearest Neighbours; RF: Random Forest; ROC: receiver operating

characteristic.



FIGURE 3 Accuracy with varying number of
features in different classifiers

TABLE 9 The performance statistics are obtained from RF, KNN, and J48 classifier using db6 wavelet

db6‐RF

Class Sensitivity Specificity Precision F1 score ROC area Sensitivity Specificity

N 0.987 0.995 0.979 0.983 0.999 0.991 0.994

A 0.969 0.997 0.99 0.979 0.999 0.969 0.997

V 0.968 0.993 0.973 0.97 0.998 0.957 0.996

L 0.992 0.994 0.976 0.984 1 0.992 0.994

R 0.988 0.996 0.986 0.987 0.999 0.991 0.994

Average 0.981 0.995 0.981 0.981 0.999 0.98 0.995

Accuracy 0.9808

db6‐KNN db6‐J48

Precision F1‐score ROC area Sensitivity Specificity Precision F1 score ROC area

0.977 0.984 0.993 0.98 0.994 0.978 0.979 0.987

0.987 0.978 0.983 0.965 0.992 0.97 0.967 0.98

0.983 0.97 0.976 0.952 0.99 0.961 0.956 0.975

0.977 0.985 0.993 0.975 0.993 0.974 0.975 0.987

0.976 0.984 0.993 0.984 0.993 0.973 0.979 0.992

0.98 0.98 0.988 0.971 0.993 0.971 0.971 0.984

0.98 0.9712

Abbreviations: db6: Daubechies‐6 mother wavelet; ECG: electrocardiogram; KNN: K‐Nearest Neighbours; RF: Random Forest; ROC: receiver operating

characteristic.
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Table 11 presents the comparison of different methods which use the same MIT‐BIH database. The selected 10 effective statistical features

are obtained by using the CFASE method and IG. The experimental results show the accuracy of 98.08% for the five types of ECG heartbeat clas-

sification by using our proposed method, and it could be an upright method for ECG heartbeat classification.



FIGURE 4 Sensitivity with varying number
of features in different classifiers

FIGURE 5 Specificity with varying number
of features in different classifiers

ZHANG ET AL. 9 of 13
4.3 | Discussion

The target of this work is to assess the performance of CFASE feature extraction and dimensionality reduction method IG for classification of five

ECG heartbeats types. In our approach, DWT is selected to analyse the ECG signals and DWT is suitable to investigate the nonlinear and nonsta-

tionary signals. Meanwhile, WT denoising is able to protect useful signal spikes and mutation signals that distinguish high‐frequency noise from

high‐frequency information effectively. To quantify the important features, IG criterion is the best fit to choose a reduced set of features because

it can compute the features with more information and select the more appropriate features in the experiment. For performance measures, the

results of using 10 features were similar to that of using 24 features. The features extraction, classification methods, and accuracy in previous

works and present study are as illustrated in Table 11. As shown in Table 11, the proposed method exhibited higher accuracy value than methods

proposed in previous studies.



FIGURE 6 Precision with varying number of
features in different classifiers

TABLE 10 Confusion matrices are obtained with different classifiers (RF, KNN, and J48) for ECG heartbeats classification

db6‐RF db6‐KNN db6‐J48

N A V L R N A V L R N A V L R

N 987 6 5 1 1 991 3 2 2 2 980 12 6 0 2

A 16 969 6 9 0 17 969 4 10 0 17 965 8 10 0

V 5 2 968 13 12 6 5 957 10 22 5 6 952 14 23

L 0 2 5 992 1 0 4 4 992 0 0 12 11 975 2

R 0 0 11 1 988 0 1 7 1 991 0 0 14 2 984

Abbreviations: db6: Daubechies‐6 mother wavelet; ECG: electrocardiogram; KNN: K‐Nearest Neighbours; RF: Random Forest.

TABLE 11 Compare with other methods based on the MIT‐BIH arrhythmia database.

Work Class Features Classifier Accuracy (%)

Bogovski, P et al. 5 Waveform features LIBSVM 95.21

Huang et al. 5 RR‐intervals SVM 94

Lin et al. 5 Normalized RR‐intervals LD 93

Jatmiko et al. 4 Wavelet transform coefficients FLVQ 95.50

Ince et al. 5 Waveform features Multidimensional PSO 95.28

Li H et al. 6 Statistical features of WPCs GA‐BPNN 97.78

Proposed method 5 CFASE features of DWT coefficients RF 98.08

Abbreviations: CFASE: combined method of frequency analysis and Shannon entropy; DWT: discrete wavelet transform; FLVQ: fuzzy‐neuro learning vector

quantization; GA‐BPNN: genetic algorithm‐back propagation neural network; LD: linear discriminant; MIT‐BIH: Massachusetts Institute of Technology‐
Beth Israel Hospital; PSO: particle swarm optimization; RF: Random Forest; SVM: support vector machine; WPCs: wavelet packet coefficients.
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In addition, there remain certain limitations. For instance, more types of heartbeats could be put into consideration for fully understanding of

the heart rhythm. Meanwhile, the number of samples also needs extension for exploring deeper or hidden features. However, the proposed

method may not be efficient enough in dealing with large dataset. Artificial neural network (ANN) exhibits great flexibility and adaptability to
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handle large amounts of data (Jadhav, Nalbalwar, & Ghatol, 2010). Compared with conventional methods, ANN performs obvious advantages in

dealing with fuzzy data, random data, and nonlinear data. Therefore, it can be a good alternative for large‐scale ECG data analysis in future work.

There is a possibility of involving the same patient information in both training and testing data that not applying subject‐based validation

scheme. Another significant limitation is not analysing ECG fragments in more leads.
5 | CONCLUSION

We have proposed an approach for classifying five types ECG heartbeats, namely, N, A, V, L, and R, which come from MIT‐BIH arrhythmia data-

base. The db5 mother wavelet is used for signal frequency domain analysis that the signal is denoised and became clean. CFASE feature extraction

method combined with db6 mother wavelet is used for the feature extraction. A comprehensive of 24 features are extracted for the heartbeat

classification, and the dimension of the full features is reduced by IG method to obtain highly informative features. The proposed method has

yielded the highest sensitivity of 98.1%, the specificity of 99.5%, and the precision of 98.1% and the accuracy of 98.08%. It makes contribution

to reduce the computational cost and improves the classification efficiency.

In the future, we plan to increase the classification accuracy based on the subject training scheme: (a) increase the number of samples and ana-

lyse various types ECG heartbeats from different databases, (b) extract more number of suitable features for ECG signal classification, and (c) using

deep learning methods on classification for more different types of ECG heartbeats.
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