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lthough fingerprint technology holds great promise for user authentication, commercial scanners 
face significant challenges in terms of security (e.g., fake finger) and adoptability (e.g., wearables). 
SonicPrint pushes the boundary of fingerprint biometrics beyond smartphones to any smart 
devices without the need for specialized hardware. To achieve this, it listens for fingerprint-

induced sonic effect (FiSe) caused when a user swipes his/her fingertip on smart device surface. Compared 
to other biometrics including physiological patterns and passive sensing, SonicPrint is a low-cost, privacy-
oriented and secure approach to identify users across smart devices of unique form-factors.

INFORMATION AT YOUR 
FINGERTIPS
What if accessible surfaces encountered 
during day-to-day activities could sense 
the fingerprint information? Imagine a 
daily routine where Alice arrives in her 
home from the workplace. Facing the 
entrance, Alice swipes her fingertip on the 
metal door lock upon which she is granted 
permission to her house. Recognizing that 
it is Alice who performed the swipe action, 
the lights in the house are turned on and 
Alice’s favorite music starts to play. Alice 
approaches the IoT sensors in her house 
and swipes anywhere on the sensor’s plastic 
surface to once again verify her identity. 

This lets her adjust the surroundings to 
an ideal temperature. To Alice’s surprise, 
Google Echo informs her about the unpaid 
electricity bills which she can pay either 
by swiping on her smartwatch or on the 
fiber surface of Google Echo. During every 
critical task, Alice has the freedom to swipe 
on any surface near the target device to 
verify her identity and ensure that only she 
can make decisions. To make this scenario 
a reality, where accessible surfaces can scan 
fingerprint information without the need 
for commercial scanners (see Figure 1), we 
build SonicPrint to leverage the intrinsic 
fingerprint ridge information in sonic waves 
for user identification. 

ACOUSTICS RATHER THAN VISUAL
We have taken a radically different approach 
to fingerprint sensing. Instead of trying to 
obtain the visual perception of fingerprint, we 
focus on its acoustic capabilities by leveraging 
the friction principles of sliding surfaces. 
Specifically, friction leads to distinct waves and 
oscillations within the interacting mediums 
resulting in the emission of sonic waves 
to the ambient environment [1]. Our key 
contribution is the observation that the sonic 
waves from a user swiping his fingertip on 
a surface can serve as biometric traits. Since 
every person has a unique fingerprint, two 
users swiping their fingertips on a common 
surface result in distinct fingerprint-induced 
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•	 Level III: Although unique, Level 
II fingerprint features are prone to 
spoofing since they could still be visually 
perceived through the naked eye or even 
in low-resolution images. Thus, Level III  
features are proposed based on the 
dimensional ridge information, including 
width, pores and edge contour. Similarly, 
short-time Fourier transform and 
adaptive time-frequency decomposition 
can reveal various physical attributes 

of FiSe. These features have inferior 
meaning to human perception [3] and 
thus are difficult to spoof. 

In our study, the Level I, II, III information 
is extracted from FiSe and utilized for user 
identification. With collaborative efforts 
and interdisciplinary research, further 
discoveries can be foreseen as researchers 
derive new taxonomies for modeling the 
acoustic fingerprint.

FIGURE 1. SonicPrint is a fingerprint sensing dimension that is adoptable across diverse 
smart devices and resilient to fake-finger spoofing. 
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FIGURE 2. Fingerprint with three level characteristics focusing on perception, uniqueness 
and anti-spoofing respectively. 

sonic effects. FiSe inherent uniqueness 
is dependent on the surface texture (i.e., 
fingerprint ridge patterns) and the finger’s 
constitution while its audibility depends on 
the texture of the interacting surface. For 
instance, a user swiping on a coarse paper 
surface would have a higher sound pressure 
level than when the user swipes on a smooth 
silicon surface. Yet FiSe can be observed 
across common materials and measured 
using inbuilt microphones.

MODELING THE  
FINGERPRINT’S VOICE
A human fingerprint can be visually per-
ceived while FiSe lies in the audio domain. 
To retrieve the fingerprint-dependent char-
acteristics from FiSe, we need to understand 
the different levels of information provided 
by  a fingerprint (see Figure 2) and its  
semantic relationship to acoustic features.

•	 Level I: The macro-details of a finger- 
print, such as patterns and ridge flows, can 
be seen through naked eyes. Technically, 
these features are characterized by local 
orientations (i.e., angle of the ridge with 
horizontal axis) and local frequencies 
(i.e., number of ridges per unit length) [2]. 
The pattern exhibits regions where ridge 
lines take distinctive shapes (whorl, arch, 
loop), which can be common among 
different users. Yet Level I features are 
highly intuitive since anyone can perceive 
the information. Similarly, in the audio 
domain, power-based temporal features 
that highlight changes over time and 
perceptual features, e.g., pitch, hold an 
intuitive meaning to a human listener  
and can provide high-level information  
of sonic waves.

•	 Level II: At the local scale, discontinuous 
ridges, commonly known as minutiae, 
can be observed in fingerprint patterns. 
For instance, a ridge can divide into two 
(bifurcations), abruptly end (termination) 
or form a unique shape (hook). Unlike 
Level I, these features possess high 
variance between different users and 
are actively used for authentication. 
Considering that minutiae textures 
affect the timbral characteristics of FiSe, 
cepstral features are essential to capture 
this influence and discriminate against 
the audio sources.

	 Modality	 Degree-of-freedom	 Adoptability	 Cost	 Robustness	 Security

	 Face 	 Medium 	 Medium 	 Low 	 Medium 	 Medium

	 Iris 	 Low 	 Low 	 Medium 	 High	 Medium

	 Voice 	 Medium 	 Medium 	 Low 	 Medium 	 Low

	 Fingerprint 	 High 	 Medium 	 Low 	 Medium 	 Low

	 SonicPrint 	 High 	 High 	 Low 	 Medium 	 High	

TABLE 1. Comparison of SonicPrint with widely used biometric techniques.
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occur in close proximity to the microphone. 
The overall duration of setting up SonicPrint 
is expected to be less than 3 minutes, which is 
comparable to existing biometric solutions.

ON THE TECHNOLOGICAL 
SPECTRUM
The foundation of SonicPrint relies on the 
friction-excited sonic generated by the user’s 
fingerprint upon interaction with everyday 
surfaces. Although the rationale is intuitive, 
it introduces unique challenges when 
applied to the mobile computing domain: 

(1) Traceability: FiSe is typical of low power 
and submerged in dynamic background 
noises. While this contributes to high 
security against stealth listeners, it can 
decrease the usability of FiSe if left unsolved. 
After FiSe has been recorded by conventional 
microphones, we leverage a sequence of 
spectral and wavelet denoising approaches 
[4,5] to enhance the target signal and remove 
the background noise. The dependency of 
FiSe on swiping behavior poses another 
challenge in tracking its position in the 
recorded signal. Observing the limitation 
of traditional thresholding techniques used 
in the voice domain, we employ an adaptive 
event detection approach using a Hidden-
Markov model [6] and phase-based detection 
that is fine-tuned according to the roughness 
of the user’s fingertip. 

(2) Resourcefulness: Originating from 
multilevel fingerprint minutiae, FiSe also 
possesses enough capacity as a biometric trait. 
However, a statistical representation of FiSe 
can be influenced by the variation in the user’s 
swiping speed or pressure during each access 
attempt; it is vital that the representation (in 

other words, features) of FiSe closely relates to 
the user’s fingerprint. We explore a taxonomy 
that bridges the gap between fingerprint in the 
visual domain and FiSe in the audio domain 
by leveraging temporal, perceptual, cepstral 
and physical features.   

(3) Distinguishability: SonicPrint has an 
advantage to be deployable in previously 
untouched domains (e.g., wearables, 
everyday materials) with a high degree 
of freedom in swipe actions and sensing 
locations. However, despite such freedom, 
it needs to offer high accuracy with limited 
to no assumption about the input FiSe 
signal. Therefore, we chose an ensemble 
classification approach with five weighted 
classifiers (e.g., logistic regression, linear 
discriminant analysis, support vector 
machine, random forest, Gaussian mixture 
model) to predict the legitimate user.

BEYOND SMARTPHONES
For performance evaluation, we let five 
subjects conduct a total of 1981 swipe 
actions on four popular smart devices 
with an increasing level of curvature: Bose 
Headphones, Google Echo, Apple Watch 
Series 4 (leather strap) and Logitech mouse. 
The Logitech mouse comprises an inward 
surface while the rest are outward. The 
microphone is positioned near the surfaces 
of considered smart devices to record the 
FiSe during swipe action. For each device, 
the Equal-Error-Rate (EER) during user 
identification is illustrated in Figure 4. Our 
approach is adoptable to devices that are 
currently do not support any biometric 
technology.
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FIGURE 3. SonicPrint has a three-step deployment, with downloading the 
software solution, registering the biometric template and performing swipe 
actions, to unlock the smartphone.

IDEAL CHARACTERISTICS  
OF SONICPRINT
We believe that this novel method makes 
fingerprint sensing even more intuitive 
and transparent than recent ultrasound-
based sensing. It embodies the following 
characteristics that are the foundation of a 
practical biometric:
(i) It does not require any specific hardware 
and utilizes low-cost off-the-shelf sensors in 
smart devices.
(ii) The biometric trait is available across 
devices and materials with diverse flexibility, 
geometry and composition.
(iii) It enables real-time data collection, noise 
elimination, feature engineering and training/
inference with an end-to-end solution.
(iv) The system is resilient against known at-
tack models, e.g., fake fingers, replay attacks 
and side-channels, thereby maintaining the 
user’s trust in the security mechanism.

FROM THE USER’S PERSPECTIVE
As a software-only solution (see Figure 3), 
SonicPrint can be conveniently downloaded 
via publicly available platforms (e.g., Apple 
Store, Google Play) on the user’s smart device. 
During installation, the user may be asked to 
provide permission for microphone access to 
record the FiSe from swipe actions. When the 
application is launched for the first time, the 
user will be asked to perform 60 swipe actions 
(number based on current system’s capabil-
ity) with different dynamics for training the 
underlying prediction model behind Sonic-
Print. Once the training process is completed, 
the device will be automatically locked and 
the user would be asked to swipe between 
1~3 times for gaining access to their smart 
device. Considering that the signal is in the 
audio domain, it is preferable for the swipes to 

FIGURE 4. Evaluation of curved smart devices. 
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FUTURE APPLICATIONS
Group Authentication: Biometric technolo- 
gies have transformed the user security by 
analyzing diverse physiological and behavioral 
traits via unique frameworks, e.g., multimodel, 
unobtrusive and continuous authentication 
[7]. Yet conventional biometrics provide a 
one-to-one connection between the measured 
signal and the user’s identity. If users belonging 
to a group (e.g., family, colleagues) need to be 
authenticated at a single timestep (e.g., border 
verification in airports), multiple sensors are 
required with increased resolution and field-
of-view. Moreover, the software algorithms 
need to individually assess each biometric 
trait making the computational time 
complexity similar between identifying the 
group together vs. each person separately. 
If FiSe from different groups of users can 
be identified without any change in system 
architecture, it can lead to a breakthrough  
in the field of mobile security research. 

Surface Identification: Recently, object 
tagging without Near Field Communication 
(NFC) tags have received immense atten-
tion for robotics [8] and mobile applications 
[9]. The uniqueness of FiSe relates to the 
fingerprint minutiae, surface texture and the 
underlying composition of the human finger-
tip. Its dependency on surface texture raises  
an interesting question of whether SonicPrint  
can be applied for object identification. 

Gesture Recognition: Gesture recognition 
has observed a significant growth in the 
smart environment due to its application in 
entertainment, gaming, motion capture and 
accessibility services. In particular, device-free 
tracking is promising, since it does not require 
a user to place hands/fingers attached to the 
device. Considering that FiSe can be acquired 
remotely via a microphone, SonicPrint 
may serve as a multi-purpose application 
to sense both the biometric trait and soft 
characteristics from a single swipe action.

CHALLENGES AND 
COUNTERMEASURES
Aging Effects: For every material surface, 
a different degree of variation occurs over 
time. Common materials used in day-to-
day activities have a tolerance to aging, but 
it can be accelerated under heavy load (e.g., 
multiple users swiping on a common device 
surface). In real practice, every user has 

their own personalized devices. Yet, it can be 
beneficial to explore the use of specialized 
materials that are more resistant to aging for 
superior longevity. 

Microphone Sensitivity: SonicPrint lever-
ages the low-cost microphone of smartphones 
for FiSe acquisition. Although our system 
shows a satisfactory performance under ideal 
conditions, the overall performance can be 
significantly improved by adopting highly sen-
sitive microphones. These microphones can 
precisely detect FiSe from even swipe actions 
on smooth surfaces in a noisy environment. 
Users would not be required to perform the 
swipe as close to the microphone, increasing 
the level of freedom and user acceptance. 

Privacy: The audible nature of FiSe makes it 
prone to theft via a conventional recording 
device. For a countermeasure, the user can 
be asked to perform a specialized gesture 
(e.g., zigzag or star pattern) during the train-
ing process. These gestures are uncommon 
in normal user behavior, thereby increasing 
the difficulty for an attacker to acquire the 
target FiSe outside the recognition period. 

Accuracy and Improvements: SonicPrint 
achieves 84% and 98% identification rates 
with a single trial on a standard and high-
texture smartphone surface, respectively. 
This is comparable to recent low-cost 
solutions using vibrations [10,11], gait 
patterns [12] and passive sensing [13] for 
authentication. Yet the most significant 
contribution of SonicPrint is its adoptability 
across smart devices, which is not supported 
by existing solutions. The proposed approach 
can also be used as secondary biometrics; 
improvements in microphone frequency 
response and deep learning approaches can 
be considered for our future exploration. n 
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