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Treatment for multiple sclerosis (MS) focuses on managing its symptoms (e.g., depression, fatigue, poor sleep quality), varying
with specific symptoms experienced. Thus, for optimal treatment, there arises the need to track these symptoms. Towards
this goal, there is great interest in finding their relevant phenotypes. Prior research suggests links between activities of daily
living (ADLs) and MS symptoms; therefore, we hypothesize that the behavioral phenotype (revealed through ADLs) is closely
related to MS symptoms. Traditional approaches to finding behavioral phenotypes which rely on human observation or
controlled clinical settings are burdensome and cannot account for all genuine ADLs. Here, we present MSLife, an end-to-end,
burden-free approach to digital behavioral phenotyping of MS symptoms in the wild using wearables and graph-based
statistical analysis. MSLife is built upon (1) low-cost, unobtrusive wearables (i.e., smartwatches) that can track and quantify
ADLs among MS patients in the wild; (2) graph-based statistical analysis that can model the relationships between quantified
ADLs (i.e., digital behavioral phenotype) and MS symptoms. We design, implement, and deploy MSLife with 30 MS patients
across a one-week home-based IRB-approved clinical pilot study. We use the GENEActiv smartwatch to monitor ADLs and
clinical behavioral instruments to collect MS symptoms. Then we develop a graph-based statistical analysis framework to
model phenotyping relationships between ADLs and MS symptoms, incorporating confounding demographic factors. We
discover 102 significant phenotyping relationships (e.g., later rise times are related to increased levels of depression, history of
caffeine consumption is associated with lower fatigue levels, higher relative levels of moderate physical activity are linked
with decreased sleep quality). We validate their healthcare implications, using them to track MS symptoms in retrospective
analysis. To our best knowledge, this is one of the first practices to digital behavioral phenotyping of MS symptoms in the
wild.
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1 INTRODUCTION
Multiple sclerosis (MS) is one of five common neurological disorders, affecting 2.5 million people worldwide [1, 2].
In the United States, approximately 900,000 people live with MS [3], and its annual healthcare expense is estimated
between $8528-$54,244 per patient per year [4]. Besides the first signs of vision and mobility problems, MS patients
over time develop a spectrum of MS symptom complications, including depression, fatigue, and impaired sleep
quality [5, 6]. Currently, there is no cure for MS, and the treatment typically focuses on managing these symptoms
through intervention and behavioral therapies [2, 7–9]. The specific intervention depends on the symptoms
a patient experiences: for instance, a patient experiencing depression may be prescribed antidepressants like
desipramine, while a patient experiencing fatigue may be prescribed antifatigue medications like Symmetrel
[2, 9, 10]. Thus, to ensure optimal treatment, there arises the need to track these experienced symptoms. To
meet this goal of tracking MS symptoms, a recently popular area of research interest is finding their relevant
phenotypes [11–18] (defined as "an individual’s observable traits" [19]). Accordingly, in this paper, our aim is to
find relevant phenotypes of MS symptoms.

In particular, whether or not the behavioral phenotype — revealed through activities of daily life (ADLs) — is
closely related to MS symptoms is an open scientific/medical question [20–22]. Prior research suggests some link
between ADLs and MS symptoms; therefore, we hypothesize that the behavioral phenotype is closely related to
MS symptoms [9, 20, 21, 23, 24]. Traditionally, the way to find behavioral phenotypes would be to conduct a trial
in a controlled clinical setting. The shortcoming of such controlled clinical trials is that, by definition, they are
unable to capture data in the wild (i.e., genuine activities of daily life). Therefore, in order to identify the specific
ADLs that make up the behavioral phenotypes, we are limited to observational data collected in the wild. Yet,
in collecting in the wild observational data, it is costly, burdensome, and unreliable to expect MS patients or
clinicians to be aware of and manually record every single detail of their every single ADL.
Thus, to verify our hypothesis, we must meet the following challenges: (1) Which specific ADLs should we

monitor as potential behavioral phenotypes of MS symptoms? (2) How can we design a convenient, low-cost
system to continuously monitor these ADLs in the wild? (3) Given an observational dataset, how can we design a
framework which models and identifies the relationships among MS symptoms and their behavioral phenotypes,
while accounting for the simultaneous interactions among all the different variables in the dataset? Addressing
challenge (1), we must account for activities done while awake as well as sleep patterns, as prior research
suggests that these are all linked to MS symptoms [6, 25–28]. We should capture both micro (e.g., time spent at
different intensities of physical activity, day-by-day rise time) and macro (e.g., the total number of physically
active periods, the total number of awakenings) characteristics of these ADLs. Regarding challenge (2), digital
phenotyping, the "moment-by-moment quantification of the individual-level human phenotype in-situ using
data from smartphones and other personal digital devices", is a suitable approach [29]. Particularly, we can utilize
low-cost, unobtrusive wearable devices with embedded sensors (i.e., smartwatches) to passively, continuously
monitor the (digital) behavioral phenotype (ADLs) in the wild [30]. Finally, as for challenge (3), graph-based
causal discovery and inference algorithms allow us to discover and quantify the relationships between different
variables (i.e., ADLs, MS symptoms) from purely observational data (i.e., from wearable devices), allowing us to
see which ADLs are the behavioral phenotypes. The advantage of these algorithms is that they automatically
control for all possible confounding variables (i.e., covariates) from the observational dataset [31, 32].
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With this in mind, we design, implement, and deploy the end-to-end MSLife approach with a cohort of 30 MS
patients across a one-week home-based IRB-approved clinical pilot study. We leverage GENEActiv smartwatches
(equipped with accelerometers and light sensors) to continuously, passively monitor ADLs; and clinical behavioral
instruments to collect MS symptoms — thus yielding 5040 total hours of data. After extracting features from
the raw sensor data, we design a graph-based statistical analysis framework that leverages causal discovery
(Fast Greedy Equivalence Search) and causal inference (Propensity Score Matching) algorithms to discover and
quantify the relationships between MS symptoms and ADLs. We also incorporate individuals’ demographic
information (e.g., genders, ages, and medical conditions) as confounding factors in the graph-based statistical
analysis.
Fulfilling the task of digitally behaviorally phenotyping MS symptoms, our pilot study discovers a graph

including 102 relationships among MS symptoms, ADLs, and demographics. These include: later rise times are
related to increased depression, history of caffeine consumption is associated with lower fatigue levels, and higher
relative levels of moderate physical activity are connected to decreased sleep quality and time. We assess the
validity of these relationships in two folds: (1) We corroborate our graph-based analysis with traditional statistical
metrics, namely the Pearson correlation coefficient (𝑟 ) and the 𝑝-value. This traditional analysis confirms that the
102 relationships from the graph are indeed statistically significant, with |𝑟 |𝑎𝑣𝑔 = 0.461 and 𝑝𝑎𝑣𝑔 = 9.1 ∗ 10−4.
(2) Since the purpose of finding digital behavioral phenotypes is to eventually track symptom development (i.e.,
disease progression), we leverage the digital behavioral phenotyping relationships to identify MS symptoms in a
retrospective analysis. This is greatly effective, significantly outperforming baseline machine learning methods
by over 10% in classifying whether or not a patient has a particular MS symptom (e.g., depression, fatigue, poor
sleep quality), according to the standard classification performance metrics commonly used for mobile health:
accuracy (75.6% vs 64.0%), precision (71.8% vs 61.5%), and recall (76.6% vs 64.9%).
In summary, our contribution is three-fold:
• We design a novel, graph-based approach to digitally behaviorally phenotyping MS symptoms using
unobtrusivewearable devices in daily life. The advantage of our graph-based approach is that it automatically
controls for the effects of covariates. Furthermore, it is generalizable to studying the digital behavioral
phenotypes of any chronic, multi-symptomatic disease.

• We discover a graph of digital behavioral phenotypes of MS symptoms including 102 relationships (e.g.,
later rise times are associated with increased depression, history of caffeine consumption is connected with
lower fatigue levels, and higher relative levels of moderate physical activity are related to decreased sleep
quality). These results were derived from deploying our approach with a cohort of 30 MS patients across a
one-week home-based IRB-approved clinical pilot study. Traditional statistical models confirm that they
are strong and statistically significant.

• We find that our digital behavioral phenotypes greatly improve the tracking of major MS symptoms, based
on our retrospective machine learning-based analysis. This paves the way for many important implications,
including monitoring MS progression and facilitating precision medicine.

2 BACKGROUND

2.1 Multiple Sclerosis: Medical Perspective
Multiple sclerosis is a neurodegenerative disease that affects 2.5 million people across the world [1, 2]. On a
biological level, MS occurs when a person’s immune system attacks myelin, which is the fatty tissue that insulates
nerve cells; this interrupts the communication between the brain and the rest of the body [1, 9, 33]. The annual
MS-related healthcare expense is estimated to be between $8528-$54,244 per patient per year [4].

Symptoms are diverse and unpredictable, including muscle weakness, impaired coordination, paralysis, tremors,
dizziness, impaired speech, hearing loss, depression, fatigue, mood swings, and sleep disorders [2, 6–9, 25, 34].
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Fig. 1. End-to-end architecture of MSLife.

Although a cure for MS itself currently does not exist, symptoms can be managed through behavioral therapies
and intervention [7–9]. The specific intervention depends on the symptoms a patient experiences: for instance, a
patient experiencing depression may be prescribed antidepressants like desipramine, while a patient experiencing
fatigue may be prescribed antifatigue medications like Symmetrel or even undergo magnetic therapy [2, 9, 10].
Thus, to ensure optimal treatment, there arises the need to track these symptoms.

2.2 Digital Phenotyping
Digital phenotyping is the "moment-by-moment quantification of the individual-level human phenotype in-situ
using data from smartphones and other personal digital devices" [29]. It has two parts: (1) using personal digital
devices (e.g., smartwatch) to continuously monitor the phenotype in daily life; (2) leveraging statistical algorithms
on the collected data to identify which phenotype variables are actually relevant [30]. Digital phenotyping has
been used in various contexts, from mental health [29, 35, 36] to Alzheimer’s Disease [37]. For example, the
StudentLife study found that certain features extracted from smartphone sensor data could be used to digitally
phenotype mental health and educational performance variables in college students [38].

3 SYSTEM DESIGN: ADL MONITORING HARDWARE

3.1 Design Goals
In designing a system to monitor ADLs of MS patients in the wild, we have the following design goals:

• Unobtrusive: The system must not interfere with the authenticity of the ADLs, as that would defeat the
purpose of monitoring them in the wild (vs. controlled clinical setting). Patients should perform ADLs as if
no monitoring system was present.

• Continuous: Continuous monitoring allows us to have precise, highly detailed data; which gives us more
insights regarding ADLs and their relationships to MS symptoms.

• Long-Term: The system must collect data for the entire 168-hour duration of the study (day and night).
• Valid: The system must get correct measurements.
• Reliable: The system must be consistent in its measurements (low noise/random variation).
• Exportable Open-Format Data: We must be able to freely access and analyze the collected data to find
relevant digital behavioral phenotypes.

• Widely Available: To promote the scalability of our approach (in both this study and future ones).
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Fig. 2. We leverage wearable devices to continuously, passively monitor ADLs of MS patients in the wild 24/7.

3.2 Wearable Devices
To satisfy these goals, we leverage the GENEActiv smartwatch. It is lightweight (16 g) and compact (43 × 40
× 13𝑚𝑚3), thus minimizing interference with ADLs (unobtrusive). Its embedded tri-axial accelerometers can
monitor ADLs at a sample rate of 100Hz (continuous) for 7 uninterrupted days (long-term), while its silicon
photodiodes can simultaneously sense light exposure at wavelengths 400-1100nm [39, 40]. The accelerometers
measure in a range of +/−8𝑔, where 𝑔 = 9.81𝑚

𝑠2
with a resolution of 7.8𝑚𝑔, where 𝑚𝑔 = 10−3 × 𝑔; the light

sensors measure in a range of 0-3000 Lux and resolution of 5 Lux [41]. GENEActiv has been shown to be:
valid, with its acceleration measurements having a Pearson correlation coefficient of 𝑟 = 0.97 (𝑃 < 0.001)
with the true acceleration generated by the multi-axis shaking table in the study by [42]; and reliable, with the
accelerometer’s intra-device coefficient of variation being only 1.8% and the inter-device coefficient of variation
among 47 GENEActiv accelerometers being only 2.4% [42]. Similarly, GENEActiv’s light sensors can measure
light intensity with accuracy +/−10% [41]. After data collection is finished, data can be exported to .csv files,
which can be analyzed with tools like MatLab or R (exportable open-format data) [43]. Finally, it can be purchased
online via a public website (widely available) [44].

Each participant wore one GENEActiv smartwatch on one wrist (the other wrist having no smartwatch). We
chose this single-sensor, wrist-worn approach for its convenience and low obtrusiveness in the wild, as compared
to multi-sensor approaches like [11]; additional smartwatches on other body parts (e.g., ankle, elbow) could
potentially interfere with the genuineness of the in the wild data. Furthermore, we believe that a wrist-worn
sensor alone can accurately measure ADLs, based on the widespread commercialization and acceptance of
wrist-worn sensors that do so (e.g., Fitbit, Apple Watch) [44–46].

4 STUDY DESIGN

4.1 Participants
We collaborate with medical professionals in our Nursing School to carry out a clinical study, which is approved
by our Institutional Review Board.

4.1.1 Recruitment: Recruiting of participants took place via physician referral, word of mouth, and the Gateway
Chapter of the National Multiple Sclerosis Society.
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Table 1. Demographics of participants (N = 30)

Characteristics Values
Age (years), M (SD) 45.5 (10.4)
Gender (Female), n (%) 28 (88)
Body Mass Index, M (SD) 27.0 (7.5)
Ethnicity (Caucasian), n (%) 23 (72)
Years since diagnosis, M (SD) 11.0 (8.0)
Years since symptom onset, M (SD) 15.8 (8.9)

4.1.2 Inclusion Criteria: The criterion for participants is that they have to have been diagnosed with MS, be
between 18 and 70 years of age, and be proficient in English. The lack of a healthy control group is intentional
because we wish to track symptoms among people who already have MS. This is in line with similar studies that
wish to measure outcomes among MS patients only [47–50].

4.1.3 Exclusion Criteria: People who had one or more of the following conditions are excluded from recruitment:
taking interferon drug treatment, currently receiving cancer treatment, experiencing pregnancy or menopause,
having severe chronic obstructive pulmonary disease, or having Parkinson’s disease (as these conditions can be
confounding factors).

4.1.4 Enrolled Cohort: We finally enroll 48 people who are clinically diagnosed as MS patients, with 30 patients
ultimately finishing our study (some patients dropped out due to personal reasons). This is comparable to the
cohort sizes in similar previous studies involving mobile health technologies (MyTraces [51] had 28 subjects,
StudentLife [38] had 48 subjects, CrossCheck [52] had 21 subjects). Regarding the demographics of the cohort,
we note that Caucasians and Females make up a majority of the participants; this reflects the fact that MS most
commonly occurs among Caucasians and Females [53].

4.2 Study Procedure
4.2.1 Data Collection: Once participants were recruited, they had their symptoms clinically assessed via standard
clinical questionnaires to establish the baseline level of symptom severity they normally experience. They also
self-reported their demographic characteristics, to account for possible confounders in MS progression [54–57].
Following that, they were given the GENEActiv smartwatch. Over the next 168 hours, the wrist-worn smart-

watch continuously, passively monitored their ADLs in regular non-clinical environments; via tri-axial accelerom-
eters (to sense user kinematic motion at sample rate 100Hz) and silicon photodiodes (to sense light exposure at
wavelengths 400-1100nm).[40, 44]. Furthermore, participants were also given a symptom severity diary to fill out
on a daily basis (once a day, before going to sleep for the night) during the 168-hour data collection period. These
daily self-assessments, when considered in tandem with smartwatch ADL data, allow us to better see the patterns
in MS symptoms and how they are affected by daily activities since they correspond to the same time period.

In all, the study produced 5040 total hours of data. Our study duration is on par with that of previous studies
based on passive mobile sensing for health (Wang et al.’s study lasted for 14 days [58], MyTraces lasted for 20
days [51], a plurality of subjects (43%) in SugarMate had 6-10 days of data collected [59]).

4.2.2 Privacy Considerations: We anonymized the data by giving each participant a randomized ID code. The
mapping of ID code to participant identity is securely stored separately from the rest of the study data so that
participants cannot be identified from the main dataset.
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Fig. 3. Raw acceleration and light exposure data from our smartwatches, for a patient with depression and a patient without
depression. By analyzing the patterns, we can infer information about ADLs. For instance, the cyclical relative maxima and
minima show when MS patients are at peak physical activity and when they are sleeping.

4.2.3 Compliance: The GENEActiv smartwatch automatically monitors when it is being worn or not. On average,
patients wore the smartwatches for 23.7 hours per day, indicating a high level of user compliance.

4.2.4 Data Quality: Data quality was high, with missing values only 2.7% of the dataset. We ultimately replaced
the missing values with the average values for the corresponding variables, due to the graph-based statistical
analysis algorithms’ [60, 61] requirements that there be no missing values. We feel that average values are a
reasonable choice to replace missing values, as they would have a minimal impact on the distribution of the
dataset (as opposed to replacing missing values with, for example, the min or max, which would skew the dataset
from its original distribution); this is especially true since there were so few missing values.

5 DATA PROCESSING: ADL FEATURE EXTRACTION

5.1 Feature Extraction Goals
Now that we have collected the raw ADL data via smartwatch sensors, we need to extract relevant features. In
doing so, we make sure to account for ADLs from all times of day, i.e., activities done while awake as well as sleep
patterns, since prior research suggests that these are all linked to MS symptoms [6, 25–28]. Additionally, for ADLs,
we want to measure both their micro characteristics (which are more granular and concern the different ADL
measurements day-to-day) and macro characteristics (which are more concerned with summarizing the overall
features of ADLs over the entire study period). Examples of micro characteristics are time spent at different
intensities of physical activity, day-by-day rise time, day-by-day sleep duration. Examples of macro characteristics
are the total number of activity periods, the total number of awakenings, median sleep duration.

5.2 Actigraphy Algorithms
Towards this goal, we leverage the power of actigraphy algorithms, whose ability to extract ADL features has
been clinically verified [62–64]. Their input is the raw tri-axial accelerometer data. The output of the actigraphy
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algorithms is the extracted ADL features, listed in the "Activities of Daily Life" category of Table 2. We use
GENEActiv’s implementations of actigraphy algorithms in R, run on a standard desktop CPU [44]; which have
been shown to provide reliable extraction of the aforementioned features (e.g., activity levels) [42, 65, 66]. Although
the full-length implementation details are outside this paper’s scope, we briefly describe the actigraphy algorithms:

5.2.1 Awake Calculations: The main consideration for actigraphic calculations while awake is determining
activity intensity levels. These are determined from the raw accelerometer measurements. First, the gravity-
adjusted acceleration magnitude is calculated as

|𝑎 |𝑎𝑑 𝑗 =
√
𝑎2𝑥 + 𝑎2𝑦 + 𝑎2𝑧 − 𝑔, (1)

where 𝑔 = 9.81𝑚
𝑠2

is the force of gravity [42, 67, 68]. We use the following standard thresholds [42] to classify the
intensity of this gravity-adjusted acceleration magnitude, where𝑚𝑔 = 9.81 ∗ 10−3 𝑚𝑒𝑡𝑒𝑟𝑠

𝑠𝑒𝑐𝑜𝑛𝑑2 and MET is a standard
unit of energy expenditure which stands for the metabolic equivalent of task (according to the CDC, "One MET is
defined as the energy expenditure for sitting quietly", and is equivalent to "3.5 ml of oxygen uptake per kilogram
of body weight per minute") [69, 70]:

• Sedentary: |𝑎 |𝑎𝑑 𝑗 ∈ [0, 62.8) 𝑚𝑔, corresponding to [0.0, 1.5) MET
• Light: |𝑎 |𝑎𝑑 𝑗 ∈ [62.8, 112.9) 𝑚𝑔, corresponding to [1.5, 4.0) MET
• Moderate: |𝑎 |𝑎𝑑 𝑗 ∈ [112.9, 407.1) 𝑚𝑔, corresponding to [4.0, 7.0) MET
• Vigorous: |𝑎 |𝑎𝑑 𝑗 ∈ [407.1,∞) 𝑚𝑔, corresponding to [7.0,∞) MET

In terms of the reliability of these thresholds, prior work uses the metrics of 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 (also known

as recall) and 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁+𝐹𝑃 to quantify, where 𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 respectively stand for true positive, true

negative, false positive, false negative. For the sedentary-light threshold (62.8 mg), sensitivity and specificity are
98% and 96%; for the light-moderate threshold (112.9 mg), sensitivity and specificity are 98% and 64%; for the
moderate-vigorous threshold, sensitivity and specificity are 78% and 98% [42].

5.2.2 Asleep Calculations: For detecting sleep, actigraphy algorithms use the (previously mentioned) accelerome-
ter data to quantify a person’s level of activity; the mean, standard deviation, duration, and the number of activity
events are then considered as parameters to a threshold-based calculation, for which a value above 0 is consid-
ered as asleep, and a value below 0 is considered as awake [71, 72]. Sleep detection with GENEActiv has been
experimentally determined to be within 16.9% of the true sleep duration as measured by clinical "gold-standard"
methods [65].

6 DATASET
We combine the extracted ADL features with MS symptoms and demographics to make a three-category dataset.
This dataset, encompassing 5040 hours, has 57 variables (Tab. 2).

6.1 MS Symptoms
We assess symptoms that significantly affect the lives of MS patients, including (1) depression, (2) fatigue, (3)
sleep quality, (4) mood, and (5) functional disability [5, 6, 12, 25, 34, 73–79].

6.1.1 Depression: Overall level of Depression is reported on the Center for Epidemiological Studies Depression
Scale (CES-D), ranging from 0 (lowest) to 60 (highest). It consists of 20 statements (e.g., "I was bothered by things
that don’t usually bother me."); where the patient is asked to rate how often they "felt this way during the past
week" on a scale of 0-3: "rarely or none of the time" (0), "some or a little of the time" (1), "occasionally or a
moderate amount of time" (2), or "most or all of the time"(3). The final score is the sum of these measurements
[80].
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Table 2. Variables in MSLife dataset.

Information Category Subcategory Acquired Variables

MS Symptoms

Depression Overall Depression

Fatigue Overall Fatigue
Diary Fatigue

Sleep Quality

Overall Sleep Quality
Diary Sleep Quality
Restorative Sleep Levels
Circadian Rhythm

Mood Diary Mood

Functional Disability Daytime Function
Disability

Activities of Daily Life (ADLs)

Daytime ADLs (Awake)

Time spent in (sedentary, light, moderate, vigorous) activity
Energy used in (sedentary, light, moderate, vigorous) activity
% of activity at (sedentary, light, moderate, vigorous) intensity
Number of activity periods
Activity duration

Nighttime ADLs (Asleep)

Bedtime
Rise time
Wake duration
Sleep duration
Time spent in bed
Number of awakenings
Sleep efficiency
Light exposure

Miscellaneous Time without watch
Day of week

Demographics

Basic
Age
Gender
Race

Medical

BMI
Year MS start
Year MS diagnosed
General health
Smoking history
Alcohol history
Caffeine history
Exercise history

Social

Marital status
Health insurance
Employment
Annual income

6.1.2 Fatigue: We measure Overall fatigue using the clinical standard Fatigue Severity Scale (FSS), which ranges
from 9 (lowest) to 63 (highest). It consists of 9 statements, such as "I am easily fatigued", where the patient ranks
their agreement on a scale of 1-7, where 1 is strong disagreement, and 7 is strong agreement. The total score
is the sum of these ratings [81]. We also have patients record daily self-assessed fatigue on a 0-5 scale, giving
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us Diary fatigue. Thus, Overall fatigue is the baseline level of fatigue, while Diary fatigue allows us to see how
variations in ADLs affect fatigue from day to day.

Note: The reason why we do not take daily measurements of depression (while we do for other symptoms like
fatigue), is that depression is defined as a persistent, long-term state lasting for at least one week [80]. It is distinct
from feeling sad for one day due to a specific temporary event [82]. On the other hand, it is common to have, for
example, fatigue one day, then not have it the next; it is also common to have fatigue as a persistent symptom.

6.1.3 Sleep: Similarly, we measure Overall sleep quality with the Pittsburgh Sleep Quality Index (PSQI) on a scale
of 0 (worst) to 21 (best) to establish a baseline sleep quality. (Technically, PSQI was originally on a decreasing
scale of 0 (best) - 21 (worst); we invert it to be on an increasing scale of 0 (worst) - 21 (best) so that higher ratings
correspond to higher sleep quality when we report results.) PSQI is calculated by summing 7 component scores,
each of which ranks a specific aspect of sleep quality (e.g., "Sleep latency", "Use of sleeping medication") on a
scale of 0 (worst) - 3 (best) [83]. To capture day-to-day changes in sleep quality that may be associated with ADLs,
we have patients record subjectively self-assessed sleep quality on a scale of 0 (worst) to 5 (best) in diaries on a
daily basis, giving Diary sleep quality. Similarly, we wish to know how restorative (restful, relaxing) sleep is from
day-to-day, so patients record this on a 0 (not restorative) to 5 (very restorative) scale; thus, we obtain Restorative
sleep levels. Next, we assess Circadian rhythm on a scale of 1 to 3, with 1 meaning "morning person", 2 meaning
neither morning nor night person, and 3 meaning "night person".

6.1.4 Mood: Regarding mood, patients self-record Diary mood on a scale of 0 (worst, very ill-tempered, very
irritable) to 5 (best, very well-tempered, very easygoing). This is done once every night, before they go to sleep,
as a reflection on their mood throughout that day. We also take the median of these measurements, to get an
impression of the patient’s overall mood, in addition to seeing how the changes in daily activities and events
affect mood.

6.1.5 Functional Disability: We assess Daytime functionality via the Functional Outcomes of Sleep Questionnaire-
10 (FOSQ-10), which ranges from 5-20, where higher ratings reflect superior functionality [84]. It has 10 questions
(e.g., "Do you have difficulty performing employed or volunteer work because you are sleepy or tired?") ranked
on a scale of 1-4, where 1 indicates extreme difficulty and 4 indicates no difficulty in completing an activity due to
sleepiness. The total score is the sum of the 10 question scores, divided by 2 [85]. Also, we measure Disability on
the clinical standard Kurtzke Expanded Disability Status Scale (EDSS), on a scale of 0 (no disability, neurologically
normal) to 10 (death from MS) [76].

6.2 Digital Behavioral Phenotype (Activities of Daily Living)
6.2.1 Daytime ADLs (Awake): We take a plethora of metrics at multiple physical activity (where physical activity
means any ADL) intensity levels (previously defined): sedentary, light, moderate, vigorous. Time spent in activity,
measured in minutes, is the total time spent at a particular activity intensity in a day. Energy expenditure is the
total energy used in a particular activity; it is measured in𝑀𝐸𝑇 ∗𝑚𝑖𝑛. Relative amount of activity at intensity is the
percentage of a person’s total activity that was done at a particular intensity (thus, sedentary, light, moderate, and
vigorous levels sum to 100%). We take this metric to see the distribution of activity intensity. Number of activity
periods measures the number of periods with distinct activity intensity (e.g., starting with sedentary activity,
then switching to vigorous activity, then engaging in light activity; constitutes three periods), and Duration of
activity period measures the median duration of the aforementioned activity periods. These measurements are all
calculated once per day, thus making for a total of seven of these measurements per subject.

6.2.2 Nighttime ADLs (Asleep): For sleep patterns, Bedtime and Rise time respectively measure the time a
person went to bed to sleep for the night and got out of bed in the morning. We take both daily and median
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Fig. 4. Variables are input to causal discovery, which outputs an unweighted phenotyping graph, where directed edges show
relationships between variables. The unweighted graph is input to causal inference, which outputs a weighted graph, with
ATEs as edge weights. [Positive, negative] ATE means an increase in the variable at the tail is associated with an [increase,
decrease] in the variable at arrowhead.

measurements to get perspective on the effect of variations in ADLs on different days, as well as general waking
and sleeping patterns. Similarly,Wake duration and Sleep duration measure how long a person was awake and
asleep, respectively; these are taken daily. However, there is a distinction between sleeping and simply lying in
bed, so we also measure Time spent in bed (not necessarily sleeping) on a daily basis. Number of awakenings is
the total number of times a person awoke from sleep over the course of the one-week study. Sleep efficiency is the
ratio of the time spent sleeping to the time spent in bed, calculated daily. We measure Total light exposure (in lux)
daily via the smartwatch light sensor, to find out if light influences activity levels or sleep patterns, as suggested
in previous studies [86, 87].

6.3 Demographics
6.3.1 Basic: We record Age, Gender, and Race. A summary of these variables is listed in Table 1. The reason
that Caucasians and Females make up a majority of the participants is that MS most commonly occurs among
Caucasians and Females [53].

6.3.2 Medical: We also take features commonly collected in healthcare — BMI, Year MS started (year effects
of MS first happened), Year of MS diagnosis, Smoking history (yes or no), Alcohol history (scale of 0 (none) - 2
(frequent drinker)), Caffeine history (consumes caffeine or doesn’t consume caffeine), Exercise history (active or
not active), levels of General health (scale of 1 (most unhealthy) - 5 (most healthy)).

6.3.3 Social: Additionally, social factors are associated with different outcomes of disease management and
symptom progression [56, 57, 88, 89]. As such, we record Marital status (married or unmarried), Health insurance
(in Bronze, Silver, Gold, or Platinum tier plan, as defined by U.S. Government [90]), Annual income levels (scale of
1 (bottom 20% of earners) - 5 (top 20% of earners)), and Employment status (scale of 1 (unemployed) - 5 (working
40+ hrs/week)).

7 GRAPH-BASED STATISTICAL ANALYSIS
Now that we have the necessary data, we can proceed to identify the relevant digital behavioral phenotypes of
MS symptoms in daily life. To satisfy this goal, we design a two-step graph-based statistical analysis framework.

7.1 Causal Discovery
7.1.1 Problem Definition: The first step is to discern the relationships among the digital behavioral phenotypes
(ADLs) and MS symptoms in our dataset. For this task, we leverage causal discovery algorithms, whose ability to
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Fig. 5. Toy example for Fast Greedy Equivalence Search (causal discovery), illustrating the two-step iterative maximization
process with respect to BIC.

discover relationships (outputted as a graph) from observational data has been verified both in previous healthcare
applications [91, 92] and through mathematical analysis [93, 94]. Their advantage is that they account for the
covariance/confounding relationships among variables, as shown by the outputted graph’s edges.

7.1.2 Fast Greedy Equivalence Search: We use the fGES (fast greedy equivalence search) causal discovery
algorithm, which has been successful in previous health applications and is mathematically optimal. It takes a
dataset as input and outputs the dataset’s underlying most probable causal relationships as a causal structure
graph (where directed edge 𝐴 → 𝐵 means 𝐴 "causes" changes in 𝐵) 1 [91, 93–96].

Bayesian Information Criterion: In our system, fGES aims to find the causal structure graph with the highest
Bayesian Information Criterion (BIC) score [97], a widely-used metric that approximates the likelihood that our
collected dataset is true given a particular causal structure graph of the relationships among ADLs, MS symptoms,
and demographics [95]. BIC is defined: [93, 95, 97–99]:

𝐵𝐼𝐶 = 2 ∗ 𝑙𝑛(𝑃 (𝑑𝑎𝑡𝑎 |\̂ ,G)) − 𝑘 ∗ 𝑙𝑛(𝑛), (2)

with the variables defined below [93, 95]:

• 𝑑𝑎𝑡𝑎 is the dataset of 57 features from Table 2. It has a total of (# features) × (# subjects) × (# observations)
subject =

57 × 30 × 7 = 11970 entries.

1Causality: As noted in [51], distinguishing cause from effect is an open question in such analyses. Although causal discovery (and causal
inference) suggest highly likely causal relationships, the directionality (e.g., 𝐴 → 𝐵) of these relationships is not definitive. To determine if 𝐴
truly causes 𝐵 would take a controlled clinical experiment, which we do not conduct, due to our previously stated concerns regarding the
genuineness of the ADLs. Nonetheless, we still find these algorithms to be highly useful in our digital behavioral phenotyping relationship
analysis, due to their built-in control for covariates/confounding variables. We simply do not make claims of causality from the output; rather,
we claim correlation.
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• G is a partially built causal Bayesian network (aka possible causal structure graph), with one node for each
variable (including ADLs, MS symptoms, and demographics; making for a total of 57 nodes) from 𝑑𝑎𝑡𝑎 and
edges representing associations between variables.

• 𝑛 is the number of observations (i.e., (# subjects) × (# days) = 30 × 7 = 210) in 𝑑𝑎𝑡𝑎.
• 𝑃 , the (marginal) likelihood function, is the probability that 𝑑𝑎𝑡𝑎 is valid given the causal structure graph
G and the corresponding parameters \̂ (i.e., maximum likelihood estimators) to G which maximize 𝑃 . More
specifically, 𝑃 is the integral with respect to G’s parameters (i.e., 𝑑\ ) of a joint conditional probability
distribution among all 57 variables in 𝑑𝑎𝑡𝑎, making 𝑃 the integrated product (

∏
) of the conditional

probabilities that each of the 57 variables would have the 𝑑𝑎𝑡𝑎 values that were actually observed (i.e.,
"mini"-likelihood functions) given a set of parent nodes (i.e., phenotypes) as defined by the graph edges on
G. In this case, the conditional probability (i.e., "mini"-likelihood) function for each (random) variable is
assumed to be Gaussian (i.e., normal). (For more information, please refer to Equations (1, 3, 4) in [93]).

• \̂ consists of the set of maximum likelihood estimators, i.e., the parameters which specify each of the vari-
ables’ conditional Gaussian distributions such that 𝑃 is maximized. Since there is a conditional probability
distribution for each variable, and the conditional probability distribution is known to be Gaussian; for one
variable, the maximum likelihood estimator would consist of the mean, the variance, and the covariances
with its parents (i.e., phenotypes) on G.

• Thus, 𝑘 , the size of \̂ , would be: (# means) + (# variances) + (# covariances) = (# variables) + (# variables) +
(# edges on G) = 57 + 57 + (# edges on G) = 104 + (# phenotyping relationships on G).

The first term in BIC is meant to maximize the likelihood that the data is true given the graph of digital
behavioral phenotyping relationships (i.e., good fit, accurate digital behavioral phenotypes). The second term
penalizes complex models in favor of simpler models (i.e., fewer edges) [97].

Iterative Maximization Process: To maximize the BIC score in our application, fGES starts with an empty graph
that contains all the nodes representing the ADLs, MS symptoms, and demographics; but no edges representing
relationships. It then finds the causal structure graph with maximum BIC in two steps. First, it iteratively adds
edges to the graph by considering every possible directed edge (i.e., digital behavioral phenotyping relationship),
and using a greedy policy (with respect to the BIC score) to choose the next edge to add. At some iteration, the
BIC score reaches a local maximum, so adding edges can no longer increase it. Now, entering the second step, the
algorithm iteratively deletes edges (using a similar greedy policy) to further maximize the BIC score and reach
another local maximum [93–95]. The output of fGES is the resultant graph, with directed edges representing
relationships among ADLs, MS symptoms, and demographics.
Note on Dimensionality: We also note that finding the causal structure graph could be a computationally

expensive problem with a large search space (the total number of possible edges is |𝐸 | = 𝑂 ( |𝑉 |2), where 𝑉
represents the set of all nodes, making the total number of possible graphs 𝑂 (2 |𝐸 |) = 𝑂 (2 |𝑉 |2 ). To combat this,
we place a reasonable limit that the degree of the graph cannot exceed 5 (i.e., each node has at most 5 edges).
Furthermore, the greedy policy w.r.t. edges in the iterative maximization process is actually already designed to
reduce the search space of possible causal structure graphs from an exponentially large to a polynomially large
space [93].

7.1.3 Implementation: We use the Tetrad library’s Java implementation of fGES, run on a standard desktop
CPU [60]. As for hyperparameters, we input a prior knowledge graph that indicates trivial forbidden causal
relationships (e.g., daily-life activities like vigorous exercise cannot cause demographic characteristics like age).

7.1.4 Causal Discovery in MSLife: For input to fGES, we provide the processed ADL, symptom, and demographic
data. As output, fGES gives the optimal causal structure graph showing the digital behavioral phenotyping
relationships among MS symptoms, ADLs, and demographics (where edge 𝐴 → 𝐵 means that 𝐴 is related to 𝐵).
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7.2 Causal Inference
7.2.1 Problem Definition: Knowing the existence of digital behavioral phenotyping relationships of MS symptoms
is merely the first step — the second, equally important step is to know their strengths. When monitoring MS
symptoms via their digital behavioral phenotypes (i.e., ADLs), we should focus ourmonitoring on those phenotypes
that are known to have the strongest relationships, as those are the best indicators of symptom development.
Thus, to quantify the strength of the relationships among ADLs, MS symptoms, and confounding demographic
factors; we leverage causal inference algorithms, whose correctness for this task has been mathematically and
empirically verified [32].

7.2.2 Propensity Score Matching: We use a standard causal inference algorithm called Propensity Score Match-
ing, which calculates the change in an outcome variable 𝑌 that would result from changing a treatment (i.e.,
independent) variable𝑊 , all other factors held constant. This change in the outcome variable is known as the
average treatment effect (ATE), which is commonly used to measure the strength of relationships [32, 61].
Challenges in Calculating ATE: When calculating ATE, one of the most important considerations is to find a

means by which to control for the effects of the confounding variables (a.k.a. covariates). Without controlling,
confounding variables could bring spurious effects into ATE.

7.2.3 Definition of Propensity Score: Thus, to account for the influence of the confounding variables, propensity
score matching uses the propensity score to quantify the closeness of the values of the confounding variables.
Propensity score, 𝑒 (𝑥), is defined as the conditional probability that a subject received a particular treatment
given that a certain set of values for the confounding variables was observed. Mathematically:

𝑒 (𝑥) = 𝑃 (𝑊 = 1|𝑋 = 𝑥), (3)

with the variables defined as follows [32, 61, 100]:
• 𝑊 represents a particular treatment (e.g., moderate physical activity), with𝑊 = 1 indicating that the subject
received it, and𝑊 = 0 indicating that the subject did not receive it, as treatments in causal inference are
typically assumed to be binary. To match this standard assumption, for each "treatment" variable, we adopt
its mean value across all patients as a threshold, assigning values above that threshold as𝑊 = 1 (high
levels) and values below as𝑊 = 0 (low levels).

• 𝑋 = 𝑥 indicates that the confounding variables (e.g., age, smoking history) had the values in set 𝑥 .
• 𝑃 is the conditional probability function, calculated via a logistic regression on the possible values of𝑊 as
the range (i.e., [0, 1]) and the possible values of 𝑋 as the domain.

Need for Propensity Score:Without the propensity score, controlling for the effects of the covariates/confounders
can become a complicated high-dimensional problem, since we would have to match similar values for every
single one of the covariates. The propensity score reduces this high-dimensional problem to a problem in a scalar
space, while still accounting for all the covariates; since it is simply a multivariable-input scalar-output logistic
function with range (0, 1).

7.2.4 Estimation of Outcome under Treatment: Now, in order to determine the effect which treatment𝑊 has on
the outcome variable 𝑌 , we wish to estimate the value 𝑌𝑖 (1) which the outcome variable 𝑌 in subject 𝑖 would
have taken on if subject 𝑖 had received treatment𝑊 , and then compare it to the value of the outcome variable
𝑌𝑖 (0) had subject 𝑖 not received treatment𝑊 .

Without loss of generality, we assume that subject 𝑖 did receive treatment𝑊 , so𝑊𝑖 = 1 (this argument can be
similarly applied for the no-treatment case𝑊𝑖 = 0). Thus, we know that 𝑌𝑖 (1) = 𝑌𝑖 . The question is now, how do
we estimate 𝑌𝑖 (0)?
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To achieve this, we create a set of "neighbors" which are close to subject 𝑖 in all respects (i.e., covariate values),
except that𝑊𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 = 0. Using this set of neighbors as a synthetic control, we can estimate the value the outcome
variable would have taken on, had subject 𝑖 not received treatment𝑊 . (The exact number of neighbors varies
from implementation to implementation; in our system, we set it to be 1.)

To create the aforementioned set of "neighbors", we match subjects from opposite treatment groups with the
closest propensity scores. When propensity scores are close, covariate values are generally close as well. Thus,
the propensity score is used as a scalar distance metric for covariate values, such that we can match subjects by
the closeness of covariate values without having to do high-dimensional calculations [100].

So, for each subject 𝑖 in the dataset for which𝑊𝑖 = 1, we calculate a set 𝑁𝑖 which contains the subject(s) 𝑗 that
were the closest to subject 𝑖 in propensity score and with𝑊𝑗 = 0. Now, for each subject 𝑖 , given this set 𝑁𝑖 of
"neighbor" subjects 𝑗 for which𝑊𝑗 = 0, we can estimate the value 𝑌𝑖 (𝑤) which the outcome variable 𝑌 in subject
𝑖 would have taken on if it had not received treatment𝑊 as follows [32]:

𝑌𝑖 (0) =
1

𝑁 (𝑖).𝑙𝑒𝑛𝑔𝑡ℎ
∑
𝑗 ∈𝑁𝑖

𝑌𝑗 ;𝑌𝑖 (1) = 𝑌𝑖 . (4)

Similarly (WLOG), for the case where𝑊𝑖 = 0:

𝑌𝑖 (1) =
1

𝑁 (𝑖).𝑙𝑒𝑛𝑔𝑡ℎ
∑
𝑗 ∈𝑁𝑖

𝑌𝑗 ;𝑌𝑖 (0) = 𝑌𝑖 . (5)

7.2.5 Calculation of Average Treatment Effect: Now, we can present the formula for average treatment effect,
where 𝑆 is the set of all the subjects:

𝐴𝑇𝐸 =
1

𝑆.𝑙𝑒𝑛𝑔𝑡ℎ

∑
𝑖∈𝑆

(𝑌𝑖 (1) − 𝑌𝑖 (0)) . (6)

7.2.6 Implementation: We use the Python implementation of propensity score matching from the DoWhy library,
run on a standard desktop CPU [61]. To match the assumption in causal inference that treatment (independent)
variables are binary, we adopt a threshold-based binarization algorithm on the selected treatment variables. For
each variable, its mean value across all subjects is used as the binary threshold. Observations below that threshold
are assigned a value of 0 to indicate low levels of that variable, while observations above that threshold are
assigned a value of 1 to indicate high levels. As for hyperparameters, we set the number of neighbors 𝑁 (𝑖).𝑙𝑒𝑛𝑔𝑡ℎ
to be 1.

7.2.7 Causal Inference in MSLife: As input to Propensity Score Matching, we provide our processed dataset and
the causal structure graph. We run propensity score matching on each phenotyping pair𝑊 → 𝑌 in the causal
structure graph, with𝑊 as the treatment variable (e.g., relative levels of moderate physical activity), and 𝑌 as the
outcome variable (e.g., sleep quality); other variables which are covariates of𝑊 are treated as the confounding
variables 𝑋 . As output, we receive the ATEs for each phenotyping pair in the graph, allowing us to quantify the
strength of the relationships among ADLs, MS symptoms, and demographic confounders.

7.3 Weighted Graph of Digital Behavioral Phenotyping Relationships
As the final output of our graph-based statistical analysis, we produce a weighted graph of digital behavioral
phenotyping relationships. This is created by assigning the ATEs (from causal inference) as the weights of the
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Fig. 6. Generic toy example for Propensity Score Matching (causal inference). It matches subjects from opposite treatment
groups which have similar covariate values, as determined by propensity score. It then compares the values of the outcome
variable in these matched "neighbors" to estimate the treatment effect.

edges in the original graph (from causal discovery). 2 3 This shows both the existence and strength of the digital
behavioral phenotyping relationships among MS symptoms, ADLs, and demographics.
We highlight that our graph-based approach accounts and controls for the simultaneous interactions among

confounding, treatment, and outcome variables. Thus, the outputted relationships between pairs of adjacently
linked variables (e.g., 𝐴 → 𝐵) in the graph are free from the influence of additional confounding factors.

8 FINDINGS: PHENOTYPES OF MS SYMPTOMS
We present the results of our graph-based statistical analysis. After applying the above algorithms on our collected
data, we obtain a weighted graph describing the digital behavioral phenotypes of MS symptoms; with 57 nodes
and 102 directed edges, having corresponding average treatment effects (ATE) as edge weights. Because our
graph-based approach controls for confounders, the relationships presented in the following subsections represent
the pure relationships between the treatment and outcome variables only.
Medically significant relationships, with their ATEs, are listed in Table 3. (We normalized the values for ATE

to represent the percent change in the value of the outcome variable, to enable uniform comparison across
2ATE as EdgeWeight:We note that the covariances computed as part of the maximum likelihood estimators (\̂ ) of the causal discovery step
may seem like they could be used as edge weights. Yet, ATE and the covariances are actually computed with two different (albeit adjacent)
aims. As detailed in this section, ATE is a widely used metric of relationship strength that controls for the effects of variables that are already
known to be confounders. In contrast, the covariances in \̂ are used to find out what the confounding variables are in the first place.
3Bayesian vs. Frequentist Approaches: We are aware that at first glance, it may seem that integrating the fGES algorithm for causal
discovery (based on the Bayesian Information Criterion) with the Propensity Score Matching algorithm for causal inference (based on a more
frequentist interpretation) to create our weighted graph mixes the perpetually at-odds Bayesian and frequentist interpretations of statistics.
Actually, BIC, while having Bayesian in its name, is not a strictly Bayesian approach. As noted by Schwarz (its formulator), it can actually
also be applied outside a Bayesian paradigm, since Schwarz specifically designed it to be independent of the prior [97]. This is what enables
the accepted practice of combining causal discovery and causal inference algorithms in one integrated framework [61].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 158. Publication date: December 2021.



MSLife - Digital Behavioral Phenotyping of Multiple Sclerosis Symptoms . . . • 158:17

Table 3. Weighted edges from the graph of phenotyping relationships, presented as a table for readability. We use fGES to
discover the existence of edges (which indicate phenotyping relationships). We use propensity score matching to calculate
ATEs.

Treatment Variable → Outcome Variable ATE (%)
Caffeine history Sleep quality -80.1
Sleep Quality Depression -69.7
Year MS diagnosed Fatigue -58.8
Bed time Energy expenditure in vigourous activity -54.4
Fatigue Sleep quality -43.5
Disability Time spent in moderate activity -42.7
General health Fatigue -33.6
Time spent in bed Going to bed time -32.8
Type of circadian rhythm Restorative sleep -29.8
Depression Level of daytime function -25.4
Relative amount of moderate activity Time spent sleeping -24.9
Caffeine history Fatigue -22.8
Time spent in bed Sleep efficiency -21.8
Time spent in activity Number of awakenings -21.1
Age Restorative sleep -14.5
Relative amount of moderate activity Sleep quality -13.8
Annual income Rise (wake) time -13.1
Time spent in bed Energy expenditure in light activity -13.1
Year MS start Rise (wake) time -12.4
Going to bed time Number of awakenings -6.3
Rise (wake) time Mood -6.1
Employment status Sleep quality +8.1
Caffeine history Mood +11.7
Relative amount of sedentary activity Time spent sleeping +13.4
General health Mood +15.6
Going to bed time Sleep efficiency +15.6
Female Gender Going to bed time +17.4
Smoking history Number of awakenings +17.8
Smoking history Rise (wake) time +19.0
Fatigue Depression +21.0
Race (Non-Caucasian) Fatigue +26.1
Rise (wake) time Depression +31.3
Unemployment Depression +38.0
Restorative sleep Mood +38.1
Duration of awakeness Time spent in light physical activity +46.7

relationships.) We especially discuss our findings related to three of the most important MS symptoms, which are
Depression, Fatigue, and Sleep Quality [5, 6, 6, 12, 74].

8.0.1 Phenotype Hypotheses: If our approach is valid, our results should be mostly congruent with prior medical
knowledge (with the expectation that we may discover some previously unknown relationships). Thus, we briefly
list a few obvious relationships which we expected the graph to contain: a positive association between fatigue
and depression [101, 102], a negative association between caffeine consumption and sleep quality [103], a negative
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association between caffeine consumption and fatigue [103]. (As detailed in the following subsections, these all
hold true in our analysis.)

8.1 Phenotypes of Depression
8.1.1 ADLs: We find it notable that later rise times (waking up times) are associated with higher levels of
depression. Indeed, previous studies show that oversleeping can often occur in tandem with depression [104, 105].

8.1.2 Demographics: The data showed that unemployment is associated with increased depression. This is in
accordance with previously established links between unemployment and depression [106].

8.1.3 Symptoms: Higher fatigue is connected with an increase in depression, which makes sense, as lack of
energy is often linked with people feeling depressed [101, 102]. It is also notable that depression is linked with
decreased levels of daytime function. This is reasonable, as when people are depressed, they have less motivation
to perform day-to-day activities [101]. Finally, we find that better sleep quality is associated with lower depression.
This makes sense, considering the well-documented links between depression and sleep quality [107].

8.2 Phenotypes of Fatigue
8.2.1 ADLs: While we did not find any direct edges on the phenotyping graph between fatigue and ADLs, we
note that by virtue of fatigue’s other edges, it is still related to ADLs. For instance, later rise times are associated
with higher fatigue, as later rise times are associated with increased depression, which is associated with higher
fatigue.

Note: The more graph edges we consider (e.g., 2, 3, 4 edges; as opposed to just 1 edge distance), the more such
"indirect" relationships we can find, for fatigue or any other symptom. e.g., As seen in Table 9, when considering
a distance of 3 edges, there are 9 ADL phenotypes of fatigue, 13 for depression, and 17 for sleep quality. Thus, the
absence of a direct edge from an ADL to a symptom in the graph does not imply that they are unrelated. For
simplicity and brevity’s sake, most of the relationships detailed in this section will be 1-edge relationships.

8.2.2 Demographics: We find that patients who are diagnosed with MS later reported lower levels of fatigue. This
is reasonable, as previous work has shown a similar association between time living with MS and fatigue [108]. We
find that high levels of general health are related to a reduction in fatigue levels. We also find that non-Caucasians
experienced higher levels of fatigue than Caucasians. This may possibly be due to genetic variations and warrants
further investigation. Additionally, we find that a history of caffeine consumption is associated with lower levels
of fatigue, in accordance with the knowledge that caffeine is a stimulant [103].

8.2.3 Symptoms: As noted in the above section, there is a positive relationship between depression and fatigue
(when one increases, the other increases). Furthermore, high fatigue is associated with a decrease in sleep quality.
This could be because when people feel too fatigued, normal amounts of sleep are not sufficient to restore their
full energy.

8.3 Phenotypes of Sleep
8.3.1 ADLs: We find that higher relative levels of moderate physical activity (as compared to other intensities) are
linked to less time spent sleeping. A possible explanation for that is that moderate activity would not drain an MS
patient’s energy as much as vigorous activity, so they don’t feel as tired and thus sleep less. Additionally, higher
relative levels of moderate physical activity are related to a decrease in sleep quality. Again, this may be because
moderate activity does not provide the high-intensity exercise needed to improve sleep quality [28, 109, 110].
Moreover, we note that spending more time in the bed is linked with decreased sleep efficiency. This is perhaps
because human circadian rhythms result in natural tendencies to sleep and wake for certain amounts of time
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Fig. 7. Pearson correlation coefficient vs. average treatment effect, for variables that have an edge between them on the
graph of phenotyping relationships. The values follow a strong positive linear relationship ( 𝑅𝑟,𝐴𝑇𝐸 = 0.593), indicating that
our causal inference submodule correctly infers magnitudes of phenotyping relationships.

[111], so after too much time spent in bed, the sleep is no longer deep, thus decreasing efficiency. We also note
that MS patients who went to bed later experienced higher levels of sleep efficiency. This is perhaps due to the
fact that going to bed later would mean that they are more tired when they go to bed and thus would sleep more
deeply.

8.3.2 Demographics: We find that a history of high caffeine consumption is related to a reduction in the quality
of sleep. This is not surprising, as caffeine is a stimulant, and thus impairs the ability to sleep [103]. Furthermore,
we find that MS patients who had a history of smoking had more awakenings. We believe that this is because
nicotine, a chemical found in cigarettes, is a stimulant [112, 113]. We also find older age is linked with lower
restorative sleep levels. This may be somehow related to the fact that older people sleep less [114].

8.3.3 Symptoms: As previously noted, high fatigue is connected with a decrease in sleep quality.

9 STATISTICAL SIGNIFICANCE ANALYSIS

9.1 Experimental Design
9.1.1 Motivation: Typically, healthcare findings are considered significant if they pass a p-value test [115–117]
and/or show a strong Pearson correlation [38, 118]. Thus, to validate our identified phenotypes, we compare the
results of our graph-based analysis to these accepted standard statistical models, with the expectation that both
analysis methods will generally identify the same relationships to be significant.

9.1.2 Statistical Models Used: We calculate the Pearson correlation coefficients (𝑟 ), an accepted standard measure
of the correlation between two variables [118], for each pair of variables linked by a direct edge on the graph of
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phenotyping relationships. They contain three dimensions of information that can validate the correctness of our
phenotyping relationships:
(1) |𝑟 | is a standard measure of the strength (i.e., magnitude) of relationships, with |𝑟 | ≥ 0.4 indicating that a

relationship is reasonably strong [118].
(2) 𝑠𝑖𝑔𝑛(𝑟 ) is a standard measure of the direction of relationships [118].
(3) The corresponding 𝑝-value for 𝑟 is a standard measure of the statistical significance of relationships, with

𝑝-value ≤ 0.05 being statistically significant (i.e., beyond random chance) [115].

9.2 Validation of Causal Discovery
For the phenotyping relationships from the graph (i.e., causal discovery results) to be significant, they should
satisfy the precondition of having a strong, statistically significant correlation. Thus, we consider |𝑟 | and 𝑝-value,
where we should have |𝑟 | ≥ 0.4 and 𝑝-value ≤ 0.05 [115]. Indeed, the 102 edges in the graph of phenotypes have
average |𝑟 | = 0.461, with average 𝑝-value = 9.1 ∗ 10−4. Therefore, our phenotyping relationships generally meet
the precondition of strong, statistically significant correlation; validating the correctness of our causal discovery
submodule.

9.3 Validation of Causal Inference
We also must confirm that our calculations of the average treatment effect (i.e., results of causal inference) give
the correct sign and magnitude of the phenotyping relationships between variables. Thus, we consider 𝑠𝑖𝑔𝑛(𝑟 )
and |𝑟 | to quantify sign and magnitude. 𝑠𝑖𝑔𝑛(𝑟 ) matches 𝑠𝑖𝑔𝑛(𝐴𝑇𝐸) in 96 out of 102 (94%) edges in the graph,
indicating that the causal inference algorithms gave the correct direction of the𝐴𝑇𝐸s. Taking both 𝑠𝑖𝑔𝑛(𝑟 ) and |𝑟 |
into account (𝑟 = 𝑠𝑖𝑔𝑛(𝑟 ) ∗ |𝑟 |), we find that 𝑟 has a strong positive linear correlation with 𝐴𝑇𝐸, with correlation
coefficient 𝑅𝑟,𝐴𝑇𝐸 = 0.593; meaning that causal inference gave the correct magnitude of 𝐴𝑇𝐸 as well. Thus, the
correctness of our causal inference submodule in inferring strength of phenotyping relationships is also validated.

10 VALUE OF PHENOTYPES FOR IDENTIFYING MS SYMPTOMS

10.1 Experimental Design
10.1.1 Motivation: There exists a great need among medical professionals to monitor MS disease progression
[119–121], which essentially consists of new symptoms developing and old ones worsening [122, 123]. (One
major reason for monitoring symptoms is to optimize treatment based on symptoms experienced [2, 9, 10].)
Digital phenotyping can provide a convenient, instantaneous way to quantify these important MS symptoms as
they develop over time; as compared to burdensome clinic visits. Thus, in this section, we explore if our digital
behavioral phenotypes can help track MS symptoms.

10.1.2 Phenotype-Based Feature Selection: To prove this, we leverage the graph of phenotypes to select features.
Particularly, we defined a symptom’s closely related phenotypes to be any features within 3 directed edges
of the symptom on the graph. (For example, if 𝐸 is the symptom and 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸, then 𝐵,𝐶, 𝐷

would be considered closely related phenotypes to 𝐸, but 𝐴 would not.) We then adapt these features to train
classification models to identify if MS patients have certain symptoms (i.e., Depression, Fatigue, and Sleep Quality),
in retrospective analysis. If our phenotyping relationships are correct, classifiers trained on our closely related
phenotypes (i.e., features) should outperform those trained on all features (i.e., the variables named in Table 2).

10.1.3 Symptom Prediction: We train four traditional supervised machine learning models: support vector
machine (SVM), Logistic Regression, k-nearest neighbors (KNN), and Random Forest (RF), to show that our
approach of phenotype-based feature selection is classifier-agnostic.
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Baselines: To establish a baseline, a dummy classifier makes randomized predictions based on the distribution
of the training data. Furthermore, we compare our phenotype-based feature selection method against the standard
ANOVA F-Value feature selection. (The F-Value is defined as the ratio of inter-group variance to intra-group
variance in the outcome variable, with groups being defined by splitting the dataset based on values of a treatment
variable. 𝐹 > 1 indicates that splitting based on the chosen treatment variable produces changes in the outcome
variable. Thus, ANOVA F-Value feature selection chooses treatment variables that yield the largest 𝐹 [124–128].)

Symptoms: We choose Depression, Fatigue, and Sleep Quality which are the most famous symptoms in MS as
the identified symptoms. We consider their overall measurements, which were assessed via clinical questionnaires
(CES-D, FSS, PSQI [80, 81, 83]) at the beginning of the study, as listed in Table 2. We consider overall measurements
instead of daily measurements since we want to predict whether a patient will develop this symptom persistently,
as opposed to having it for just one day due to random variation in day-to-day events. (For example, a patient
who had poor sleep quality for just one night, due to the fire alarm going off at midnight; would not be considered
to have the persistent symptom of poor sleep quality.)

Furthermore, we binarize Depression, Fatigue, and Sleep Quality scores. This follows a common convention in
MS research that the presence of these symptoms is treated as binary, where the score from clinical rating scales
is converted to a binary output (e.g., a patient is diagnosed as either having or not having depression) [129–136].
Specifically, we use the following thresholds previously determined in clinical research: for Depression, a CES-D
score below 16/60 meant a person did not have depression, score at or above meant a person did [129, 132]; for
Fatigue, an FSS score below 36/63 meant a person did not have fatigue, score at or above meant a person did
[130, 135]; for Sleep Quality, a PSQI score less than 16/21 meant a person had poor sleep quality, score at or above
meant good sleep quality [131, 136].
Train-Test Splits: Moreover, we adopt 6-fold cross-validation to train our model with standard performance

metrics accuracy, precision, and recall. In each fold, we adopt features from 25 subjects for training and test on
the remaining 5 subjects. We highlight that there is no overlap of subjects in the training and testing set.

10.1.4 Performance Metrics: We use performance metrics that are common for classification tasks in mobile
health; where 𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 stand respectively for the number of true positives, true negatives, false positives,
and false negatives predicted [137, 138]:

• 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 , which measures the fraction of samples correctly labeled as symptomatic or

asymptomatic.
• 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , which quantifies our classifiers’ ability to identify all symptomatic individuals without
misclassifying any symptomatic individuals as asymptomatic.

• 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , which quantifies our classifiers’ robustness against falsely identifying (misclassifying)

asymptomatic individuals as symptomatic.
.

10.2 Experimental Results
10.2.1 Impact of Phenotype-Based Feature Selection: The results of this experiment are shown in Figure 8 and Table
4. Figure 8 shows the comparison of accuracy, precision, and recall when using only closely related phenotypes
versus using all features or features selected via ANOVA f-values. We highlight that accuracy, precision, and
recall for the group using closely related phenotypes are consistently the highest. Furthermore, Table 4 shows us
the results using every single combination of MS symptom and ML classifier. Though performance is different
among models, features selected via closeness of phenotyping relationships always achieve the best performance,
thus showing that we found relevant phenotypes.
As for why our phenotype-based feature selection achieves the best performance, we believe it is due to the

fact that we automatically account and control for the simultaneous interactions among confounding, treatment,
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Fig. 8. Average performance across all symptoms (Depression, Sleep Quality, Fatigue) and classifiers (SVM, KNN, Log. Reg.,
RF) trained with phenotype-based, f-value (standard), and no feature selection. Phenotype-based feature selection results in
the best classifier performance.

Table 4. Accuracy using phenotype-based, f-value, and no feature selection to train ML classifiers to predict MS symptoms.
Numbers in parentheses (#) indicate the number of features used as predictors. Features that measure the same symptom as
the predicted symptom are removed from input (e.g., no “Diary SleepQuality” when predicting “Overall SleepQuality”).

Accuracy (%)
Symptom Feature Sel. (# feat.) SVM Logit KNN RF Dummy

Depression
None (56) 79.0 82.4 80.5 82.4 60.5
Phenotype (35) 87.1 86.7 84.8 90.0 60.5
F-Value (35) 80.0 84.8 84.8 78.6 60.5

Fatigue
None (54) 54.3 61.4 42.9 33.8 48.6
Phenotype (21) 72.9 66.7 66.2 65.2 48.6
F-Value (21) 65.2 62.4 47.6 31.9 48.6

Sleep Quality
None (52) 65.2 69.5 61.0 55.2 52.4
Phenotype (33) 70.0 74.3 69.0 73.8 52.4
F-Value (33) 66.7 71.4 66.2 68.6 52.4

and outcome variables via our graph-based analysis of phenotypes. Thus, the outputted relationships between
pairs of adjacently-linked variables in the graph represent the true relationships between treatment and outcome
variables, free from the influence of additional confounding factors. In contrast, ANOVA f-value feature selection
compares inter- and intra-group variances of the outcome variable with different treatment variable splits but
does not involve an explicit graph that includes all the outcome and treatment variables and their simultaneous
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Fig. 9. Average performance across all symptoms and machine learning classifiers when trained only on sensor data. Perfor-
mance is comparable to using all data, and phenotype-based feature selection still improves classifier performance.

Table 5. Accuracy with various feature selection methods (phenotype-based, f-value, none) to train various ML classifiers in
predicting MS symptoms from sensor data only. This time, we exclude demographics and other symptoms from the input.

Accuracy (%)
Symptom Feature Sel. (# feat.) SVM Logit KNN RF Dummy

Depression
None (29) 71.0 79.5 74.3 66.7 60.5
Phenotype (13) 85.7 82.4 81.4 72.9 60.5
F-Value (13) 80.5 82.9 81.4 73.3 60.5

Fatigue
None (29) 59.0 50.0 40.0 43.3 48.6
Phenotype (9) 56.2 54.8 52.9 66.7 48.6
F-Value (9) 58.1 55.2 34.8 50.0 48.6

Sleep Quality
None (29) 70.5 73.3 62.4 57.6 52.4
Phenotype (17) 75.2 73.3 68.6 66.7 52.4
F-Value (17) 65.7 71.9 58.6 73.3 52.4

interactions with possible confounders. Lacking this explicit graph, we believe that the ANOVA f-value may not
control for the influence of confounders as well as our phenotype graph-based method, thus accounting for the
difference in performance. Furthermore, we believe that the ability of our phenotype graph-based method to
account for intermediate linking variables in "indirect" relationships (e.g., 𝐴 → 𝐵 → 𝐶), as opposed to ANOVA
f-value not accounting for intermediate linking variables, may also play a role in the performance difference, as it
makes our feature selection more nuanced.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 4, Article 158. Publication date: December 2021.



158:24 • Guo et al.

10.2.2 Impact of Sensor Data: The previous experiment selects data from both the smartwatch and the clinical
survey. However, we are motivated to explore the performance using data from smartwatches only (i.e., only
features from activities of daily life). If it works, we can passively monitor the variations of symptoms and remind
caregivers of the needs of intervention without interrupting the daily lives of patients. (This is also the reason
why we conducted our study using data collected in the wild, as opposed to from a controlled clinical setting.) For
this purpose, we repeat the above experiment using only the smartwatch data. As shown in Figure 9 and Table 5,
the main result that using phenotype-based feature selection yields the best results for symptom prediction still
holds true.

Smaller Performance Improvement: However, we note that the improvement in performances with phenotype-
based feature selection is smaller using only the sensor data. We believe this is because the graph of phenotyping
relationships was generated with all features under consideration; thus, some important phenotyping relationships
may have been missing in this sub-experiment due to using only sensor data. In regards to whether the smaller
increase in performance could have been achieved due to chance, it may be plausible for phenotype-based
vs. f-value feature selection on sensor data, as those results are very close (+4.2% accuracy, +1.6% precision,
+0.9% recall). However, when comparing phenotype-based feature selection to no feature selection on the sensor
data, the difference in performance is large enough (+7.6% accuracy, +3.9% precision, +6.1% recall) that we
believe it was not due to chance. Overall, this is acceptable, as it simply indicates that both phenotype-based and
f-value-based feature selection are valid, as compared to no feature selection at all on sensor data.
Comparison of Sensor vs. All Features: Overall, the sensor-only classifiers have slightly lower performance

than the classifiers which had all categories of features (i.e., sensor, symptom, and demographic data) available.
This is perhaps because there are fewer features to base the predictions on in the sensor-only classifiers. Even so,
the accuracy, precision, and recall when using sensor data only are still all within 6% of the results which use all
categories of data (Fig. 8, 9). The fact that the classifier performances in the two experiments are comparable
is particularly impressive, considering the fact that we have half the features available when using sensor data
only. This indicates that sensor data alone still holds great phenotyping value for MS symptoms. Furthermore,
we highlight that the best performing model across all experiments for predicting a patient’s sleep quality is
actually the SVM trained only on sensor data selected via phenotyping relationships, with an accuracy of 75.2%.
This is because the sensor data contained much information related to sleep, wake, and activity patterns, all of
which would be very relevant to sleep quality. In summary, the digital behavioral phenotype alone is sufficient as
a first line of defense for tracking MS symptoms (which could be subsequently reported to physicians, who then
decide appropriate actions).

10.2.3 Impact of Classifier Implementation: As shown in the previous experiments, phenotype-based feature
selection is a classifier-agnostic approach towards tracking MS symptoms. Even so, Tables 4 and 5 show us that
some classifiers clearly do perform better than others. In particular, we see that SVM with phenotype-selected
features has the best prediction accuracy in 3 out of 6 cases: depression (sensor-only), fatigue (all features), and
sleep quality (sensor-only). Some possible reasons for the high performance of SVM are that they generally
work well with high-dimensional data, are robust against overfitting, and are applicable to many different kinds
of data distributions. We also note that random forest (RF) is the highest performer in two cases: predicting
fatigue from phenotype-selected sensor data (i.e., digital behavioral phenotype), and predicting depression from
phenotype-selected data. This could be because RF’s built-in ensemble learning allowed this model to overcome
the reduced number of input features by combining predictions of many decision trees.

10.2.4 User-Side Considerations: Towards the goals of convenience and scalability in MS symptom tracking, we
highlight that under our approach, first-time users only need to use the wearables for one day in order to track
their symptoms. We showed this in the above evaluations, via two experimental design choices: 1) We made sure
that there is no overlap between the MS patients in the training and testing datasets. 2) We conducted all the
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symptom identification using only one day of data at a time. (Thus, in each fold, we identified symptoms for
each of 35 samples = 5 subjects × 7 samples

subject , while using the 175 samples from other subjects for training). In other
words, our approach works out-of-the-box for first-time users to track MS symptoms within only 24 hours.

11 RELATED WORK

11.1 Digital Phenotyping for Multiple Sclerosis
Digital phenotyping for MS is also an emerging topic [11, 139, 140]. Midaglia et al., while not finding any specific
digital behavioral phenotypes, showed the feasibility, as it relates to user adherence and satisfaction, of using
mobile and wearable technologies to passively monitor and actively collect data from MS patients [139]. Chitnis
et al. used a digital phenotyping approach to monitor general neurological disability in MS patients. To obtain the
digital phenotyping data, they monitored patients in clinical settings with nine simultaneously worn wearable
sensors, and in the wild with three simultaneously worn wearable sensors [11]. The biggest difference between
our work and theirs is a matter of scalability: theirs required up to nine wearable sensors, while ours only requires
a singular wearable sensor. Furthermore, in contrast to our work, they did not focus on finding behavioral
phenotypes for a wide spectrum of specific debilitating symptoms (e.g., depression) [12]. Tong et al used data
from smartwatches, smart sleep trackers, and smart scales to predict the fatigue and health-related quality of life
of MS patients [140]. Our work goes further by using digital phenotyping as a means to track not just fatigue,
but a wide spectrum of significant symptoms like depression, sleep quality, and mood [5, 6, 34]. Furthermore, our
approach emphasizes scalability, due to only requiring one smartwatch, as opposed to three smart devices.

11.2 Data Analysis in Digital Phenotyping
11.2.1 Non-MS:. In digital phenotyping for non-multiple sclerosis applications, there are many methods of data
analysis.

Pearson Correlation-Based: StudentLife modeled smartphone sensor data’s digital phenotyping relationships
with mental health and educational outcomes among college students using Pearson correlation coefficients (𝑟 )
[38]. SmartGPA also used Pearson’s 𝑟 to model the digital phenotyping relationships between mobile sensor data
and undergraduate GPA, and lasso regularized linear regression [141] to predict GPAs from sensor data [142].
Regarding prediction models, SmartGPA’s was designed for a regression task, while ours (for reasons described
in 10.1) was designed for a classification task — which is not directly comparable. However, we can compare
modeling of digital phenotyping relationships: While StudentLife’s and SmartGPA’s proposed method of Pearson’s
𝑟 can find correlations among pairs of variables, it is not designed to account for potential confounders/covariates
[118]. In contrast, our graph-based approach automatically identifies and controls for effects of covariates (e.g.,
time spent in bed, energy expenditure in light activity) [31, 32, 94].

Accounting for Few Covariates: R Wang et al.’s study did account for intra-subject longitudinal covariance by
using the Generalized Linear Mixed Model (GLMM) [143] to model digital phenotyping relationships between
subjects’ longitudinal depression score (PHQ-4, collected weekly) and passive sensing (phone, wearable) data.
Yet, they still used regular Pearson correlation to model the digital phenotyping relationships between passive
sensing data and "general" depression scores (PHQ-8, collected once at the beginning and once at end of the
study). They used lasso regularized linear regression to predict depression score [144]. Again, their regression
models are not directly comparable to our classification models, but we can compare the analyses of digital
phenotyping relationships: While their use of GLMM addressed intra-subject longitudinal covariance, it did not
address inter-variable covariance among sensor data (e.g., conversation duration, stationary time), and neither did
their Pearson correlation in the non-longitudinal analysis. WWang et al.’s study also used GLMM [143] to control
for differences in mobile sensor model when analyzing correlations between personality traits and mobile sensing
data, and gradient-boosted regression trees (GBRT) [145] to predict personality traits [58]. Again, the GLMM
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did not account for the inter-variable covariance among different sensor data (e.g., physical activity, location),
and GBRT (a regression model) is not directly comparable to our classification models from 10.1. CrossCheck
used passive sensing data to detect mental health changes in people with schizophrenia [52]. To model digital
phenotyping relationships between sensor data and mental health variables, they used Generalized Estimating
Equations (GEE), a method related to GLMM which accounts for longitudinal covariance within a subject [146];
to predict mental health variables, they also used GBRT. Yet, their GEE still did not account for the inter-variable
covariance among sensor data, in contrast to our graph-based method.
Accounting for Covariates: The approaches described in MyTraces [51] and Tsapeli and Musolesi’s analysis

of the StudentLife dataset [147] do attempt to account for the covariates. Similar to our work, they used causal
inference algorithms to quantify the strength of relationships among mobile sensor data and emotional states.
To find the covariates which the causal inference should account for, they conducted a pre-analysis based on
the Kendall rank correlation [148], naming variables that had high correlations with both the treatment and
outcome variables of interest as covariates. [51, 147]. Neither of these works built models to predict emotional
states. We build upon their approaches, but instead of using Kendall rank correlations to identify covariates, we
use state-of-the-art causal discovery algorithms [93–95] to construct complete graphical models of the covariance
relationships among all the variables. Furthermore, we also design classification models to predict/identify which
subjects have MS symptoms.

11.2.2 MS-Specific: As it specifically relates to the digital phenotyping of MS, the data analysis methods have
similar shortcomings. Chitnis et al. used Spearman correlation coefficients [149] to analyze associations between
wearable sensor data and MS disability scores [11]. Spearman correlation coefficients are similar to Pearson
correlation coefficients in that by default, they do not account for all possible confounders [118, 149]. Tong et
al. focused on regression to predict fatigue (FSS) and health state (EQ-5D) from multimodal sensor data, using
tree-based Adaboost Regressors [150]. While they achieved a strong prediction model, their closest attempt at an
explicit analysis of digital phenotyping relationships was identifying those features which were selected over
half the time by Adaboost in their prediction experiments [140]. In other words, their study did not focus on
rigorous analysis of digital behavioral phenotyping relationships which explicitly controlled for covariates.
In summary, the improvement of our data analysis methodology over previous works lies in the dual com-

bination of 1) accounting and controlling for the covariates/confounders via graph-based analysis of digital
behavioral phenotyping relationships, and 2) doing so to address the important problem of digitally behaviorally
phenotyping multiple sclerosis.

12 DISCUSSION

12.1 Methodological Contribution
In terms of methodology, the immediately obvious contribution of our work is the application of various state-of-
the-art technologies towards addressing the complex problem of digital behavioral phenotyping of MS patients.

12.1.1 A Versatile, Generalizable Approach: Yet, our methodological contribution goes far beyond studying just
MS (which is a significant problem in and of itself); it can be applied to any chronic disease which has multiple
complex symptoms (e.g., Parkinson’s, Alzheimer’s, Huntington’s) [151]. Thus, in MSLife, we introduce a versatile,
generalizable approach for many future studies in digital behavioral phenotyping.

Wearables for Data Collection: Through wearable sensors (GENEActiv smartwatch), we are able to continuously,
passively collect complex real-life data regarding unscripted ADLs in the wild from MS patients. In contrast to
traditional laboratory-based methods, the novelty of our method is that we are able to capture genuine ADLs,
which is an important step to fully exploring the behavioral phenotyping of MS symptoms. Again, we emphasize
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that this wearable-based methodology could plausibly be used to digitally behaviorally phenotype any chronic
multisymptomatic disease (e.g., Parkinson’s, Alzheimer’s).

Analysis Methods: We introduce powerful statistical analysis methods to the ubiquitous computing community.
Particularly, our work is one of the first in the ubiquitous computing community to build a graphical network
(via causal discovery and inference algorithms) to model the relationships between sensor data collected in the
wild and clinical health data. The advantage of this graph-based framework is that it accounts and controls for
the simultaneous interactions among confounding, treatment, and outcome variables; while traditional methods
like Pearson correlation do not [118], as we discuss more in-depth in Section 11.2. Additionally, our graph-based
framework can account for indirect relationships and identify the specific linking variables along those paths (e.g.,
later rise times are related to higher levels of depression, which are linked with higher fatigue). In our particular
work, we modeled relationships pertaining to MS patients; but we once again highlight that our graph-based
framework is extensible to any study which wishes to model the underlying relationships in complex real-life
data.

12.1.2 Methodological Insights from Findings: Our approach allowed us to discover various digital behavioral
phenotypes that exist for MS symptoms. Many of these (e.g., inverse relationship between the relative amount
of moderate physical activity and sleep quality) may not have been as easily discoverable were it not for our
wearable sensing + graph-based analysis methodology. Even those findings which may have been previously
known to some degree (e.g., depression and fatigue have a positive relationship) are valuable, as they actually
confirm the validity of our methodology.

12.2 MS-Specific Implications
Based on our study and subsequent evaluation of the digital behavioral phenotyping results, MSLife has great

implications regarding smartwatch-based approaches in healthcare for multiple sclerosis patients.
12.2.1 Monitor MS Progression: There exists a great need among medical professionals to monitor MS disease
progression [119–121], which essentially consists of new symptoms developing and old ones worsening [122, 123].
As shown in Section 10.2, where we leveraged the digital behavioral phenotyping relationships to identify the
presence of MS symptoms; our work provides a way to quantify these important MS symptoms as they develop
over time, based on daily-life data passively collected by smartwatches. This smartwatch-based approach to
monitoring disease progression is very convenient as compared to regular clinical visits, which are known to
have high costs and patient burden. Furthermore, it instantaneously captures disease progression/symptom
variation 24/7, which is another advantage over clinical visits. We envision using smartwatches as the first line
of defense to continuously monitor patients for MS symptoms; and if possible symptoms are detected by the
smartwatch-based systems (as demonstrated in Section 10.2’s symptom identification analysis), they are reported
to physicians who make judgments on further action.

Note on Study Design: We emphasize that being able to conveniently monitor MS progression is a major reason
why we specifically conducted our study using sensor data collected in the wild, as opposed to collected in a
controlled clinical setting. Since our purpose for using wearables is to eventually monitor MS progression with
minimal patient burden, it should be done without interrupting their daily lives; going to a clinic to use these
wearables for ADL data collection would defeat this purpose.

12.2.2 Precision Medicine: Treatment/intervention given to MS patients varies based on the symptoms they
experience. For example, MS patients who experience depression may be prescribed antidepressant medications,
while patients who experience fatigue may be prescribed medications like Symmetrel or undergo magnetic
therapy [2, 9]. Thus, using smartwatches as a tool to track specific MS symptoms (as demonstrated in Section
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10.2) can help medical professionals give appropriate interventions. These interventions will also be timely, as
digital behavioral phenotyping allows clinicians to monitor patients 24/7 with a minimal patient burden. Overall,
this is known as a precision medicine approach, which is a topic of recent interest [152–155].

12.3 Limitations
12.3.1 MS Diagnosis: While digital behavioral phenotyping can be used for diagnosing MS, studies that aim
to do so must include a healthy cohort alongside the MS cohort. In contrast, the goal of our study was to track
symptoms of MS (i.e., monitoring disease progression among those who already have MS). Thus, we designed our
study to have only an MS cohort.

12.3.2 MS Risk Prediction: Similarly, digital behavioral phenotyping can be used to predict the risk of developing
MS, but this again requires both a healthy and MS cohort (see previous).

12.3.3 Specificity to MS (Control Group): The lack of a non-MS cohort may raise the possible concern that the
results (e.g., better sleep quality lowers depression) may not be specific to MS patients. Regardless of whether or
not they are MS-specific, the important part is that these relationships are still nonetheless valid for MS patients;
and more importantly, can still be used to help MS patients manage their symptoms through intervention and
behavioral therapy.

12.3.4 Validity of Causality: We designed a graph-based statistical analysis framework based on verified causal
discovery and inference algorithms. We emphasize that while these algorithms have been optimized to suggest
highly likely causal relationships; further work should be done to be sure that these relationships are truly causal,
and not merely correlational. The gold standard for showing causality is still to conduct a controlled, randomized
experiment; causal discovery and inference algorithms should only be used as the first step in those situations
where it is not currently feasible to do so. Thus, we refrain from making claims of causality; we keep our claims
at correlation, which is still valuable knowledge.

12.3.5 Extreme Conditions: We did not investigate the impact of extreme conditions on the digital behavioral
phenotyping outcome and MS symptom tracking. Examples of extreme conditions include: accidentally dropping
the smartwatch (on the ground or into water), wearing the smartwatch while on airplane travel.

12.3.6 Feature Coverage: Wehave considered awide variety of features (57 total) — spanningADLs,MS symptoms,
and demographics — in our study. Yet, as in any scientific study (especially an in the wild one), there is always the
possibility of features (e.g., geographic location) that were not considered but actually do impact the symptom
outcome of MS patients.

12.3.7 Cohort Size and Study Duration: We understand that it is a rule of thumb that a larger group of participants
with a longer duration would be helpful in the experimental study, and reduces the concern results could have
been due to chance. Even so, we still believe our results to be valuable for a pilot study since 30 people is a
comparable cohort size (MyTraces [51] had 28 users, StudentLife [38] had 48 users, CrossCheck [52] had 21
subjects), and our 168-hour study duration is a comparable duration (Wang et al.’s study lasted for 14 days [58],
MyTraces lasted for 20 days [51], a plurality of subjects (43%) in SugarMate had 6-10 days of data collected [59])
to that of similar studies involving mobile health technologies. Furthermore, our framework is designed to be
scalable to larger cohort sizes and longer durations (e.g., 200 people, 28 days), even if our pilot study was on 30
patients for 168 hours.
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12.4 Future Works
12.4.1 MS Diagnosis, MS Risk Prediction, Specificity to MS:. To address the first three limitations, we hope to
conduct a future study involving both MS and non-MS cohorts (i.e., control group). This will allow us to explore
digital behavioral phenotyping for MS diagnosis and risk prediction. It will also allow us to explore how this
study’s phenotyping relationships are different for MS patients as compared to a general population.

12.4.2 Validity of Causality: Regarding the fourth limitation, an experiment in a controlled clinical environment
is the gold standard for proving causality. But as previously stated, it may be difficult to capture genuine ADLs in
such an environment. We leave this challenge to be solved by future works which wish to rigorously prove the
causality.

12.4.3 Extreme Conditions: To address the fifth limitation, future studies could ask patients to report if and when
such extreme conditions occur in their daily lives.

12.4.4 Feature Coverage: Addressing the sixth limitation, we encourage future studies to continue to consider
more factors in their analysis.

12.4.5 Cohort Size and Study Duration: Finally, in regards to the seventh limitation, future studies should increase
the sample size to be on the order of magnitude of 102 people and duration to be on the order of magnitude of
101 weeks.

13 CONCLUSION
In this paper, we presentedMSLife, one of the first end-to-end approaches to explore digital behavioral phenotyping
of MS symptoms in the wild. We deployed MSLife with a cohort of 30 MS patients across a one-week in the
wild IRB-approved clinical pilot study. We utilized unobtrusive commodity smartwatch sensors to passively,
continuously monitor potential digital behavioral phenotypes (i.e., ADLs) in daily life. We then designed a
graph-based analysis framework to discover digital behavioral phenotyping relationships among MS symptoms,
ADLs, and demographic factors.

Regarding results, we discover 102 statistically significant phenotyping relationships (e.g., later rise times
are related to increased depression, history of caffeine consumption is linked with lower fatigue levels, higher
relative levels of moderate physical activity are associated with decreased sleep quality). Furthermore, our
retrospective analysis showed that these digital behavioral phenotypes were highly effective in tracking MS
symptoms, outperforming baseline machine learning methods in classifying whether or not a patient has a
particular MS symptom (e.g., depression, fatigue, poor sleep quality), with respect to metrics: accuracy (75.6% vs
64.0%), precision (71.8% vs 61.5%), and recall (76.6% vs 64.9%).

Highlighting our methodological contributions and implications: (1) Methodologically, we contribute a novel,
versatile, generalizable approach which can be applied to many future studies in digital behavioral phenotyping
of chronic diseases. Our approach is one of the first to introduce powerful graph-based statistical analysis
methods which account and control for covariates to the ubiquitous computing community. (2) Regarding MS-
specific implications, MSLife paves the way for smartwatch-based approaches to monitoring MS progression and
facilitating precision medicine.
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