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Most existing eavesdropping attacks leverage propagating sound waves for speech retrieval. However, soundproof materials
are widely deployed in speech-sensitive scenes (e.g., a meeting room). In this paper, we reveal that human speech protected
by an isolated room can be compromised by portable and commercial off-the-shelf mmWave devices. To achieve this goal,
we develop Wavesdropper, a word detection system that utilizes a mmWave probe to sense the targeted speaker’s throat
vibration and recover speech contents in the obstructed condition. We proposed a CEEMD-based method to suppress dynamic
clutters (e.g., human movements) in the room and a wavelet-based processing method to extract the delicate vocal vibration
information from the hybrid signals. To recover speech contents from mmWave signals related to the vocal vibration, we
designed a neural network to infer the speech contents. Moreover, we explored word detection on a conversation with multiple
(two) probes and reveal that the adversary can detect words on multiple people simultaneously with only one mmWave device.
We performed extensive experiments to evaluate the system performance with over 60,000 pronunciations. The experimental
results indicate that Wavesdropper can achieve 91.3% accuracy for 57-word recognition on 23 volunteers.
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1 INTRODUCTION
Voice privacy has drawn increasing attention in recent years [1, 2, 21]. Due to the development of computers
and mobile devices, speech communication becomes easier and more efficient. However, on the other hand,
more attack surfaces are exposed, which results in sensitive information leakage. The security threats to an
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Fig. 1. An attacker can leverage a COTS mmWave probe to launch through-wall word detection of human speech protected
in a soundproof scenario.

unsuspecting victim’s voice or conversation in a speech-sensitive scene (e.g., a meeting room) can expose private
information (e.g., credit card numbers, passwords, and social security numbers). What is worse, the leaked
speech contents can cause severe damage to enterprise benefits [4, 36] if sensitive information is involved (e.g.,
transaction numbers, enterprise decisions). To mitigate acoustic eavesdropping, protecting measures such as
soundproofing, are widely adopted in speech-sensitive scenarios (e.g., a conference room, an enterprise office).
Attacks leveraging propagating sound waves [19] and sound wave-induced vibration [35] can fail when the

sound wave is constrained by soundproof materials. Although soundproof obstacles can protect the propagating
sound waves from leakage, they cannot guarantee the direct leakage from the sound source (e.g., human speakers
in this paper). Based on that, we wonder whether the vocal source (i.e., vocal cords) of a human speaker can leak
speech information even though the human speaker is protected by a soundproof environment. For example, an
adversary may leverage a high-precision device, such as a mmWave probe, to sense the speaker’s near-throat
skin vibration through the wall and retrieve speech contents remotely. mmWave has been widely adopted in
automotive driving [11, 45] and 5G networks [6, 44]. There are many manufacturers of mmWave devices, such
as Texas Instruments and NXP Semiconductors, supplying mmWave devices to the public. On one hand, these
commercial off-the-shelf (COTS) mmWave devices benefit human life, such as vital sign detection [7, 16, 51],
home monitoring [17, 40], and smartphone interaction [22]. On the other hand, an adversary may leverage these
widely available and high-precision devices for evil things such as speech eavesdropping. In this paper, we try
to investigate whether human speech protected by soundproof measures can be compromised by an outside
attacker equipped with a COTS mmWave device. Specifically, as shown in Figure 1, the attacker uses a portable
and COTS mmWave probe outside the room to capture the victim’s near-throat skin vibration through the wall
to recover speech contents, which is resistant to soundproof measures.

However, there are multiple challenges to achieve such a through-wall attack. (1) The attacker has no knowl-
edge about the environment setting due to the blockage of the wall. It is vital to make the attack resilient to
environmental changes and locate the speaker. (2) The objects around the speaker (including static and moving
objects) can induce clutters, it is important to eliminate the interference and extract speech-related mmWave
components from the hybrid reflected signals. Furthermore, as a common situation, the speaker may have motion
artifacts (e.g., body wiggles and gestures) during the speech, which can cause speech-irrelevant mmWave echoes
and make the extraction of delicate vocal vibration more challenging. (3) Assume that the attacker successfully
acquires the mmWave components that contain the speech information, a transition model is required to translate
the mmWave signals into speech contents.
To this end, we proposeWavesdropper, a through-wall word detection system to retrieve human-rendered

speech based on a portable COTS mmWave probe (i.e., TI IWR1642Boost). The proposed Wavesdropper can locate

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 77. Publication date: June 2022.



Wavesdropper: Through-wall Word Detection of Human Speech via Commercial mmWave Devices • 77:3

the targeted speaker behind the wall and transmit mmWave to interrogate his/her throat vibration. By applying
a spatial-temporal analysis, Wavesdropper can differentiate the speaker from the background and eliminate
the impact of background echoes. Afterward, a CEEMD-based clutter suppression is applied to eliminate the
dynamic interference in the room (e.g., moving objects). A high-pass filtering and a wavelet-based analysis are
further used to filter out the impact of the speaker’s motion artifacts (e.g., body wiggle and gestures) and extract
clean vocal vibration, namely mmVocal response, containing speech information. Eventually, Wavesdropper
segments mmVocal responses into single words automatically and feeds them into a ResNet-based neural network
(i.e., WavesdropNet) to recover intelligible speech contents. We introduce the proposed system in Section 4 and
evaluate the system performance and robustness in Sections 5 and 6. We also conduct an exploration of word
detection on multiple speakers in Section 7.
The contributions of our work are as follows:

• We reveal that malicious adversaries can turn widely-available COTS mmWave sensors into eavesdroppers
to cause threats to human speech protected by soundproof materials. We investigate the feasibility of using
COTS mmWave devices to eavesdrop on human-rendered speech in a through-wall scenario.

• We develop an end-to-end system Wavesdropper for through-wall word detection. Based on our proposed
CEEMD-based clutter suppression and wavelet-based signal processing scheme, Wavesdropper can elimi-
nate the clutter interference and extract speech information from reflected hybrid mmWave signals. With a
well-designed retrieval model, speech contents can be recovered with high accuracy.

• We conduct experiments to evaluate the system which achieves 91.3% accuracy for 57-word recognition on
23 volunteers. We also test the system robustness under different conditions and give the countermeasures.

2 ATTACK OVERVIEW

2.1 Attack Scenario
We consider a scenario that a victim has a private conversation in an isolated environment (e.g., an enclosed
conference room). To ensure the confidentiality of the talk, the victim takes protection measures against attackers,
such as sound insulation and visual sheltering. To compromise the privacy and security of the victim’s speech, an
attacker aims to detect sensitive words in the speech. The attacker can steal the following information by the
performed word detection: 1) personal privacy and secret information, e.g., words related to private conversation
and passwords; 2) enterprise interest, e.g., words of a confidential meeting that involves enterprise decisions and
dates of economic transactions.

2.2 Threat Model
We assume that the victim is under speech protection (soundproof and obstructed environment) as mentioned
above. The speech of the victim contains words related to private information. In this paper, we mainly focus on
words made up of numbers and hot words, such as passwords, credit card numbers, and social security numbers.
The goal of the attacker is to detect and recognize these words to retrieve confidential information. We assume
the attacker can acquire the victim’s mmWave data when he/she speaks to train the model in advance. This can
be achieved by transmitting mmWave to the victim remotely when he/she speaks in some scenarios that do not
have protections, such as a public coffee bar. Once the model is trained, it can be used for the following attack.
We assume that there is a soundproof and opaque wall between the victim and the attacker. Thus, acoustic-based
and visual-based eavesdropping methods will fail. We also assume that the attacker cannot get physical access to
the protected room and cannot deploy any eavesdropping devices near the victim.
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Fig. 2. The volunteer says “one” ten times in front of the
probe (the speech takes place in 0 ∼ 6s and 10 ∼ 16s).

Fig. 3. The frequency of speech-irrelevant actions (black
boxes) overlaps with the mouth movement’s (white boxes).

Fig. 4. Two trials of extracted mmWave signals and cor-
responding audio data when the speaker says “zero”,
“one”, “two”, “three”.

Fig. 5. The mmWave signals of the same word show a high sim-
ilarity but are different from other words’ in the spectrograms
(from 80Hz to 200Hz).

3 PRELIMINARIES STUDY
In this section, we present our preliminary results on word detection of human-rendered speech via a COTS
mmWave device, i.e., TI IWR1642Boost.

3.1 Mechanism of Voice Generation
When a human speaks, the lungs first produce adequate airflow and air pressure to vibrate the vocal cords. By
adjusting the length and tension, vocal cords can fine-tune the pitch and tone of the sound. Then the articulators
pronounce and filter the sound to generate human-rendered speech. With the different vibratory frequency of
vocal cords and movement of articulators, the human voice is modulated to generate different speech contents.
(We denote the region of near-throat skin as Vocal Region.) In other words, there is a close relationship between the
speech contents and vocal vibration. If an adversary acquires the victim’s vocal vibration with a high-precision
sensor, such as a mmWave probe, speech information leakage can happen.

3.2 Eavesdropping with mmWaves
Frequency-Modulated Continuous Wave (FMCW) in the mmWave band is widely adopted in automatic driving
and small vibration measurement [24, 28, 31, 49]. The mm-level wavelength of the transmitted signal allows a
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(a) The result of range-FFT. (b) Spatial-temporal analysis. (c) Human echo and mmVocal response.

Fig. 6. (a) The four peaks indicate four detected objects. We can differentiate the speaker from the backgrounds by applying
a spatial-temporal analysis. (b) The variation of the speaker’s human echo is far larger than the static backgrounds. (c) The
below figure shows the extracted mmVocal response from the red waveform (corresponding to the speaker) in the above
figure. Note that the waveforms in the above and below figures are normalized to [-1,1] respectively for better representation.

higher detection accuracy of object movements (e.g., range and velocity) compared with a lower frequency band
for sensing. The frequency-modulated transmitted signal is called a chirp which increases linearly with time. With
a series of chirps transmitted and received, the mmWave sensor can locate objects with accurate distance and
angle estimation. For simplicity, the received waveform can be taken as a delayed replica of the transmitted signal.
The receiver down-converts the received signal to the baseband using a local copy of transmitted signals. The
frequency shift ∆f (i.e., the beat frequency fb ) between the transmitted chirp signal and reflected signal is linearly
proportional to the delay ∆t , fb = ∆t · S , S = B/T , where B and T are the bandwidth and frequency-modulation
sweep time of the transmitted chirp, respectively. Then the baseband signal is sampled by an analog-to-digital
converter to generate digital data for further processing. By applying Fast-Fourier-Transform (FFT) to the baseband
digital data (which is called a range-FFT [42]), we obtain the range of detected object as R = c · fb/(2S). Due
to the short wavelength of mmWave, the small vibration can be sensed and detected by calculating the phase
change ∆φ of the demodulated reflected signal. Given λ as the wavelength of mmWave, the small displacement
of vocal vibration ∆d can be calculated by ∆d =

λ∆φ
4π , where ∆φ is the phase change of the demodulated signal.

The phase change of demodulated signal is sensitive to the small displacement. For a 77GHz mmWave probe, a
1mm displacement change will cause a phase shift of π in the demodulated signal.

When an attacker uses a mmWave probe to transmit FMCW toward the throat area of a speaker periodically,
the near-throat skin vibration will reflect the mmWave that can be captured by the probe, which implies that the
reflected mmWave contains speech information. Hereafter, we define the reflected mmWave signal’s components
caused by near-throat skin vibration asmmVocal Response. In Section 3.3, we demonstrate with our preliminary
results that the mmVocal response is closely related to the speech contents.

3.3 A Feasibility Study
In this part, we investigate the feasibility of detecting words of human-rendered speech by interrogating the
speaker’s near-throat skin vibration with mmWave. To make things easier, we start with an unobstructed scenario.
We ask a volunteer to speak the word “one” in front of a fixed mmWave probe from a distance of 2m. At the
same time, we use a microphone to record the audio data as the reference signal. The audio signal and derived
mmWave data XN are shown in Figure 2. We find that when the volunteer speaks (0 ∼ 6s , 10 ∼ 16s), the mmWave
data contains some high-frequency components, which is most likely the mmVocal response.
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3.3.1 Interrogated Vibration Source. Since the transmitted mmWave is a wave beam with a specific beamwidth
(about ±35◦), the reflected mmWave can be affected by the near-throat skin vibration, the mouth movement, and
other speech-irrelevant artifacts (e.g., body wiggles) of the speaker. Hereafter, we define the reflective mmWave
signal affected by the speaker as Human Echo, i.e., XN . To achieve the goal of speech information retrieval, one of
the key steps is to extract the mmVocal response from the human echo. The typical frequency components of human
mouth movement and motion artifacts (e.g., body wiggles) are below 12Hz [37] and 10Hz [53], respectively. To
investigate the impact of motion artifacts on mouth movement in the spectrogram, we asked the volunteer to
shake his body (0 ∼ 20s) and raise his hands (15 ∼ 18s) while speaking with mouth movement (0 ∼ 6s , 8 ∼ 14s).
As shown in Figure 3, we observed that the frequency of mouth movement is disturbed by the body wiggle and
gesture (especially frequencies below 5Hz). In other words, if we use the mouth movement for speech retrieval, it
can be affected by the speech-irrelevant motion artifacts. However, the fundamental frequency of vocal vibration
is between 85Hz and 255Hz, higher than the frequency of motion artifacts. To achieve a robust speech retrieval,
we apply a high-pass filter and wavelet-based analysis (detailed in Section 4.3) to eliminate the impact of motion
artifacts (along with the mouth movement impact) and extract the high-frequency components corresponding to
the mmVocal response for speech retrieval.

Next, we perform further experiments to investigate the consistency of mmVocal response (i.e., the near-throat
vibration) and the speech contents. We ask the volunteer to speak “zero, one, two, three” twice in front of the
fixed mmWave probe from a distance of 2m and also use the microphone to record audio data as the reference
signal. The two trails of recorded audio and mmVocal responses are shown in Figure 4. The short-time Fourier
transform of the two mmVocal responses are shown in Figure 5. We can observe an obvious discrepancy between
different words in the spectrogram (from 80Hz to 200Hz) while the mmVocal responses of the same word show
high similarity, which indicates that the mmVocal response has a unique and persistent relationship with
human speech contents.

3.3.2 Through-wall Attack. As demonstrated in the threat model, the adversary cannot get physical access to
the isolated zone and there is an opaque and soundproof wall between the victim and the adversary. Thus, it is
crucial to investigate the impact of the wall on the mmVocal response. We asked a volunteer to speak the words
(i.e., “zero, one, ..., nine”) towards the mmWave probe (2m away). There was a soundproof-glass wall between
the mmWave probe and the volunteer. The transmitting power for each channel of the probe is 12.5 dBm. The
range-FFT [42] result is shown in Figure 6(a). The peaks represent detected objects by the probe, which indicates
the probe can detect objects in a through-wall scenario. However, it fails to tell apart which peak corresponding
to the speaker and distinguish the speaker from backgrounds only by the range-FFT result. So we further develop
a spatial-temporal analysis approach to solve this problem (detailed in Section 4.2). Figure 6(b) depicts the result
of spatial-temporal analysis of the speaker’s position changes with time. Figure 6(c) (above) depicts the mmWave
data XN of the speaker (red curve) and the wall (blue curve). We can observe that the variation of the mmWave
data XN corresponding to the speaker is far larger than the static wall and other static layouts (e.g., table and
chair), which helps to differentiate the speaker from backgrounds. To differentiate the speaker from other moving
objects, we apply a speaker detection mechanism in the spatial-temporal analysis as introduced in Section 4.2.
Figure 6(c) (below) depicts the extracted mmVocal response. The results show that mmVocal response can still be
acquired through the wall with our proposed spatial-temporal analysis.

3.3.3 Challenges of the through-wall Attack. Although the feasibility study shows a promise of the through-wall
eavesdropping, there are several challenges we need to overcome:

• How to locate the speaker in the obstructed scenario (e.g., a speaker in an isolated room). (The solution is
detailed in Section 4.2.)
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Fig. 7. The system framework of Wavesdropper.

Fig. 8. The flow chart of Wavesdropper.

• How to eliminate the clutters induced by objects in the room, especially moving objects which may saturate
the receiver and interfere with extracted mmVocal responses. Based on our observation, the large-scale
movements of listeners near the speaker can induce glitch-like noise in the extracted mmWave signals.
(The solution is detailed in Section 4.3.)

• How to design a transition model to translate the processed mmWave signals into intelligible speech
contents. (The solution is detailed in Section 4.4.)

4 SYSTEM DESIGN
In this section, we detail Wavesdropper, a portable and robust system for through-wall word detection of human-
rendered speech. The framework of Wavesdropper is shown in Figure 7.

4.1 Wavesdropper: A mmWave-based Word Detection System
The flow chart ofWavesdropper is shown in Figure 8. Once the raw mmWave is received and demodulated by
the probe, the human echo corresponding to the speaker is first extracted and filtered to eliminate the clutter
interference. Then a wavelet-based analysis is employed to extract the mmVocal response which contains speech
information. A feature-based segmentation module segments the mmVocal responses into short signals, each of
which corresponds to a single word. Finally, the segments are fed into WavesdropNet, a ResNet-based speech
retrieval model to further extract representative features and recover speech contents.

4.2 Speaker Localization
4.2.1 Locating the Speaker. To retrieve the speech information, the first thing we need to consider is how to
locate the speaker (i.e., near-throat skin). The mmWave probe has a 3dB beamwidth of ±35◦ (denoted as Field-of-
view, FoV), out of which the SNR decreases rapidly. Within the FoV,Wavesdropper can recover human speech
information with high accuracy (refer to Section 6.1). When the target is out of the FoV, we should adjust the
mmWave beam to the targeted speaker’s vocal region. To achieve this goal,Wavesdropper adopts a localization
method in radar sensing to guide the beam-steering to boost the eavesdropping performance. By applying 2-D

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 77. Publication date: June 2022.



77:8 • Wang et al.

FFT [42] to the demodulated mmWave data of the four receiving channels,Wavesdropper can acquire the distance
d and horizontal angle θ of the target to guide the beam-steering. For M demodulated chirps with N samples of
each (i.e., x(i, j)), we get the samples matrix

XM×N = [x(i, j)]M×N , i ∈ [1,M], j ∈ [1,N ]. (1)

The 2-D FFT is achieved by applying FFT to the matrixXM×N by row and column successively (which is known
as range-FFT and doppler-FFT). Then the distance and angle of arrival for a detected object can be calculated as:

d =
f · c

2S
, θ = arcsin

λ∆ϕab
2πdab

, (2)

where f is the frequency of the local peak in the range-FFT spectrum, c is the speed of light in the vacuum, S
is the bandwidth of the transmitted chirp, λ is the wavelength of mmWave, and ∆ϕab is the phase difference
between receiving antenna a and b.

4.2.2 Spatial-temporal Analysis. Considering that the human echo XN can be used to differentiate the dynamic
objects (including the speaker) from other static objects, we calculate the standard deviation of XN for every
detected object. For n detected dynamic objects in the room, we can get n traces of x(i, j). To differentiate the
speaker from other dynamic objects, we first apply band-pass filtering (with cut-off frequencies of 85Hz and
255Hz) on the derived mmWave data and then calculate the power spectral density for each trace. Then the
one with the highest intensity value will be chosen as the speaker’s. The rationale behind this is that the throat
vibration contains most of fundamental frequency of human speech (85 ∼ 255Hz) so a trace with a high power
spectral density within 85 ∼ 255Hz can be the speaker. Then we calculate the horizontal angle θ corresponding
to the speaker and steer the beam to the specific direction. The location of the speaker may change when he/she
speaks in a realistic scenario (we assume he/she is still within the FoV), so the peak corresponding to the target in
the range-FFT can shift with time, which makes it difficult to extract the mmVocal response. To solve this problem
and make the attack system more robust, we apply a peak-searching algorithm [12] to the spatial-temporal
analysis to trace the moving speaker and then extract mmVocal responses for speech information retrieval. As
shown in Figure 9(a), we asked a volunteer to step back and forth behind the wall (inside the room) and then we
collected the mmWave data from outside the room. From Figure 9(b)(c), we can observe the peaks corresponding
to the volunteer shift along the distance axis.

(a) (b) (c)

Fig. 9. Spatial-temporal analysis. The shift of peak along the distance axis indicates a moving speaker.
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Algorithm 1: CEEMD-based Dynamic Clutter Suppression
Input: s(n): Raw mmWave signal, n = 1, 2, ...,N
Output: sr (n): Reconstructed mmWave signal, n = 1, ...,N

1 Initialize the index set of noise-interfered segments S = {};
2 for 0 < k1 < k2 < N do

3 if
∑k2
k=k1

|s(k ) |2

k2−k1+1 >
∑N
n=1 |s(n) |

2

N then (k1,k2) ∈ S ;

4 {IMFi (n)} = CEEMD(s(n)),n = 1, ...N , i = 1, ..., I ;
5 for i = 1, ..., I do

6 if
∑

(k1 ,k2)∈S
∑k2
k=k1

|IMFi (k ) |2∑N
n=1 |IMFi (n) |2

> ϵ (ϵ = 0.9 empirically) then

7 Tr = σi
√
2loд(N ), σi is the noise variance of IMFi (n);

8 IMF ′
i (n) =

{
0 |IMFi (n)| ≤ Tr

(2 ∗ siдmoid(IMFi ) − 1)(|IMFi | −Tr ) |IMFi (n)| > Tr

9 else
10 IMF ′

i (n) = IMFi (n);

11 sr (n) =
∑I

i=1 IMF ′
i (n),n = 1, ...,N ;

12 return sr (n),n = 1, ...,N

4.3 Clutter Suppression
The raw mmWave signal (i.e., human echo) can be distorted by human actions and movement that should be
eliminated for clean mmVocal response extraction. To solve this problem, we develop a CEEMD-based clutter
suppression algorithm to eliminate the dynamic clutters mostly induced by dynamic (moving) objects in the
environment. Then we apply a high-pass filter and a wavelet-based analysis to mitigate the speaker’s body
movement according to our preliminary study in Section 3.3 and extract the delicate vocal vibration (i.e., mmVocal
response).

4.3.1 Dynamic Clutter Suppression. When the victim speaks, the random body motion of listeners nearby can
induce glitch-like noise in the extracted mmWave signals (as the red-elliptic area in Figure 24(a) shows). We find
that the induced noise is hard to eliminate by applying a digital filter because the magnitude of the noise spectrum
envelop is random. If not properly mitigated, the noise can reduce the system performance on speech recovery. To
suppress the dynamic clutters, we develop a CEEMD-based adaptive noise cancellation algorithm (Algorithm 1).
The complete ensemble empirical mode decomposition (CEEMD) [43] is used to analyze non-stationary signals. It
decomposes the mixed data into several intrinsic mode functions (IMFs) and has a good spectral separation of the
modes. Considering that the clutter can have high energy with a short duration, we first apply an energy-based
detection to locate the glitch-noise segment. Then we decompose the original mmWave signal into different
IMFs. To suppress the interference, an intuitive way is to discard the noise-related IMFs and then reconstruct the
signal. However, this method will also abandon part of useful components, which damages the completeness
of the mmVocal response and causes a false speech inference. So we proposed a soft-threshold-based method
in Algorithm 1 to suppress the noise and reserve useful components for mmVocal response reconstruction. We
show an example of dynamic clutter suppression in Figure 24 and evaluate this proposed method in Section 7.1.

4.3.2 High-pass Filtering. As demonstrated in Section 3.3, the speaker’s actions (e.g., gestures and body wiggle)
can cause low-frequency components in the human echo as shown in Figure 3. Considering that the typical
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Algorithm 2: Segment The mmVocal Response
Input: s(m): mmVocal response,m = 1, 2, ...,M
Output: Sk :Segments, k = 1, ...,K

1 Divide s(m) into 50ms-length frames si (n),n = 1, 2, ...,N ; i = 1, 2, ..., I ;
2 for i ∈ {1, ..., I } do
3 calculate feature values: E(i) and C(i);
4 Calculate the histograms of E(i) and C(i) and estimate the thresholds TE and TC ;
5 for i ∈ {1, ..., I } do
6 while Ei > TE&&Ci > TC do
7 si(n) is an active frame;

8 Merge successive active frame and get segments Sk ,k = 1, ...,K ;
9 return Segments: Sk ,k = 1, ...,K

frequency of human motion is below 10Hz [53], we design a high-pass Butterworth filter with a cut-off frequency
of 80Hz to eliminate the speaker’s motion interference. After filtering, we take further steps (i.e., wavelet-based
analysis) to extract the clean mmVocal response that contains speech information.

4.3.3 Wavelet-based Analysis. Wavelet transform is an effective multi-resolution analysis tool for signal de-
composition. Its fine-grained multi-scale analysis on both time and frequency domains is beneficial for speech
information extraction. After high-pass filtering and eliminating most human motion interference, the filtered
signal s(t) becomes a signal with zero-mean and satisfies the following conditions:

∫ ∞

−∞
s(t)dt = 0,where s(t) is a

waveform. Wavelet transform usesψa,b and ϕa,b , whereψa,b = 1√
aψ (

t−b
a ) andψa,b = 1√

aϕ(
t−b
a ), as the mother

wavelet function that satisfies the condition of dynamic scaling and shifting, where a and b are the scale and
translation parameters accordingly [41]. To get the mmVocal response at high frequency, the wavelet-based
analysis is achieved as Equation 3:

s(t) = A0 + D1 + D2 + D3 + D4 + D5 + D6, (3)

whereA0 =
1
Cϕ

∫ ∞

−∞
FW (a0,b)ϕa0,b

db√
a0

is the approximation part,Di =
1
Cψ

∫ ∞

−∞
FW (ai ,b)ϕai ,b

da
a2i

db√
ai
, i = 1, 2, 3, 4, 5, 6

is the Level i detail part, FW (ai ,b) is the corresponding coefficient. After the wavelet-based analysis, the mmVocal
response corresponding to the 4th level detail part is extracted.

4.4 Speech Information Retrieval
When the speech of the targeted speaker contains pre-defined sensitive words, Wavesdropper leverages the
acquired mmVocal responses to recognize corresponding words and recover sensitive information. However,
the mmVocal response corresponding to each word is difficult to separate because there is no reference signal
to identify the starting and ending points of each pronounced word. To address this problem, we proposed the
adaptive segmentation method to acquire the mmVocal responses corresponding to each word. To translate the
mmVocal response (mmWave data) to intelligible speech contents, we design a neural network to extract the
inner features of mmVocal response which contains speech information, and output semantic information.

4.4.1 Segmentation. To translate the mmVocal responses into intelligible speech, we first need to segment the
time sequence into single words and then feed the segments into the speech retrieval model for speech recovery.
The rationale of the segmentation is that two successively spoken words have boundaries in both the time and
frequency domain. This motivates us to achieve the adaptive segmentation based on the feature of signal energy
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(time-domain) and spectral centroid (frequency-domain) as introduced in Algorithm 2.Wavesdropper first divides
the whole mmVocal response sequence intoM frames with equal length (50ms). Let si (n),n = 1, 2, ...,N denote
the i-th frame of length N . We call si (n) an active frame if it is part of mmVocal response. For each frame si (n),
two adopted features (i.e., signal energy E(i) and spectral centroid C(i)) are calculated:

E(i) =
1
N

N∑
n=1

|si (n)|
2,C(i) =

∑N
k=1(k + 1)Si (k)∑N

k=1 Si (k)
, (4)

where Si (k),k = 1, 2, ...,N is the discrete Fourier transform (DFT) coefficients of i-th frame. Then we compute
histograms HE and HC of the two acquired feature sequences. Two adaptive thresholds for each feature sequence
are computed:

TE =
WME1 +ME2

W + 1
,TC =

WMC1 +MC2

W + 1
, (5)

whereME1,ME2,MC1, andMC2 represent the first and second local maxima of E(i) and C(i), respectively. Finally,
the segments are formed by successive frames whose feature values are larger than bothTE and EC in Equation 5.

4.4.2 Interpolation & Normalization. Considering that when the same person speaks the same word twice, there
is a slight difference in the duration between them, which has a negative impact on the speech contents retrieval.
To solve this problem, we interpolate the segments into the same size before feeding them into the retrieval model.
In practice, the reflected mmWave signal decays with distance and penetration, which affects the robustness
of Wavesdropper. To suppress the disturbance of distance and penetrating attenuation, Wavesdropper applies
normalization to the amplitude of segments. After normalization, the amplitude of all the segments is within
[-1,1] and the normalized segments are fed into the speech retrieval model for speech recovery.

4.4.3 Speech Retrieval. Traditional machine learning algorithms, e.g., support vector machine, require expertise
to design and extract the features. But the differences among the extracted mmVocal responses of some words
can be subtle. To tackle this challenge, we design WavesdropNet, a residual neural network-based classifier
for speech retrieval. The structure of the developed network is shown in Figure 8. Different from ResNet for
image classification [20], we choose to take the 1-D mmVocal response segments acquired from the 4 channels
of mmWave probe as data series with time-domain and channel-domain. The basic residual block adopts a
one-dimension convolution kernel and takes the four-channel time series as input [46]. WavesdropNet consists of
an initial layer, four residual blocks, and a prediction layer as shown in Figure 8. The initial layer aims to convert
four-channel time series S ∈ R4×2560 into a latent space. The initial layer includes four consecutive operations:
a convolution (Conv), a batch normalization (BN), a rectified unit (ReLU), and a max pooling. Each of the four
subsequent residual blocks contains two basic residual blocks with a kernel size of 3× 1. The residual architecture
contains the shortcut connections which help convergence [20]. Let x represent the input of a residual block, the
shortcut connections can be formulated as:

y = F (x, {Wi }) + x, (6)

where the function F (x, {Wi }) represents the residual mapping to be learned, and F (x, {Wi }) + x represents
element-wise addition. According to He et al. [20], the shortcut connections make it easy to optimize the network.
In the prediction layer, the output of the residual block is fed into a 3 × 1 convolution layer, followed by a max
pooling operation and a fully-connected layer (FC) for classification. In the training process, we use Cross Entropy
Loss [54] as the loss function and choose Adam [25] to optimize network parameters. We implement the retrieval
model in Pytorch.
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Table 1. Experimental setting.

Section Experimental setting
Num. of participants Testing distance/orientation1 Testing scene (through-wall) Num. of words

5.3 23 2.5m/0◦ Conf. room
(Soundproof wall)2

57
6.1 5 0.5m ∼ 5m/0◦,

2.5m/0◦ ∼ 40◦

6.2 5 2.5m/

0◦ ∼ 10◦
Conf. room,

cafe, and office

6.3 5 2.5m/0◦ Glass, sponge,
wood, and brick

6.4-6.6 5 2.5m/0◦ Conf. room
(Soundproof wall)7 2 3.6m/18◦,

3.7m/17◦
1 The orientation is defined as the angle deviation of how the speaker’s throat facing towards the probe, where
0◦ means the speaker’s throat is facing the probe frontally.

2 The conference room in this paper is shown in Figure 20(1) and Figure 25. The soundproof wall has a total
thickness of 8cm (two 1cm thick glasses and 6cm thick vacuum layer).

(a) Experimental setup of Wavesdropper. (b) Setting of training
data collection.

(c) Setting of testing data collection.

Fig. 10. (a) The setup of Wavesdropper, (b) the setting of training data collection in a conference room, and (c) the testing
data collection by penetrating through the soundproofing glass of the conference room.

5 EVALUATION

5.1 Experimental Setup and Datasets
5.1.1 System Setup. The system setup of Wavesdropper is shown in Figure 10(a). Wavesdropper utilizes a COTS
mmWave probe IWR1642Boost [3] for mmWave interrogation. The IWR1642Boost is an integrated single-chip
mmWave sensor that operates in 77-81 GHz with 4 GHz bandwidth. It employs phased antenna arrays (i.e., 2
transmitting and 4 receiving antennas integrated on a single board) to generate high antenna gains to fight against
the attenuation. The antenna array can steer the beam to a specific direction and thus reduce the interference
from the background. The probe has an 18mW transmitting power with a 5V/2.5A power supply and a portable
size of 10.2cm× 9.0cm× 1.5cm. The received RF gain is 30dB. The raw mmWave data is collected by a data capture
board DCA1000EVM and sent to a laptop (ThinkPad T490). We use the laptop to process the raw mmWave data
and infer speech contents.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 77. Publication date: June 2022.



Wavesdropper: Through-wall Word Detection of Human Speech via Commercial mmWave Devices • 77:13

Table 2. Details about the 57 tested words.

Digits 1.zero 2.one 3.two 4.three 5.four 6.five 7.six 8.seven 9.eight 10.nine
Secret&Gender 11.username 12.password 13.telephone 14.account 15.number 16.credit 17.card 18.balance

19.stock 20.price 21.dollar 22.hundred 23.thousand 24.million 25.male 26.female
Time&Date 27.date 28.time 29.morning 30.afternoon 31.evening 32.Monday 33.Tuesday 34.Wednesday

35.Thursday 36.Friday 37.Saturday 38.Sunday
Political&Sensitive 39.government 40.nuclear*41.agency*42.military*43.emergency*44.force*45.army*

Other 46.in 47.at 48.on 49.the 50.my 51.his 52.her 53.owner 54.am 55.is 56.are 57.address
1 Words with * are chosen from sensitive keywords published by the U.S. government [33].

Fig. 11. The Levenshtein Distance matrix of the tested words indicates the similarity among these words.

5.1.2 Tested Words. There are 57 words included in this paper as listed in Table 2. Ten digits (from zero to nine)
are chosen for the consideration that the digits are often related to secrets such as the password. The topic of the
hot words relates to people’s secret (such as username, password) and privacy (such as male and female), time
(such as morning, Monday), often-used prepositions (such as in, at and on), and etc. The tested words include
both monosyllabic and polysyllabic words. We use the Levenshtein Distance matrix to quantify the similarity of
these words as shown in Figure 11. The Levenshtein Distance [52] between two words is within [0,1] where a
higher score indicates a higher similarity.

5.1.3 Training Data Collection. Our experiments involve 23 participants with ages from 19 to 58 years old,
including 17 males and 6 females with diverse accents. It is ensured that all the participants follow the host
institutional review board (IRB) protocol. In all the experiments, the volunteers were asked to speak in a normal
sound pressure level (SPL) within 60-70dBA. We collected the data in a soundproofing conference room as shown
in Figure 10(b). We fixed the probe on a tripod. Each volunteer was about 2.5m away from the probe and faced
the probe without blockage with the orientation of about 0 degree. We asked the volunteers to keep still when
speaking. There was no moving but static objects in the background during the collection. We construct a training
dataset containing 45,885 mmVocal response samples of the 57 words from the 23 volunteers (i.e., 1,995 samples
from each person). We use the dataset to train the speech retrieval model on a Linux server with two Nvidia
GPUs (GeForce GTX 1070). The consuming time for training is about nine minutes.
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Fig. 12. Overall performance
of through-wall attack.

Fig. 13. Confusion matrix of
top-1 accuracy.

Fig. 14. Distance impact. Fig. 15. Orientation impact.

5.2 Evaluation Metrics
5.2.1 Top-k Accuracy. The top-k accuracy is the probability that the correct label is within the top-k classes
predicted by the WavesdropNet. Specifically, we report the top-1, top-3, and top-5 testing accuracy of the 57-word
recognition to clarify the system performance. Without specific clarification, the recognition accuracy is defined
as the top-1 accuracy.

5.2.2 mmVocal-Signal-to-noise Ratio (mmVSNR). To facilitate quantitative comparison of mmVocal response
under different experimental settings, we define the mmVocal Signal-to-Noise Ratio as formulated in Equation 7:

mmVSNR = 10 log10(
P(s)

P(n)
) (7)

where P is the mean of the summed square magnitude, s is the speech segment in an extracted mmVocal response
trace and n is the noise segment in the extracted trace. Similar to the SNR, a higher mmVSNR indicates a better
resilience to speech-irrelevant noise and thus a better system performance for speech retrieval.

5.3 Overall Performance
We used the collected training data from the 23 volunteers in Section 5.1 to train the model for speech recognition.
The model was trained on a Linux server with two Nvidia GPUs (GeForce GTX 1070). We started the training
with a learning rate of 10−3 and set the batch size to 64. The consuming time for training is about nine minutes.
The tested data was collected from the same 23 volunteers mentioned before, i.e., a target-dependent attack
which requires prior knowledge about the victim. During the testing phase, each volunteer was asked to sit
still in a chair without body motions and speak the 57 words ten times (i.e., 570 samples from each person) in
the same soundproof conference room as the data collection. The testing scene is shown in Figure 10(c). The
distance of the testing scenario is 2.5m and the orientation is about 0 degree. We deployed the mmWave probe
outside the room to transmit and collect mmWave data. Wavesdropper extracts mmVocal responses from the
collected mmWave data and feeds them into the pre-trained model for word recognition. We calculate and show
the recognition results in Figure 12 and Figure 13. The top-k accuracies are shown in Figure 12. We can observe
that Wavesdropper achieves 91.3% average accuracy for 57-word recognition among the 23 speakers. The Top-3
and Top-5 average accuracies are 93.2% and 97.3%, respectively. This indicates the ability of Wavesdropper to
retrieve speech contents through the soundproof wall. Figure 13 shows the confusion matrix of the top-1 accuracy
of the 57 words. We can observe that the speech retrieval model achieves a high interference accuracy for all the
words. Besides, there is no severe bias on word misclassification or confusion among specific classes observed
from the result.
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Fig. 16. mmVocal-signal-to-noise ratio Fig. 17. Impact of environmental change.

Fig. 18. Impact of blocking wall. Fig. 19. Impact of body motion.

6 COMPLEX ENVIRONMENT ANALYSIS
In this section, we study the robustness of the proposed attack in complex scenarios. The experiments aim to
quantify the ability of an attacker who leverages a COTS mmWave probe (i.e., IWR1642Boost) for through-
wall word detection of human-rendered speech. Five out of the 23 volunteers are included in the experiments.
Experimental settings are detailed in Table 1.

6.1 Impact of Distance and Orientation
In real-world scenarios, the distance and orientation between the probe and targeted victim may change. In
this part, we investigate the impact of distance and orientation on the system. We asked the five out of the 23
volunteers to sit still without body motions in the chair and speak the 57 words ten times in the conference room
for each experiment setting. We deployed the probe outside the room. The speech retrieval model is trained
with the dataset in Section 5.1. When we studied the impact of attack distance (from 0.5m to 5m), we kept the
orientation within 0◦ ∼ 10◦. For the orientation (0◦ ∼ 40◦) evaluation, we set the attack distance as 2.5m.

Results: As shown in Figure 14, the top-1 inference accuracy of the 57 words is above 83% when the sensing
distance varies within 5m. In general, the performance degrades with the increasing distance. Because the power
density of the transmitted mmWave beam decreases with increasing distance [38], resulting in a low SNR for the
near-throat vibration sensing. This can be further improved by a probe with a more concentrated beam design
and higher transmitting power. As shown in Figure 15, the top-1 accuracy is above 86% within 30◦ but decreases
remarkably in the attack orientation of 40◦. Because the reflecting surface of the targeted victim’s throat area
reduces with the attack orientation increasing. Thus, the mmVSNR decreases as shown in Figure 16, resulting in
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(a) Cafe (b) Office

Fig. 20. Experiments in different environments.

the performance degradation in the orientation of 40◦. Generally speaking,Wavesdropper is robust for speech
retrieval within 5m and an orientation less than 40◦ in a through-wall scenario.

6.2 Impact of Environmental Change
Except for echoes reflected from the victim’s near-throat skin, background objects in the room can also reflect
mmWave signals (i.e., clutters), which may influence the attack performance. To investigate the impact of
environmental changes on the proposed attack system, we performed experiments under three scenarios as
shown in Figure 20, i.e., a conference room, a cafe, and an office room. The conference room is the same room for
training data collection but with layouts (e.g., positions of chairs and cabinetry) changed. We asked five out of
the 23 volunteers to keep still without body motions and speak the 57 words ten times in each environment and
collected the mmWave data through the wall. The sensing distance is set to 2.5m and the orientation is kept
within 0 ∼ 10◦. Then we used the model trained with the dataset in Section 5.1 to recover speech contents.

Results: As shown in Figure 17, the top-1 accuracies under three scenes are above 88% with little performance
fluctuation (about 1.3%) across different scenes. This is because compared with just feeding the raw mmWave data
into the retrieval model (which contains environment-dependent information), Wavesdropper first differentiates
the speaker from the background by applying the spatial-temporal analysis and clutter suppression, and then
extracts the intrinsic vocal vibration information of the speaker (Section 4). This can eliminate speech-irrelevant
echoes at most and thus improve the robustness of the eavesdropping system under different scenarios.

6.3 Impact of Blocking Wall
It is unavoidable that the blocking wall will cause attenuation on the mmWave. We observe that the attenuation
caused by common soundproof wall materials (e.g., soundproof glass, sound-absorbing sponge, and wood) are
slightly different. To mitigate the impact of attenuation, we apply the amplitude normalization to the extracted
mmVocal response as introduced in Section 4.4. In this part, we evaluate Wavesdropper with different wall
materials, i.e., soundproof glass (a conference room wall), sound-absorbing sponge (a customized wall), wood
(a wooden folding wall), and brick (an office wall). For each experimental setting, we asked the five out of the
23 volunteers to keep still without body motions and speak the 57 words ten times in the room and used the
mmWave probe to collect the mmWave data through the wall with the attack distance of 2.5m and orientation
of 0◦. The speech recovery model is trained with the dataset in Section 5.1.
Results: The results are shown in Figure 18. We can observe that for each common soundproof material (i.e.,

glass, sponge, and wood), the top-1 accuracy is above 90% which indicates that the proposed attack is resilient to
different kinds of soundproof obstacles. But for the brick wall (about 12cm thick), the average top-1 accuracy is
only 75.3%. The degradation of the performance results from the large attenuation caused by the brick wall, and
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Fig. 21. Impact of background
noise.

Fig. 22. Impact of speech rate. Fig. 23. Discontinued contours
separates coherent words in the
time-frequency domain.

the transmitting power is limited for the COTS mmWave sensor. However, the experiment validates the ability of
COTS mmWave probes to penetrate common soundproof materials and cause threats to in-room speech.

6.4 Impact of Body Motion
Considering that speakers are not still but with small body wiggles or gestures when they speak, we evaluate the
impact of speaker’s body motion onWavesdropper. We asked the five out of the 23 volunteers to sit on a chair
and say the 57 words ten times. When speaking, each volunteer was asked to wave their hands slowly in front of
the chest, which is beyond the range-bin of the throat. The attacker launched the word detection outside the
conference room (the same room as in Section 5.1) through the soundproof wall and used the dataset in Section
5.1 to train the speech retrieval model. The attack distance is set as 2.5m and the orientation is 0◦. The detailed
experimental setting is shown in Table 1.
Results: The recognition accuracy of the 57 words are shown in Figure 19. The top-1 average accuracy of the

five volunteers varies from 84% to 96%. The low accuracy of volunteer #2 (84%) is most likely due to his waving
hands blocking the transmitted mmWave towards the throat area and thus degrading the attack performance. As
analyzed in Section 3.3, the frequency of human motion artifacts is far below 80Hz so the high-pass filter with
a cut-off frequency of 80Hz can effectively eliminate most of the impact of speaker’s gental gestures and body
wiggle.

6.5 Impact of Background Acoustic Noise
We asked the five out of the 23 volunteers to keep still without body motions and speak the 57 words ten
times in the soundproof room and evaluate the performance of Wavesdropper across three different levels of
real-world acoustic noise: low (noise of the air conditioner), normal (daily conversation played by a loudspeaker),
and high (loud music played by a loudspeaker). The sensing distance is 2.5m and orientation is 0◦. According
to the experiment results in Figure 21, we find that the top-1 recognition accuracy is stable at 93% without
noticeable disturbance. The results indicate that the background noise of these three levels has little impact on
the performance of Wavesdropper.

6.6 Impact of Speech Rate
In Section 5 and 6, we asked the participants to speak in their normal way. To investigate the impact of speech rate,
we asked the five out of the 23 volunteers to keep still without body motions and speak the 57 words ten times
with different speech rates, i.e., low (0.6 words/sec on average), normal (2.1 words/sec on average), and fast (2.9
words/sec on average) speed. We kept other experimental settings the same as Section 6.5. The sensing distance
is 2.5m and the orientation is 0◦. The recognition accuracy is shown in Figure 22. The top-1 accuracy is above
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93% when the speaker speaks in a low and normal speed. When the speech rate increases to the fast speed, the
performance degrades to 78%. We find that some segments under the fast-speed condition have a long duration,
which indicates the segment possibly contains two or more words rather than a single word due to imperfect
segmentation. The reason for the connected words is that the signal energy in the segmentation algorithm (Section
4.3) is calculated within non-overlap windows. If there is little interval between two successively pronounced
words in the time domain, the signal energy changes little across successive windows, which wrongly indicates a
single pronounced word. Another observation is that connected words occur more often when two successive
words both have the same or similar phonemes causing coherent pronunciation, e.g., “is zero” (/Iz "zI@R@U/).

Although coherent pronunciation is not always the case, we propose a method based on the discontinued
contour of coherent pronunciation in joint time-frequency domain to tackle this problem. The method is inspired
by the fact that, even though there is little interval observed between audio signals of connected words in the
time domain (as shown in the top figure in Figure 23), the connected words can be separated in the joint time-
frequency domain, i.e., frequency contours of connected words (yellow stripes in the below figure of Figure 23) are
discontinuous in the joint time-frequency domain (as indicated by the red circle in Figure 23). Specifically, we first
apply short-time Fourier transform with a sliding window to covert the input signal to the joint time-frequency
domain. Then we derive contours of the frequency components of the speech signal in the joint time-frequency
domain using an f0 estimation algorithm [32]. The algorithm returns a binary sequence consisting of “1” and “0”
where “1” and “0” indicate the high energy and low energy part of the contours, respectively. Then we calculate
the differential sequence of which the peak indicates the changing point of the contours. Finally, connected words
are separated by the changing points. The recognition result with the improved segmentation is shown in Figure
22, i.e., Fast (improved), which indicates a 14% performance improvement on the recognition accuracy.

7 EXPLORATION: WORD DETECTION ON MULTIPLE SPEAKERS
In previous sections, we have evaluated the system under complex scenarios. In this part, we explore the ability
of an attacker/attackers to detect words of multiple (two) victims simultaneously in a controlled environment.
Two out of the 23 volunteers are involved in the experiments.

7.1 Word Detection with Multiple Probes
To eavesdrop on multiple targets in a conference room, an intuitive way is using multiple probes targeting on
different speakers. However, we find that there are two further problems we need to address. First, probes with
the same operating frequency band have a probability of causing mutual interference, which should be analyzed
and mitigated if there is any severe interference. Second, we observed that large-scale motions (e.g., shaking body
from side to side) of the listener can influence the mmWave reflected from the speaker’s throat and reduce the
attack performance. Next, we give the mutual interference analysis and evaluate the dynamic clutter suppression
method (detailed in Section 4.3) for the listener’s body movement.

7.1.1 Mutual Interference Analysis. We assume the attacker uses two same devices with the same parameter
settings (e.g., chirp slope, chirp bandwidth). In such a condition, there is a possibility that Probe B receives
and demodulates the chirp signal transmitted by Probe A, and thus, the mutual interference can happen. As
mentioned above, the interference requires that Probe B’s chirp is demodulated by Probe A. This means a strict
timing condition that two probes transmit chirps almost simultaneously. The probability of such interference can
be calculated using the chirp max-delay (td ) and chirp repeat periodicity (tr ), and the number of probes present
in the scene (Np ) [39], as shown in Equation 8:

Pinter f erence = 1 − (1 −
td
tr
)Np−1 (8)
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(a) (b)

Fig. 24. (a) Original and (b) reconstructed mmWave data when the speaker says “my password is zero...six”.

(a) (b)

Fig. 25. The (a) sketch map and (b) pictures of eavesdropping with multiple probes in a conference room with multiple probes
to show the in-room and out-room settings.

The device (IWR1642Boost) in our experiments has a max-delay of 0.33µs [3] and we set the chirp repeat
periodicity as 250µs in all the experiments. When the attacker uses two probes (Np = 2) for eavesdropping, the
probability of mutual interference is 0.13%, which is neglectable, so we do not take further exploration about this
in the following pages.

7.1.2 Listener-introduced Noise Cancellation. When participant A speaks, we find that reflected mmWave from A
can be influenced by participant B’s large-scale motion which induces glitch-like noise in the extracted mmVocal
response (the red-elliptic area in Figure 24(a)). By applying the dynamic clutter suppression in Section 4.3, the
impact of listener’s motion can be mitigated as Figure 24(b) indicates.

7.1.3 Result. As shown in Figure 25, we asked the two volunteers to sit face to face and speak the 57 words ten
times alternatively. When one speaks, the other wiggles his body from side to side at random times. We used
two mmWave probes outside the conference room to launch the attack through the soundproof-glass wall and
used the model trained with the dataset in Section 5.1 to recover their speech contents. Among the total 136
interfered samples by the listener’s body motion, only 11 samples are correctly recognized without the dynamic
clutter suppression. However, the number increases to 129 when the proposed clutter suppression is applied. The
average accuracies for speakers A and B are 90.2% and 88.5%, respectively. The results indicate that the proposed
dynamic clutter suppression (Algorithm 1) effectively mitigates the listener-induced interference and improves
the system performance.
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Fig. 26. Eavesdropping on multiple
targets with a single probe.

Fig. 27. The Top-1 accuracy of multi-
person word recognition.

Fig. 28. A deliberate vibra-
tion source near the speaker’s
throat.

Fig. 29. The metal plate at-
tached with a motor driven by
a signal generator.

7.2 Word Detection with a Single Probe
Except for the previous multi-probe solution, we also exploit the attacker’s ability to recover speech contents of
multiple targets with only a single mmWave probe.

7.2.1 Key Insight. As introduced in Section 4.2, the samples of the mmVocal response are derived from FFT
results of successively demodulated chirps, i.e., an N-point mmVocal response is derived from N demodulated
chirps. In other words, a demodulated chirp can be taken as a sampling of the speaker’s vocal vibration. One of
the key characteristics of the demodulated chirp is that its FFT result can indicate multiple detected targets. If
there are multiple speakers present, the demodulated chirp can be taken as the simultaneous sampling of multiple
targets where different FFT points correspond to different speakers. This paves the way for eavesdropping on
multiple targets with a single probe.

7.2.2 Experimental Validation. We asked two volunteers to sit still in chairs, face the probe and speak in the
conference room and deployed a single probe outside the room for through-wall eavesdropping. During the
experiment, we find that the distance between the two speakers can influence the speech retrieval performance.
We change the distance between speaker A and B as shown in Figure 26. For each distance setting, we asked the
two volunteers to simultaneously speak the 57 words ten times and used the model trained with the dataset in
Section 5.1 for speech retrieval. The average top-1 accuracy of the two speakers is shown in Figure 27. We can
observe that when the speakers have a distance larger than 0.5m, Wavesdropper can retrieve the speech of both
speakers with top-1 accuracy above 85%. But the performance degrades to 23% when the speakers are close to
each other (0.5m). This is because the spatial-temporal analysis (Section 4.2) is unable to distinguish the two
speakers in the space due to the distance resolution if they are too close to each other physically (note that the
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Table 3. Comparison with previous work.

Work Experimental
target

Training data
from the target

Resistant to
acoustic noise

Performance

Words Accuracy Distance
Kwong et al.[26] Loudspeaker No No - - 0.25m

Michalevsky et al.[30] Loudspeaker Yes No 11 digits 17%(-) -
Ba et al.[9] Loudspeaker Yes No 36 words 55% (-) -

Teng et al.[48] Loudspeaker No Yes 10 digits 99% (through-wall) 4-11m
Wang et al.[47] Human Yes Yes 33 words 18% (through-wall) 2-7m

Ours Human Yes Yes 57 words 91% (through-wall) 2.5m

distance is smaller than a normal social distance). The attack results indicate that Wavesdropper can recover
speech contents of two targets simultaneously with only a single probe but the performance can be influenced
by the distance between the two targets. Generally speaking, the eavesdropping system works well when the
distance between two speakers is larger than 0.5m.

8 COUNTERMEASURES
In this section, we discuss four potential countermeasures and perform experiments to evaluate the last defense
method, i.e., a deliberate vibration source near the throat. Passive defense: (1) Considering that Wavesdropper
leverage mmWave signals for eavesdropping, electromagnetic shielding (e.g., a Faraday cage) can reduce the
coupling of electromagnetic fields and thus block the transmitted mmWave signal. Besides, (2) wave-absorbing
materials can also reduce the reflected mmWave signals to defend against the proposed attack passively. Active
defense:Themutual interference between two probes can be significantly small (Section 7.1) when the transmitted
chirps of the two probes have the same slope. But when their chirp slopes are different, sweeping interference
[39] can happen. Therefore, (3) an active countermeasure is that the speaker can use a mmWave probe to transmit
chirps with a random slope to interfere with the adversarial probe. However, this defense method requires
prior knowledge about the working frequency of the attack device. (4) Another active defense is to confuse the
attacker’s retrieval model by placing a delicate vibration source near the throat. The additional source vibrates in
the same frequency band as the vocal vibration. Next, we perform experiments to validate the effectiveness of
this method.

We placed a metal plate attached with a vibration motor close to the speaker’s throat area as shown in Figure
28. We used a signal generator (RIGOL DG3121A, shown in Figure 29) to drive the motor to vibrate in the form of
frequency modulation covering the bandwidth 80 ∼ 260Hz with a period of 4ms and asked the volunteer to speak
the 57 words ten times within the conference room. The remaining experimental setting is the same as Section
6.4. We find that Wavesdropper achieves a poor recognition accuracy of 1.9% and the mmVSNR is only 0.31dB
when the vibration motor works. Because the vibration source is too close to the speaker’s throat physically and
Wavesdropper cannot tell the two vibration sources apart. The extracted mmVocal response is overwhelmed by
the disturbance from the vibrating metal plate, which results in a low mmVSNR and a poor recognition accuracy.

9 DISCUSSION AND FUTURE WORK

9.1 Attenuation and Interference
Attenuation is a tough problem for wireless sensing [47, 48], especially in a long-range and through-wall scene. As
the results in Sections 5.3 and 6 indicate, mmWave can easily penetrate soundproof materials for eavesdropping
but has a limited penetrating performance on the brick. In addition, the moisture material covering the throat
area may have a certain impact on the performance due to the absorption. Limited by the COST mmWave devices

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 2, Article 77. Publication date: June 2022.



77:22 • Wang et al.

(with a transmitting power of 12.5dBm) in this paper, this problem can be solved by adopting powerful antenna
arrays with larger transmitting power and advanced noise reduction techniques [15] in the future design of COTS
mmWave devices. Considering the growing amount of mmWave devices in human life, the signals in 77-81GHz
is possibly demodulated by the malicious mmWave sensor and thus, cause interferences to the system. Based
on this, a jamming mitigation can be applied to defense the attack but requires the parameters of the malicious
mmWave sensor, such as the chirp rate, the operating band, the duty cycle, etc.

9.2 Improved Eavesdropping on Multiple Targets and Motion Interference
In Section 7.2, we explore the feasibility of eavesdropping on multiple victims with a single mmWave probe.
Although the experimental results validate the feasibility to some extent, the result is not satisfying when the
two targets were close to each other physically, which results from the mixed mmVocal responses of the two
targets. Considering that the probe has an on-board antenna array with 4 Rx of which each Rx can derive a
trace of mmVocal response, a potential method is to adopt the blind source separation [14] to separate mmVocal
responses of the two targets from the mixed one. The current attack shows resilience to gentle movements of the
speaker. However, the drastic motion of the speaker (e.g., turning the head and standing up/down suddenly) may
induce noise covering the fundamental frequency band of human voice (85-255Hz) in which case the performance
can be degraded largely. A potential solution is to use self-similarity matrices [18] to eliminate these human
artifacts and recover the clean mmVocal response.

10 RELATED WORK
Recent research reveals that attackers can use motion sensors [8, 9, 30], radio frequency signals [48], and even
hard disk drives [26] to eavesdrop on machine-rendered speech. These works leveraged the conductive vibration,
wireless vibrometry, and air vibration caused by a loudspeaker for speech retrieval. Kwong et al. [26] revealed
that hard disk drives can record loudspeaker audio with a sound pressure level (SPL) of 85dBA, which is louder
than most normal conversations as they demonstrated. Michalevsky et al. [30] and Ba et al. [9] eavesdropped with
limited accuracy using motion sensors built in smartphones. Teng et al. [48] leveraged the wireless vibrometry
caused by a static loudspeaker to recover machine-rendered speech. Our work mainly focuses on retrieving
human-rendered speech. For the human-rendered speech retrieval, Wang et al. [47] leveraged the multipath effect
of WiFi to capture speakers’ mouth movement but they have a strong assumption that the victim is totally static
and speaks standing by theWiFi device, which is often not the case. Our work considers a more practical condition
where the environment is dynamic (e.g., body movement). In our work, mmWave has a higher directivity with a
concentrated beam to focus on specific targets for eavesdropping. The proposed spatial-temporal analysis and
dynamic clutter suppression method can eliminate the background clutters and make the system resilient to
environment changes (evaluated in Section 6). Our speech retrieval model can recognize words of human speech
with an accuracy of 91% which is higher than Wang’s work. We summarize the compared previous works on
eavesdropping and our proposedWavesdropper in Table 3. Wavesdropper achieves satisfying performance within
the orientation range of 0◦-30◦. Considering previous works do not quantitively evaluate the orientation, we do
not list the performance in the table for comparison. To retrieve human-rendered speech, the attacker may also
leverage visual side channels, such as lipreading [13, 23] and sound wave-caused vibration on surrounding objects
[35]. However, these visual-based approaches do not work in a through-wall (opaque) scenario. Xu et al. [50]
developed a customized mmWave device for noise-resistant speech sensing. Our work achieves eavesdropping
leveraging a widely-available COTS mmWave device that is not specially designed for speech sensing. Xu’s
work requires both mmWave and audio signals to train the model but our method solely relies on the mmWave
signals to infer the speech. Besides, Xu’s work mainly focuses on the line-of-sight sensing condition without
blockage. Our work aims to achieve the through-wall word detection to retrieve sensitive information and faces
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different challenges in the obstructed condition, i.e., speaker localization and suppressing environment clutters.
Through-wall information retrieval is a common and challenging research topic. Li et al. [29] use a customized
mmWave probe to acquire the liquid crystal state of the victim’s screen and infer screen contents. Adib et al. [5]
use radio frequency to capture human figures through walls. Zhao et al. [55] use wireless and visual signals to
estimate human pose behind walls. Our work focuses on acoustic side-channel and faces different challenges.
Banerjee et al. [10] investigate the feasibility of using wireless links to predict the moving direction of the user
behind the wall. Nandakumar et al. [34] propose to use a smartphone and a loudspeaker to form an active sonar
system to recognize human motion through the wall. Both of them study coarse sensing of human activities
and aim to compromise activity privacy. our work focuses on speech retrieval by sensing more delicate vocal
vibration of human being.

Limitation of Wavesdropper: 1) Due to the propagating and penetrating attention of mmWave and the
COTS hardware limitation, Wavesdropper has a distance of around 2-3m and orientation range of 0◦-30◦ to
achieve satisfying performance compared with previous work [47, 48]. Besides, materials like metal or human
tissue containing moisture (e.g., hands) can block the transmitted mmWave and thus, cause great performance
degradation on the system. 2) Wavesdropper requires pre-collected data from the victim to train a victim-specific
model for word inference compared with previous work [26, 48], i.e., a target-dependent attack. Due to the
discrepancy in pronunciation habits and vocal physiological structures [27], WavesdropNet learns speaker-
dependent features, which can only achieve satisfying performance when with the training data from the targeted
speaker. 3)Wavesdropper eavesdrops on speech contents (word classification) which is a subset of vocabulary
compared with previous work that can recover audible speech [9, 26, 48]. This limitation is mainly determined by
the mechanism of speech production. Intelligible speech is produced by the collaboration of the vocal cords and
articulators (e.g., the tongue and the palate). With the different vibratory frequency of vocal cords and movement
of articulators, the human voice is modulated to generate different speech contents. Wavesdropper is hard to
capture the movement of the inner articulators in human body. Thus, voice formants produced by the inner
articulators cannot be recovered, which makes Wavesdropper difficult to recover audible voice.

11 CONCLUSION
In this paper, we reveal a new speech threat posed by widely-available COTS mmWave devices. An adversary
can break through the soundproof protection and detect words of human-rendered speech using the portable
COTS mmWave probe. We first investigated the relationship between the vocal vibration and reflected mmWave
signals (i.e., mmVocal response) and find that the threat still exists in a through-wall condition. Then we solve
the challenges in the obstructed condition and proposed Wavesdropper, an end-to-end word detection system to
compromise speech privacy and security in a soundproofing environment. The experiments on 23 volunteers
indicates that Wavesdropper can achieve 91% accuracy for 57-word recognition in a through-wall scenario. The
results of extensive experiments show the system robustness in complex conditions, such as environment changes
and different soundproof materials. Considering the increasing applications of widely-available COTS mmWave
devices, we hope the new acoustic side-channel attack can raise attention of related researchers and the public.
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