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Bring Gait Lab to Everyday Life: Gait Analysis in
Terms of Activities of Daily Living
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Abstract—With the development of the Internet of Things
(IoT), wearable technologies have been proposed to measure gait
parameters in everyday life. However, since both diseases and
activities could influence gait patterns, clinicians cannot use the
measured gait parameters for clinical applications without know-
ing the corresponding activities. To address this problem, a novel
gait analysis method—“gait analysis in terms of activities of daily
living (ADLs)”—was proposed based on a wearable Smart Insole
system. Twenty six gait parameters were extracted to realize
a systematic gait analysis. Novel activity recognition algorithms
based on characteristics of human gait were proposed to recog-
nize ADLs, including “sitting,” “standing,” “walking,” “running,”
“ascend stairs,” and “descend stairs” with high accuracy and low
computation load. To evaluate the performance of “gait analysis
in terms of ADLs,” an experiment consisting of a sequence of dif-
ferent ADLs was designed to simulate the scenario of everyday
life. In the result, gait parameters measured during different
activities were automatically highlighted with different colors,
which made it easy to see whether the gait pattern change was
caused by activities or diseases. Besides, a refined gait analysis
could be realized by individually extracting and analyzing the
gait parameters of a specific activity. The results indicate that
“gait analysis in terms of ADLs” is a feasible method to reach
the aim of bringing gait lab to everyday life.

Index Terms—Activity recognition, gait analysis, ground reac-
tion force (GRF), smart insole, wearable healthcare.

I. INTRODUCTION

GAIT analysis is a systematic study of human motion [1].
For individuals with diseases that affect the locomotor

ability, gait analysis is helpful to make detailed diagnoses,
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plan optimal treatment, and evaluate rehabilitation outcomes.
For example, for neural system diseases, such as Parkinson’s
disease (PD), degrees of gait variability (a parameter for gait
analysis) is increased with the disease severity [2]. This makes
gait variability a sensitive parameter to evaluate and optimize
treatment performance.

A variety of methods could be used to evaluate gait
performance in clinical practice. The visual observation
method is typically used to determine gait disorders and to
evaluate treatment outcome [3]–[5]. However, the accuracy of
the subjective result given by visual observation relies on the
experience of the clinician who performs the gait assessment,
which leads to poor reliability [6], [7]. Quantitative and stan-
dardized clinical test, such as timed up and go (TUG) was a
complement to the visual observation method [3]. However,
performance of the TUG test is limited by the following
limitations.

1) TUG tests are performed in clinical settings, which can-
not accurately reflect the gait performance of a subject
in daily life. In gait laboratory or clinical settings, people
are aware of the “test” situation, and thus are more con-
scientious of their performance, which usually results in
better performance [8]. In addition, the lab environment
does not replicate living conditions, which would also
influence the testing results [8].

2) Gait performances in different functional tasks, such
as “walking” and “turning” are important for disease
diagnoses and research, but they cannot be analyzed
separately in TUG [8], [9].

3) TUG tests only focus on the time variable which is
insufficient to detect relevant subtle but important gait
abnormalities such as changes in gait variability [10].

To overcome the above limitations, a novel wearable gait
analysis method—“gait analysis in terms of activities of
daily living (ADLs)”—was proposed based on a Smart Insole
system to realize gait analysis in everyday life. Through inte-
grating a pressure sensor array for plantar pressure sensing and
an inertial measurement unit (IMU, including accelerometer
and gyroscope) for foot motion measurement, Smart Insole
could systematically quantify gait performance with 26 gait
parameters, including temporal gait parameters, force related
gait parameters, turning related gait parameters, gait variabil-
ity, and gait symmetry. Since both diseases and activities could
influence gait patterns, clinicians cannot use the measured gait
parameters for clinical applications without knowing the corre-
sponding activities. Therefore, ADLs recognition was realized
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Fig. 1. Advantage of “gait analysis in terms of ADLs.” Icon persons indicate the activities that could be recognized by Smart Insole. GRF recorded during
a sequence of different ADLs was used as an example to compare the effect of the traditional wearable gait analysis method and “gait analysis in terms
of ADLs.” The red curve in the black dashed rectangle was the GRF recorded during straight walking, which was taken as an example to show that gait
parameters of different ADLs could be extracted and analyzed separately.

with Smart Insole to enable “gait analysis in terms of ADLs.”
As shown in Fig. 1, six icon persons were used to show
the ADLs that could be recognized by Smart Insole. Ground
reaction force (GRF) measured during a sequence of differ-
ent ADLs was taken as an example to show the advantage
of “gait analysis in terms of ADLs” over traditional wear-
able gait analysis methods. The unit of GRF is body weight
(BW). For traditional wearable gait analysis methods, although
GRF could be measured during different ADLs, GRF of dif-
ferent ADLs cannot be distinguished and the measured GRF
cannot be used for clinical applications. For “gait analysis in
terms of ADLs,” GRF of different activities were automati-
cally marked with different colors, which makes it easy to see
whether the change of GRF patterns is caused by activities
or diseases. In addition, gait parameters of a specified activity
could be automatically extracted for analyzing individually to
enable a refined gait analysis. For example, the GRF in the
black dashed rectangle was measured during straight walking,
which could be automatically extracted for analyzing individ-
ually. Therefore, “gait analysis in terms of ADLs” is a feasible
method to realize the aim of bringing gait lab to everyday life.
The contributions of this article are as follows.

1) Proposed a novel gait analysis method—“gait analysis
in terms of ADLs” to fill the gap that limits the appli-
cation of gait analysis in everyday life. Gait parameters
of different ADLs could be distinguished automatically,
and could be extracted for analyzing individually.

2) Proposed a “stride” based data segmentation method to
prepare data for the activity recognition algorithm. This
method converts the activity recognition problem of a
time period to the activity recognition problem of each
“stride” in the time period. In addition, this data seg-
mentation method could recognize the boundary that
separates two different activities.

3) Proposed an efficient activity recognition algorithm
based on characteristics of human gait, which could
achieve high accuracy with low computation load.

4) Realized “gait analysis in terms of ADLs” in practice
by embedding algorithms for gait parameters calculation
and ADLs recognition into a smartphone Application
(App).

II. RELATED WORK

With the development of technologies, new gait analysis
methods have been proposed to help improve the traditional
methods, such as observation method and TUG test. According
to Muro-De-La-Herran et al. [11], the new gait analysis meth-
ods can be classified into two categories: 1) nonwearable
methods and 2) wearable methods.

For nonwearable methods, optic sensors and force platforms
were usually used for acquiring data for objective gait analy-
sis. Prakash et al. [12] used a digital video camera and five
passive markers attached to the body joints to build a 2-D
joint movement tracking system. Gait analysis is done with a
gait analysis model developed using a simulation framework.
Wang et al. [13] used the second generation Microsoft Kinect
to build a 3-D skeleton-based gait database for gait analysis.
Commercially available nonwearable gait analysis systems,
such as the Vicon camera system and GAITRite force plat-
form were recognized as a gold standard for gait analysis [14],
[15]. However, nonwearable methods need a controlled envi-
ronment where necessary devices, such as cameras and force
platforms have to be set up before measurement. Therefore,
nonwearable methods are not suitable for gait analysis in a
free-living environment.

For wearable methods, wearable sensors, such as accelerom-
eter, gyroscope, magnetometers, and pressure sensors were
frequently used for acquiring various signals for gait param-
eters calculation. Since wearable sensors can be worn on the
body directly and work in a free-living environment, wearable
gait analysis methods have the potential to be applied in every-
day life. IMU sensors were usually placed on thigh, shank, and
foot to record data for gait analysis [16], [17]. However, only
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Fig. 2. Hardware and software of the Smart Insole system. (a) Insole shaped customizable pressure sensor array. (b) Circuit board for signal acquisition and
data transmission. (c) Assembly structure of Smart Insole. (d) Smartphone App for gait parameters calculation, ADLs recognition, and results display.

IMU sensors cannot supply force related gait parameters. Since
most human motion is performed with the support of both feet,
many researches focus on the gait analysis through foot motion
measurement. F-Scan [18] is a well known commercially avail-
able insole shaped system for gait analysis. However, F-Scan
needs users to bind signal processing devices to lower limbs.
Since people prefer sensors embedded into their clothing or
accessories than wearing a technology separately [19], binding
an extra device to human body would decrease the willing-
ness of people to use this technology during everyday life.
Saito et al. [20] proposed a more integrated insole shaped
device for measuring plantar pressure during daily human
activities, which does not need to attach extra devices to
human body. However, the design of Saito et al. only includes
pressure sensors which cannot measure turning related gait
parameters. Wang et al. [21] further improved the design of
Saito et al. by adding an IMU sensor which makes it possi-
ble to measure comprehensive gait parameters. However, one
shortcoming of these two designs is that there are only sev-
eral pressure sensors on the insole, which makes it difficult to
measure important force related gait parameters such as the
center of pressure. Another shortcoming is that the pressure
sensors are nonuniformly deployed on fixed locations, which
makes the design noncustomizable. However, noncustomizable
designs would significantly increase the manufacturing cost,
because different designs have to be built to meet personalized
requirements on different shapes and sizes. To decrease the
manufacturing cost, the solution of many commercial products
is to make a tradeoff by supplying limited sizes to consumers.
For example, both ARION smart insole [22] and Stridalyzer
insole [23] only supply four different sizes. However, it is
obvious that limited sizes cannot ensure a good fit for peo-
ple with different foot shapes and sizes, then influence the
measurement accuracy.

In addition to the shortcomings of wearable system design,
one research gap is that most existing wearable solutions
for gait analysis only focus on measuring gait parameters in
free-living environments, which is not enough to supply under-
standable gait parameters for clinicians. Since both diseases
and activities could change the pattern of gait parameters,

without knowing the corresponding activities, the measured
gait parameters cannot be used in clinical applications.

To address the shortcomings related to system design,
an unobtrusive and customizable Smart Insole system was
proposed for a comprehensive gait analysis. To fill the gap
that limits the application of gait analysis in free-living envi-
ronments, the new technologies of gait analysis and activity
recognition were explored to realize “gait analysis in terms of
ADLs.”

III. METHOD

In this section, details of the Smart Insole system, algo-
rithms for gait parameters calculation, and activity recognition
were specified.

A. Smart Insole System Design

In this article, Smart Insole is an important system for real-
izing “gait analysis in terms of ADLs.” Fig. 2 shows the
hardware system [Fig. 2(a)–(c)] for signal acquisition and data
wireless transmission, and the software system [Fig. 2(d)] for
gait parameters calculation, ADLs recognition, and results dis-
play. Fig. 2(a) shows an insole shaped pressure sensor array for
measuring the plantar pressure signal. A commercially avail-
able piezo-resistive fabric material made by EeonTex was used
for designing the pressure sensor array [24]. Just like nor-
mal fabric materials, it is thin (with a thickness of 0.8 mm),
light-weight (with a weight of 170 g/m2), and flexible. One
limitation of this material is that its pressure sensitivity is not
perfectly uniform. As shown in a former research [25] about
the pressure sensor array, the mean and maximum variance
of the pressure sensitivity was 4.6% and 7.9%, respectively.
Although this piezo-resistive fabric is not perfect, it might
be good enough for applications focusing on the pattern of
GRF [25]. To decrease the manufacturing cost, a customiz-
able design was applied to the pressure sensor array, which
makes it possible for the sensor array to be trimmed to fit
feet with sizes from 5.5 U.S. to 14 U.S. [25], [26]. Up to 96
pressure sensors were uniformly distributed on the pressure
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sensor array, which ensures a high spatial resolution for plan-
tar pressure measurement. For details of the design method and
mechanism of the pressure sensor array, please refer to the for-
mer research [25]. Fig. 2(b) shows a circuit board for signal
acquisition and data wireless transmission. A flexible printed
circuit (FPC) connector is used to connect the pressure sensor
array for pressure signal acquisition. The IMU sensor, includ-
ing accelerometer and gyroscope, is used to measure the foot
motion. A microcontroller unit (MCU) is used to control the
process of signal acquisition and data transmission. The sam-
ple rate for sensor data acquisition is 30 Hz. Wireless module
(classic Bluetooth) is used to transfer the acquired sensor data
to a smartphone App for further processing. Considering the
fact that people prefer sensors embedded into their clothing or
accessories than wearing a technology separately [19], all the
hardware systems were packed into an insole shaped package
which makes the use of Smart Insole similar to normal insoles.
This unobtrusive design would contribute to the measure of
nature gait during everyday life. The assembly structure shown
in Fig. 2(c) describes the method to assemble a Smart Insole
that looks the same as a normal insole from outside. Smart
Insole is with a four-layer design. The insole shaped package
shown on the third layer is the main structure of Smart Insole.
The Li-ion battery (3.7 V, 1000 mAh) and circuit board shown
on the fourth layer are protected with 3-D printed cases and
embedded into the green area of the insole package. The pres-
sure sensor array shown on the second layer is attached to the
top surface of the insole package. Finally, a fabric material
shown on the first layer is used to cover the pressure sen-
sor array to ensure the wear comfort. The smartphone App
shown in Fig. 2(d) is used to further process (gait parameters
calculation, ADLs recognition) the sensor data acquired from
the Smart Insole hardware, and display the processed results.
Two screenshots were used to show parts of the App functions.
The screenshot on the left shows a real-time plantar pressure
map. The screenshot on the right demonstrates the effect of
“gait analysis in terms of ADLs.” The plot shown was the
GRF measured during a sequence of different activities. Since
different activities could be recognized automatically by the
smartphone App, the GRF measured during different activi-
ties were marked automatically with different colors to make
it easy for clinical professionals to understand the results.

B. Gait Parameters Calculation

As shown in Table I, Smart Insole could quantify gait
performance with 26 gait parameters. In this section, the
method for estimating BW and algorithms for calculating gait
parameters, including temporal gait parameters, force related
gait parameters, gait variability, gait symmetry, and turning
related gait parameters were specified.

1) Body Weight Estimation: Different people have differ-
ent BW which could directly influence the measured GRF and
other force related gait parameters. However, changes in gait
parameters caused by BW do not correlate with an abnormal
gait. In addition, the pressure sensitivity of the piezo-resistive
material used for plantar pressure sensing is not perfectly uni-
form, which could lead to differences in the GRF measurement

with different Smart Insoles. Therefore, to avoid the influ-
ences of BW on gait parameters presentation and avoid the
influences of the nonuniform pressure sensitivity on the GRF
measurement, BW was used to normalize GRF.

Before using Smart Insole for gait analysis, the BW should
be estimated with the left and right Smart Insoles separately.
In the process of measuring BW, the people should wear
a pair of Smart Insole without carrying additional load and
stand steadily with one foot for a while (e.g., 5 s), then
stand steadily with the other foot for the same time. Finally,
the mean GRF of the left and the mean value of the right
Smart Insole in the measuring time were the BW for normal-
izing the GRF measured with the left and right Smart Insole,
respectively.

2) Temporal Gait Parameters: The gait cycle of a foot
includes a stance phase when the foot is in contact with the
ground, and a swing phase when the foot is in the air. During
the swing phase, since there is no extra pressure applied on
the pressure sensor array except for some minor contact pres-
sure, the measured GRF would be small. When it comes to the
stance phase, the force to support the BW and secure the safe
movement would be applied to the pressure sensor array, and
then the measured pressure would be significantly increased.
Based on these characteristics, some published researches used
a fixed threshold to discriminate the stance and the swing
phase [27]. However, a fixed threshold does not work well
on the GRF samples measured at the very start or end stage
of a stance phase, when the amplitude could be below the fixed
threshold. In this article, an adaptive threshold was proposed
based on the amplitude of swing samples to discriminate the
stance and the swing phase. Fig. 3(a) shows the GRF during
a normal walking activity. As expected, samples of GRF dur-
ing the swing phase are near zero, and increased significantly
during the stance phase. To find the adaptive threshold, a fixed
threshold (e.g., 0.0300 BW) was used to roughly discriminate
the stance and swing samples. Black dots indicate the GRF
samples over the fixed threshold. Red dots indicate the first and
last GRF sample of a stride that are below the fixed threshold,
and blue dots indicate the remaining GRF samples that are
below the fixed threshold. Since the samples indicated with
red dots could be the start or end of a stance phase, they were
excluded from the data set for adaptive threshold calculation.
Therefore, only the samples indicated with blue dots were used
to estimate the adaptive threshold based on (1). nswing indicates
the number of swing samples used for the adaptive threshold
estimation, and σswing indicates the standard deviation of the
GRF during the swing phase. The distribution of GRF in the
swing phase is assumed to fit normal distribution. According
to the empirical rule of normal distribution, nearly all the data
(99.73%) would lie within three standard deviations of the
mean. Therefore, the GRF samples higher than the adaptive
threshold are more likely to be samples of a stance phase

Adaptive Threshold = 1

nswing

nswing∑

k=1

GRFk + 3 ∗ σswing. (1)

As shown in Fig. 3(b), there are five samples located
between the fixed and adaptive (i.e., 0.0099 BW) threshold.
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TABLE I
GAIT PARAMETERS PROVIDED BY SMART INSOLE

Since the amplitude of these five samples is much higher
than the amplitude of the swing samples indicated with blue
dots, these five samples should belong to the stance phase.

Therefore, the adaptive threshold has a better performance than
the fixed threshold for discriminating the stance and swing
samples.
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Fig. 3. Dynamic threshold for discriminating stance and swing phases.
(a) GRF measured during normal walking. (b) Zoomed in the plot of (a)
in range [0 0.0600] to show the effect of the adaptive threshold. The green
line indicates the trend of GRF. Each dot indicates a sample of GRF. The
black dashed line indicates a regular fixed threshold and the red dashed line
indicates an adaptive threshold. Black dots indicate the GRF samples over the
fixed threshold. Red dots indicate the first and last GRF samples of a stride
that are below the fixed threshold, and blue dots indicate the remaining GRF
samples that are below the fixed threshold.

For the other temporal gait parameters, such as “double sup-
port time,” “single support time,” “gait cycle time,” and “step
time,” the right foot was taken as an example to show the cal-
culating method. As shown in Fig. 4, the double support phase
occurs when both feet are in the stance phase, and the single
support phase occurs when only one foot is in the stance phase.
The gait cycle time is defined as the time interval between two
successive occurrences of one of the repetitive events (e.g., ini-
tial contact) [1]. Step time could be calculated from the initial
contact of one foot to the subsequent initial contact of the
other foot.

3) Ground Reaction Force Related Gait Parameters:
The characteristics of GRF are important indicators, which can
supply additional insights into the pathological gait [28], [29].
Researches showed that the pattern of GRF during walking
could reflect the stage of the PD [30]. For the early stages
of PD, the amplitude of both GRF peaks (weight-acceptance
pressure and push-off pressure shown in Fig. 5) are reduced,
and the GRF would have only one single narrow peak in the
advanced stages [31]. In addition, researches about the pres-
sure distribution on subareas of the foot showed that, for the
diabetic neuropathic foot, there is an increase in the pressure of
both the forefoot and hindfoot, and the imbalance of pressure
distribution would be increased with the degrees of neuropa-
thy [32]. CoP is commonly used to evaluate balance control,

Fig. 4. Method of calculating temporal gait parameters. The black and red
line indicates the GRF of the left and right foot during walking, respectively.
The areas highlighted with green, blue, and orange colors indicate the double
support phase, single support phase, and swing phase, respectively.

Fig. 5. Locating weight-acceptance force peak, mid-stance force valley, and
push-off force peak. From left to right, the red points indicate the location of
the weight-acceptance peak (GRF1), mid-stance valley (GRF2), and push-off
peak (GRF3), respectively. The blue, red, and orange background indicate the
time period corresponding to the first half stance, the second half stance, and
the swing phase, respectively.

foot function, and treatment efficacy [33], [34]. In this arti-
cle, 13 force related gait parameters (shown in Table I) were
obtained from each foot.

Two peaks and a valley can be observed in the GRF plot
during walking. This is caused by the fact that during walking,
the center of mass (COM) of the body has a cyclic acceler-
ation characteristic in the vertical direction, which is directly
related to the GRF. In the early stance (weight-acceptance),
GRF usually exceeds BW to accelerate COM upward. During
mid-stance, the GRF falls below BW to make COM accel-
erate downward. During the late stance (push-off), GRF is
increased again to accelerate the COM upward [35]. Fig. 5
shows the method of finding weight-acceptance peak (GRF1),
mid-stance valley (GRF2), and push-off peak (GRF3). For a
normal gait cycle, the weight-acceptance and push-off phase
takes a similar time length [36]. Therefore, the stance phase
was separated into two equal parts first, then the maximum
force in the first part is recognized as the weight-acceptance
force, and the maximum force in the second part is recognized
as the push-off force. Finally, the mid-stance force could be
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Fig. 6. Location of CoP during the stance phase of the (a) left and (b) right
strides. Each grey point indicates one CoP location. Gray level of each point
indicates the time when the CoP point occurs. The color bar on the right
shows the relation of the grey level and the occurrence time. Black color
indicates the beginning of the stance phase, and a whiter color indicates the
end of the stance phase. Each black dashed circle indicates the location of
a pressure sensor. Red dashed lines indicate the outline of a 10.5 U.S. sized
insole used in this article.

located by finding the minimum force between the location of
weight-acceptance and push-off force.

The weight-acceptance rate and push-off rate could be cal-
culated with the equation F/t. For the weight-acceptance rate,
F is the weight-acceptance force, and t is the time length from
the beginning of the stance phase to the occurrence of the
weight-acceptance force. Similarly, for the push-off rate, F is
the push-off force, and t is the time length from the occurrence
of the push-off force to the end of the stance phase.

Horizontal and vertical coordinators of the CoP were cal-
culated with the following equations:

⎧
⎨

⎩
CoPx =

∑n
i=1 xipi∑n
i=1 pi

CoPy =
∑n

i=1 yipi∑n
i=1 pi

(2)

where CoPx and CoPy refer to the horizontal and vertical coor-
dinate of CoP, respectively; n refers to the number of pressure
sensors on each insole; x and y refer to the horizontal and
vertical coordinates of a sensor; and p refers to the measured
pressure value of a sensor. During the swing phase, since the
foot is in the air and has no pressure on the pressure sensor
array except the contact pressure, the corresponding CoP is
set to the insole center.

A novel vivid presentation method for CoP was shown in
Fig. 6. Fig. 6(a) and (b) shows the location of CoP during
the stance phase of a left and a right stride, respectively. The
gray level of each point indicates the time when the CoP point
occurs. Therefore, Fig. 6 could supply not only the information
about CoP trajectory, but also information about how the CoP

Fig. 7. Pressure measurement for forefoot, midfoot, and hindfoot.
(a) Highlights forefoot, midfoot, and hindfoot areas with blue, green, and
red colors, respectively. The black dot in each area indicates the location with
the highest pressure in that area during a stride. The Red dashed line indicates
the outline of the 10.5 U.S. sized insole used in this article. (b) Measured GRF
of each area during a gait cycle.

location changes over time. Since the sample rate for the pres-
sure sensor array is fixed, Fig. 6 could also supply an intuitive
view of CoP velocity at different locations.

To study the pressure distribution on subareas of the foot,
the foot was separated into three areas: 1) forefoot; 2) midfoot;
and 3) hindfoot [37]. In foot anatomy, the forefoot consists of
phalanges and metatarsal bones; the mid-foot contains navic-
ular, cuboid, and cuneiform bones; and the hindfoot consists
of talus and calcaneus bone [38]. As shown in Fig. 7(a), areas
of the pressure sensor array corresponding to the forefoot,
mid-foot, and hindfoot were highlighted with blue, green, and
red background, respectively. Black dots indicate the sensor
location with the highest pressure in the corresponding areas.
Fig. 7(b) shows the recorded pressure of different areas during
a gait cycle.

4) Gait Variability: Gait variability is defined as changes in
gait parameters from one stride to the next [39]. According to
a common assumption, gait variability is inversely related to
gait stability [40]. There is growing evidence shows that gait
variability is associated with falling [41], [42], frailty [43],
and neuro-degenerative diseases such as PD [2]. In addi-
tion, researches showed that degrees of gait variability were
increased with the severity of diseases, such as PD and
Huntington’s diseases, which made it a sensitive parameter
to evaluate the therapeutic interventions [2].

Coefficient of variation (CoV) is commonly used to describe
the variability of gait parameters, which could be calculated
with the following equations [44]:

⎧
⎪⎨

⎪⎩

CoV = σ
μ

∗ 100%

μ = 1
N ∗ ∑N

i=1(Vi)

σ =
√

1
N

∑N
i=1(Vi − μ)2

(3)

where, V indicates the gait parameter used for calculating
CoV, N indicates the number of samples of a gait parame-
ter used for the calculation, μ and σ indicates the mean and
standard deviation of the gait parameter.
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5) Gait Symmetry: Gait symmetry is a measure of the par-
allels between the lower limbs, which could provide a unique
insight into the walking control function [45]. Gait asymme-
try is commonly occurred in people with neurological diseases
(e.g., PD and stoke) [46], [47], single leg amputees [48], and
knee osteoarthritis [49], etc. There is growing evidence shows
that persisting gait asymmetry is associated with many neg-
ative consequences, such as challenges to balance control,
gait inefficiency, risk of overusing the nonparetic limb, and
loss of bone mineral density in the paretic limb [45], [50].
Monitoring gait symmetry could help clinicians learn about
the rehabilitation progress of the corresponding diseases and
make further treatment decisions [45]. Gait symmetry index
(SI) is calculated with the following equation [49]:

SI = 2 ∗
∣∣∣∣
Vleft − Vright

Vleft + Vright

∣∣∣∣ ∗ 100% (4)

where, Vleft and Vright indicate the gait parameters of the left
and right foot, respectively.

6) Turning Related Gait Parameters: Turning is a common
but challenging activity in daily life, which needs a com-
plex integration of different control mechanisms [51]. More
requirements on the integration of control mechanisms and a
higher level of neural control may make turning more sensitive
to diseases such as PD than linear walking [51]. This corol-
lary is supported by the fact that PD patients demonstrated a
significant slower step and a greater number of steps to finish
a turn, but no significant abnormal stride parameters during
linear walking [51].

In this article, turning related parameters, such as turn-
ing time, turning steps, turning angle, and turning angle of
each step were calculated. The start of “turning” is recog-
nized when the turning angle of double feet both exceed an
empirical threshold of 15◦. Similarly, the end of “turning” is
detected when the turning angle of double feet are less than
the threshold. The methods for calculating turning related gait
parameters were specified in Table I.

C. Activities of Daily Living Recognition

With the methods discussed in Section III-B, gait parameters
could be measured in everyday life. In this section, the activ-
ity recognition algorithm for recognizing normally occurred
ADLs, such as “sitting,” “standing,” “walking,” “running,”
“descend stairs,” and “ascend stairs” would be specified.

ADLs recognition algorithms should meet the following
requirements to enable “gait analysis in terms of ADLs”:
1) ADLs should be recognized with high accuracy; 2) differ-
ent activities should be clearly separated during the transition
of activities; and 3) ADLs recognition algorithms could run
on mobile devices such as smartphones. The first and sec-
ond requirements could ensure that when analyzing the gait
parameter of one activity, the gait parameter of the other activ-
ities could be excluded to avoid potentially misleading. The
third requirement is necessary for a mobile gait analysis solu-
tion in free-living environments. However, many published
researches about ADLs recognition with wearable systems
showed that it is challenging to recognize activities, such
as “walking,” “descend stairs,” and “ascend stairs” with a

high accuracy (e.g., 95%) [52]–[54]. In addition, sliding win-
dows were normally used to segment sequential signals for
activity recognition algorithms. Since it is common for a
sliding window to cover two different activities during the
activities transition period, it is difficult to clearly separate
different activities with sliding windows. Besides, many pub-
lished researches extracted tens of general features, such as
mean value, max value, and standard deviation to train a model
for ADLs recognition, which made it hard for the model to
run on a mobile device [52], [53].

To address the above problems, a novel and effective
method was proposed based on the characteristics of human
gait. Based on whether strides are necessary for performing
an activity, ADLs could be separated into two categories:
1) dynamic activities and 2) quasi-static activities. “Walking,”
“running,” “descend stairs,” and “ascend stairs” were recog-
nized as dynamic activities, since these activities need to be
performed with strides. On the other hand, since “sitting” and
“standing” do not consist of strides, they were recognized as
quasi-static activities.

For dynamic activities: 1) to clearly separate different activ-
ities during activities transition, a data segmentation method
using “stride” as the unit was proposed. For human gait, it
is a common sense that one can only perform one activity
during a stride. For example, one can perform “walking” or
“running” but cannot perform both “walking” and “running”
during one stride. Therefore, “stride” based data segmentation
method could clearly separate different activities. This data
segmentation method could also simplify the ADLs recogni-
tion problem in a time period to the problem of recognizing the
activity of each stride in the time period and 2) to increase
the accuracy of ADLs recognition and reduce the computa-
tion load, only three efficient features were extracted from
each stride based on human gait characteristics. These three
features were “foot contact pitch,” “foot contact pitch—GRF2
pitch,” and “percentage of double support time.” “Foot contact
pitch” is the pitch angle at the time when foot initially con-
tacts the ground, “GRF2 pitch” is the pitch angle at midstance,
which is near zero for flat surfaces and normal postures, but
shifts from zero during uneven surfaces or abnormal postures.
“Foot contact pitch—GRF2 pitch” is introduced to increase the
classification reliability. “Percentage of double support time” is
the percentage of double support time over the total gait cycle
time. Different activities have different characteristics. Fig. 8
shows the characteristics of each posture, which could be used
to discriminate the dynamic activities. Fig. 8(a)–(c) shows the
posture of “walking,” “ascend stairs,” and “descend stairs” at
the time when the foot is initially contacting the ground. It
is obvious that the position of forefoot is significantly higher
than hindfoot for “walking,” while forefoot position is signif-
icantly lower than hindfoot for “descend stairs,” and the foot
is almost flat for “ascend stairs.” These posture differences
could lead to significant differences on the value of “foot con-
tact pitch” [55]. As shown in Fig. 8(d), the character that could
be used to discriminate “running” from “walking,” “descend
stairs,” and “ascend stairs” is the “percentage of double sup-
port time.” For running, the double support phase is replaced
by the double float phase when neither foot is touching the
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Fig. 8. Characteristics for dynamic activities recognition. Pitch angle of
(a) walking, (b) ascend stairs, (c) descend stairs at the initial contact event,
and (d) the double float phase during running.

ground [56]. Therefore, the “percentage of double support
time” of “running” would be significantly lower than the other
three activities. Linear support vector machine (SVM) was
used to train an activity recognition model with these three
features for ADLs recognition.

On the other hand, for quasi-static activities, “sitting” and
“standing” could be recognized based on the measured plan-
tar pressure of both feet. When the measured total pressure
is decreased to a value of less than 0.5 BW, a timer would
be started to record a temp sitting time. If the temp sit-
ting time is longer than a time threshold (e.g., 2 s), sitting
activity is recognized from the beginning of this time period.
Similarly, when the measured total pressure is increased to a
value larger than 0.5 BW, a timer would be started to record a
temp standing time. If the temp standing time is longer than a
time threshold (e.g., 2 s), standing activity is recognized from
the beginning of this time period. In this article, an empiri-
cal threshold of 2 s was used for recognizing “sitting” and
“standing.”

IV. EXPERIMENTS AND RESULTS

In this section, experiments were designed to evaluate the
performance of gait parameters measurement and ADLs recog-
nition. To evaluate the performance of “gait analysis in terms
of ADLs,” an experiment with a sequence of ADLs was
designed to simulate the scenarios in everyday life.

A. Accuracy of the Measured Gait Parameters

To evaluate the accuracy of the measured gait parameters,
three experiments were designed to evaluate the measured
temporal gait parameters, GRF, and turning related gait param-
eters, respectively.

1) Accuracy of Temporal Gait Parameters: From the
description of the temporal gait parameters in Table I, it is
obvious that the accuracy of all the temporal gait parame-
ters, including “gait cycle time,” “step time,” “swing time,”

“stance time,” “single support time,” “double support time,”
and “cadence” relies on the accuracy of the detected initial
contact event and the last contact event. Since the initial con-
tact event is the first sample of the stance phase and the last
contact event is the last sample of the stance phase, both events
were detected with the stance phase detection algorithm. In
the experiment of evaluating the accuracy of the detected ini-
tial contact and last contact events, a subject wearing a pair of
Smart Insole walked in his comfort speed for 20 steps. During
the experiment, all the data from Smart Insoles was recorded
with a smartphone. At the same time, feet activities of the
subject were recorded with a video camera as ground truth
for evaluating the accuracy of the detected initial contact and
last contact events. Through comparing with the ground truth,
the error of the detected initial contact and last contact events
were 0.0 ± 14.1 ms and 5.2 ± 15.5 ms in terms of mean ±
standard deviation (std), respectively. Since the sample interval
of the pressure sensor array was 33.3 ms, most of the initial
contact and last contact events were detected with their near-
est samples. In other words, initial contact and last contact
events could be detected with the stance phase detection algo-
rithm with a high accuracy. This could ensure the accuracy of
the measured temporal gait parameters. For example, the error
of gait cycle time, stance time, and swing time were 1.2 ±
14.9 ms, −3.5 ± 15.6 ms, and 5.2 ± 8.0 ms, respectively. For
applications require a lower standard deviation, the sample rate
could be increased to meet the requirement.

2) Accuracy of Force Related Gait Parameters: Accuracy
of force related gait parameters are determined by the mea-
sured GRF. In this experiment, an AMTI OR6 series force
plate was used as ground truth to evaluate the GRF mea-
sured by Smart Insole. Two different activities—“walking”
and “running” were used to evaluate the reliability of GRF
measurement across activities. At the first stage of the experi-
ment, a subject wearing a pair of Smart Insole walked on the
force plate in his comfort speed for 20 steps. Then the sub-
ject repeated the same process with the “running” activity. To
align the data from Smart Insole and force plate, the subject
started the experiment by kicking the force plate with his left
heel to create a special signal that could mark the experiment
start in the data from both devices.

To compare the GRF measured by force plate and Smart
Insole, GRF of each step was normalized to [0 1]. Since the
sample rate of force plate is 1000 Hz which is much higher
than the 30 Hz sample rate of Smart Insole, GRF from the
force plate was down-sampled to 30 Hz to avoid the differ-
ences caused by the sample rate. Fig. 9(a) and (b) shows the
GRF from both force plate and Smart Insole during the stance
phase of “walking” and “running,” respectively. It is obvi-
ous that patterns of the GRF measured with force plate and
Smart Insole are similar for both “walking” and “running.”
Correlation of the GRF from the force plate and Smart Insole
was calculated with all the 20 steps for each activity, and the
mean values were 0.989 for both activities. The results indicate
that: 1) the patterns of GRF from Smart Insole and force plate
are similar and 2) Smart Insole has a stable performance on
GRF measurement across activities. In addition, from Fig. 9(a)
and (b), it is obvious that there are some differences in the
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Fig. 9. Comparison of the GRF from Smart Insole and the force plate. (a) and
(b) GRF during the stance phase of walking and running, respectively.

GRF measured by Smart Insole and force plate. One of the
causes for the differences could be the fact that sensitivity of
the piezo-resistive material is not perfectly uniform.

3) Accuracy of Turning Related Gait Parameters: Accuracy
of the turning related gait parameters depends on two aspects:
1) the performance of the turning detection algorithm and
2) the accuracy of the measured turning angles. Therefore,
the focus of this experiment is to evaluate these two aspects.
The experiment setup is shown in Fig. 10(a). Two chairs were
placed in the middle of a hallway, and the distance between
these two chairs was about 5 m. Solid black lines indicate the
straight walking path, and dashed lines indicate the turning
path. Two arrows on the dashed lines indicate the walking
direction. During the experiment, a subject walked around
these two chairs in his comfort walking speed for 20 circles.
Turning around one chair for one time, the subject would make
a turn of 180 ◦. Therefore, the subject made 40 times of 180 ◦
turning during the experiment.

Fig. 10(b) shows the turning angle of each step during
ten continuous 180 ◦ turnings. Red points indicate the turn-
ing angle of each step. Green and blue triangles indicate the
detected start and end of a turning event. The dashed line was
the threshold for detecting a turning event. The experimental
results showed that all the 40 turning events could be correctly
detected. To evaluate the accuracy of the measured turning

Fig. 10. Setup and results of the experiment for evaluating the turning related
parameters. (a) Experiment setup. (b) Turning angle of each step during ten
continuous 180 ◦ turnings. Red points indicate the turning angle of each step.
Green and blue triangles indicate the detected start and end of a turning event.
The dashed line indicates the threshold for detecting a turning event. Those
four steps in the orange background were used to show an example of the
steps between the end of two continuous turning events.

angles, the turning angle of all the steps between the end of
two continuous turning events were added up and compared
with the ground truth value which was 180. Those four steps
in the orange background shown in Fig. 10(b) is an example
of the steps between the end of two continuous turning events.
Finally, the total turning angle between the end of two contin-
uous turnings was 178.07 ± 9.46 ◦ in terms of mean ± std.
The error of the mean value is 1.93 ◦ for a 180 ◦ turning,
which is acceptable for most applications.

B. Accuracy of ADLs Recognition

Since different methods were proposed to recognize
dynamic and quasi-static activities in Section III-C, two dif-
ferent experiments were designed accordingly to evaluate the
performance of activity recognition methods.

To recognize dynamic activities, three features were
extracted to train a linear SVM classification model. To avoid
overfitting of the model over one subject, ten subjects were
involved in this experiment. During the experiment, each sub-
ject wore a pair of Smart Insole and did each activity according
to instructions. For “walking” and “running,” each subject did
each activity along a straight hallway of about 30 m for three
times. For “descend stairs” and “ascend stairs,” each subject
did each activity along a stair of nine steps for 10 times.
During the experiment, all the subjects used their comfort
gait to perform different activities. To reduce potential dis-
turbances introduced into the data set for model training and
testing, only the strides in the middle of each experiment were
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Fig. 11. Confusion matrix of the linear SVM model for dynamic activities
recognition.

Fig. 12. Distribution of the dynamic activity in the space defined by “foot
contact pitch,” “foot contact pitch—GRF2 pitch,” and “percentage of double
support time.”

used for feature extraction. To keep the balance of the data set,
50 strides were used for feature extraction for each activity of
each subject. Finally, there were 500 samples in the data set for
each activity. The performance of the linear SVM classification
model was evaluated with fivefold cross-validation.

The testing result was shown with a confusion matrix
in Fig. 11. The accuracy of “walking,” “running,” “descend
stairs,” and “ascend stairs” was 99.8%, 99.8%, 99.6%, and
100.0%, respectively. The overall accuracy is 99.8%. The high
recognition accuracy across different activities indicates that
the linear SVM model trained with these three features (i.e.,
“foot contact pitch,” “foot contact pitch—GRF2 pitch,” and
“percentage of double support time”) could meet the require-
ment of recognizing dynamic activities. Fig. 12 provides an
intuitive view of the distribution of “walking,” “running,”
“descend stairs,” and “ascend stairs” in the space defined by
all the three features. It is obvious that these four dynamic
activities could be well separated by these three features.

Fig. 13. GRF summation of both feet during “sitting” and “standing” activi-
ties. The dashed line indicates the threshold (0.5 BW) for recognizing “sitting”
and “standing.” Magenta and black lines indicate the data corresponding to
the recognized “sitting” and “standing” activities, respectively.

TABLE II
GENERALIZATION PERFORMANCE ACROSS PEOPLE

Fig. 14. Experiment for performance evaluation in practice. Circle one to
circle four indicates four locations on the experiment path. Circle one and
four indicate the start and end of the experiment path. Circle two and three
indicate the end of the straight path and the start of stairs. From circle two
to circle three, the subject should make one 90 ◦ turning and walk several
steps. Black icon persons indicate the activities used to move from circle one
location to circle four, and red icon persons indicate the activities used to
move from circle four to circle one.

To evaluate the generalization performance of the method
across people, fivefold cross-validation was done in terms of
different subjects. Ten subjects were shuffled randomly, and
split into five groups. For each test, the data of four groups
of subjects were used for model training and the data of the
remaining two groups of subjects was used for testing. As
shown in Table II, accuracy of the tests from test 1 to test 5
was 100.00%, 99.75%, 99.50%, 100.00%, and 98.50%, respec-
tively. The high accuracy across all these five tests indicates
that the linear SVM model trained with these three features
has a good generalization performance.
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Fig. 15. Effect of “gait analysis in terms of ADLs” shown with “GRF,” “gait cycle time,” and “turning angle” measured during different ADLs. Different
colors indicate the parameters measured during different activities.

In the experiment of evaluating the method for recognizing
quasi-static activities (i.e., “sitting” and “standing”), a sub-
ject wore a pair of Smart Insole and performed both activities
according to instructions. The experiment was started with a
5 s of sitting, subsequently, the subject stood up and kept
standing for another 5 s, then he sat down and repeated the
whole sitting-standing process for 20 times. At the same time,
activities of the subject were recorded with a video camera as a
ground truth. The experimental results showed that all the “sit-
ting” and “standing” activities could be recognized correctly.
Fig. 13 shows the GRF summation of both feet during ten
continuous “sitting” and “standing” activities. The dashed line
indicates the threshold (0.5 BW) for recognizing “sitting” and
“standing.” The lines with magenta and black colors indicate
the data corresponding to the recognized “sitting” and “stand-
ing,” respectively. It is obvious that “sitting” and “standing”
activities have a significant difference on the GRF summation
of both feet, and 0.5 BW is a suitable threshold to recognize
these two activities.

C. Gait Analysis in Terms of ADLs—Performance
Evaluation in Practice

To evaluate the performance of the “gait analysis in terms
of ADLs” in practice, a subject wearing a pair of Smart
Insoles performed a sequence of ADLs according to instruc-
tions. Fig. 14 shows the type of paths and activities involved in

the experiment. The path connecting circle one and circle two
is a straight hallway, then a 90 ◦ turning on the path leads it
to location circle three which is the start of stairs, and another
90 ◦ turning on circle three leads it to location circle four
which is at the end of the stairs. Black icon persons indicate
the activities used to move from circle one to circle four, and
red icon persons indicate the activities moving in the reverse
direction. The experiment sequence was as follows: 1) At the
beginning of the experiment, the subject sat in the chair at
location circle one for a while (about 8 s); 2) stood up and
walked to location circle two, then made one 90 ◦ turning
to turn the body face circle three; 3) walked to circle three,
then made one 90 ◦ turning to turn the body face circle four;
4) walked downstairs and stood still for about 5 s; 5) turned
around and walked upstairs to circle three, then made one 90 ◦
turning to turn the body face circle two; 6) walked to circle
two, then made one 90 ◦ turning to turn the body face circle
one; 7) run several steps, then changed to “walking” when
near circle one; and 8) turned around in front of the chair and
sat in the chair. During the experiment, activities of the sub-
ject were recorded with a video camera as a ground truth for
performance analysis.

“Gait analysis in terms of ADLs” enables an intuitive
method to present the comprehensive gait analysis results.
As shown in Fig. 15, different colors were used to highlight
the gait parameters acquired during different activities. For
example, red and green colors indicate the gait parameters
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Fig. 16. Gait analysis in terms of straight walking. “GRF,” “Cadence,”
“CoV of cadence,” and “SI of cadence” measured during straight walking
were extracted to show the effect of gait analysis in term of one specific
activity.

acquired during the recognized “walking” and “running” activ-
ities, respectively. In addition, green and blue triangles indicate
the start and end of a turning event, respectively. “GRF,” “gait
cycle time,” and “turning angle” of the left foot were taken as
examples to show the effect of the “gait analysis in terms of
ADLs.”

As discussed in Section III-B3, the variance of gait param-
eters is associated with falling, frailty, and neuro-degenerative
diseases. However, except for diseases, other factors, such as
the changes of activities, turning events, etc. could increase
gait variance. As shown in Fig. 15, it is obvious that when the
activity was changing from “walking” to “descend stairs,” the
gait cycle time was different from normal walking or “descend
stairs.” In addition, during the first turning event, the gait cycle
time was significantly increased. With the help of “gait anal-
ysis in terms of ADLs,” it is easy for clinical professionals to
see whether the changes of gait parameters were caused by
activities or diseases.

Comprehensive results shown in Fig. 15 supply an intuitive
view of the gait parameters measured during different activ-
ities. In addition to the comprehensive results, “gait analysis
in terms of ADLs” makes it possible for clinical professionals
to extract the gait parameters corresponding to any specific
activity. As shown in Fig. 16, gait parameters corresponding
to straight walking were extracted for analysis individually.
“GRF,” “Cadence,” “CoV of cadence,” and “SI of cadence”

were taken as examples to show the gait parameters in the
straight walking activity. Compared with the comprehensive
view, gait analysis in terms of a specific activity could make
it easy to get focus on the gait performance during one specific
activity, and avoid the disturbance of other activities.

V. DISCUSSION

The experimental results showed the accuracy and reliability
of the algorithms for gait parameters calculation and ADLs
recognition. The experiment with a sequence of ADLs showed
the ability of “gait analysis in terms of ADLs” to realize gait
analysis in everyday life.

One advantage of “gait analysis in terms of ADLs” is to
contribute to the disease diagnosis in early stages. Taking PD
for example, for the early stages of PD, the symptoms of the
disease are mild, and the locomotor and balance problems
are negligible or absent [51]. However, PD patients demon-
strated significant slower step and greater number of steps
to finish a turn. In addition, for the early stages of PD, the
amplitude of both GRF peaks is reduced. Through wearing
Smart Insole in everyday life, the gait performance during
different ADLs of a subject could be recorded and analyzed
separately. For PD diagnosis, it is convenient to extract all the
gait parameters measured during “turning” and analyze the
turning performance with gait parameters, such as “turning
steps,” “turning time,” “turning angle,” etc. Besides, to check
the amplitude of both GRF peaks, “weight-acceptance force”
and “push-off force” during the “walking” activity could be
extracted for analysis individually.

In addition to gait parameters, “gait analysis in terms of
ADLs” could also supply information about mobility which is
important for clinical applications. Through monitoring ADLs
continuously, changes of the mobility across the day and week,
the response of the mobility to interventions, and the influ-
ence of environments on mobility could be measured [57].
Researches showed that mobility assessment in everyday life
provides information about disease progression and the effec-
tiveness of rehabilitation [58]. Moreover, the sequence of
different ADLs in time could also reveal potential health prob-
lems. For example, “standing” or “sitting” in the middle of
“ascend stairs” or “descend stairs” may indicate frail.

In this article, to show the ability of the Smart Insole to
do researches about plantar pressure on the foot subareas, the
pressure sensor array was segmented with the most popular
used method into three areas: 1) forefoot; 2) midfoot; and
3) hindfoot according to the foot anatomy. Since there are
96 pressure sensors uniformly distributed on the sensor array,
which ensures a high spatial resolution, the pressure sensor
array could support different segmentation methods according
to different research needs.

With the development of the Internet of Things (IoT) in the
healthcare field, wearable technologies have shown the poten-
tial to monitor many other health related vital signals, such
as electromyogram (EMG) [59] and ECG [60] in a free-living
environment. However, similar to gait analysis, most of the
published researches only focused on demonstrating the ability
to measure signals in a free-living environment, but ignored an
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important fact that the measured signals would be influenced
by both diseases and ADLs. Without knowing the correspond-
ing activities, the measured signals cannot be used for clinical
applications. To address this problem, the method—“gait anal-
ysis in terms of ADLs” could be applied to these health related
signals and realized physiological parameters monitoring in
terms of ADLs.

VI. CONCLUSION

In this article, a novel gait analysis method—“gait analy-
sis in terms of ADLs”—was proposed to realize gait analysis
in everyday life. Twenty six gait parameters were extracted
to show the ability of Smart Insole to realize a comprehen-
sive gait analysis. A novel activity recognition algorithm was
proposed based on characteristics of human gait, which real-
ized a high recognizing accuracy with low computation load.
Compared with the traditional wearable gait analysis meth-
ods, “gait analysis in terms of ADLs” could not only measure
gait parameters during ADLs, but also indicate the activities
of the measured parameters, which makes the measure gait
parameters understandable for clinical professionals.
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