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Smoking Cessation System for Preemptive
Smoking Detection

Gabriel Maguire, Huan Chen™, Rebecca Schnall, Wenyao Xu"', and Ming-Chun Huang

Abstract—Smoking cessation is a significant challenge for many
people addicted to cigarettes and tobacco. Mobile health-related
research into smoking cessation is primarily focused on mobile
phone data collection either using self-reporting or sensor mon-
itoring techniques. In the past five years with the increased
popularity of smartwatch devices, research has been conducted to
predict smoking movements associated with smoking behaviors
based on accelerometer data analyzed from the internal sen-
sors in a user’s smartwatch. Previous smoking detection methods
focused on classifying current user smoking behavior. For many
users who are trying to quit smoking, this form of detection may
be insufficient as the user has already relapsed. In this article, we
present a smoking cessation system utilizing a smartwatch and
finger sensor that is capable of detecting presmoking activities
to discourage users from future smoking behavior. Presmoking
activities include grabbing a pack of cigarettes or lighting a
cigarette and these activities are often immediately succeeded
by smoking. Therefore, through accurate detection of presmok-
ing activities, we can alert the user before they have relapsed.
Our smoking cessation system combines data from a smartwatch
for gross accelerometer and gyroscope information and a wear-
able finger sensor for detailed finger bend-angle information.
We compare the results of a smartwatch-only system with a
combined smartwatch and finger sensor system to illustrate the
accuracy of each system. The combined smartwatch and finger
sensor system performed at an 80.6% accuracy for the classifi-
cation of presmoking activities compared to 47.0% accuracy of
the smartwatch-only system.

Index Terms—Activity recognition, finger sensor, presmoking
activities, smartwatch sensor, smoking cessation.
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I. INTRODUCTION

N THE United States, tobacco kills more people annually

than alcohol, illegal drugs, AIDS, murders, and suicides
combined [1]. One in seven U.S. adults (34.1 million) smoke
cigarettes and annual smoking-related costs total approxi-
mately $170 billion [1]. Many complex factors led tobacco to
hold the place that it does today, including the legality, corpo-
rate lobbying [2], social acceptance [3], and addictiveness [4].
These factors create large barriers for individuals who are try-
ing to quit smoking. Many current tobacco users desire to quit
but require external guidance and motivation [5]. Wearable
technology has the potential to help current users to achieve
their smoking cessation goals through activity monitoring and
real-time alert notifications [6].

The ubiquity of wearable devices and smart connected
devices [7] has led to the development of applications aimed
at reducing tobacco use through activity monitoring. Previous
studies have used wrist-mounted smartwatch devices to collect
and analyze motion data for smoking gestures. Chen et al. [8]
demonstrated the ability to distinguish similar gestures using
a wrist motion-sensing device for each forearm with an over-
all smoking activity detection accuracy of 72.6% when tested
against similar activity data. To this point, wearable smoking
detection methods have focused on classifying current smok-
ing behaviors, meaning that at the time of detection by the
smartwatch, the user has already started smoking. While this
method of delayed detection may keep some users motivated
to limit their future smoking, it may not be an effective tool
to prevent smoking relapse.

To effectively prevent smoking relapse, a user must be noti-
fied before the act of smoking. Therefore, it is important
to shift the focus of detection from smoking to presmok-
ing activities, such as grabbing a pack of cigarettes or
taking an individual cigarette from a pack. However, this
poses additional classification problems when using smart-
watch accelerometer data because the presmoking activi-
ties often involve fine motor skill finger movements that
are not easily detected by a wrist-mounted accelerome-
ter. For example, the previous detection of current smok-
ing gestures relied upon large arm movements where the
user would bring the cigarette to their mouth or take
the cigarette out of their mouth and let their arm fall
back down. Such gross arm movements are easily detected
by a wrist-mounted smartwatch. In comparison, grabbing
a pack of cigarettes from the table and pulling out an
individual cigarette are a more difficult detection task for
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a smartwatch because these devices do not detect finger
movements.

The purpose of this work was to develop a custom wearable
finger bend-angle sensing device in combination with a smart-
watch smoking detection system to enable a more accurate
classification of presmoking behavior. We have also integrated
a wearable air quality sensing device capable of contextual-
izing smoking behavior and reducing false positive smoking
notifications. Our wearable finger sensing device provides con-
stant data monitoring of the bend angle of the index finger.
The finger sensing device uses Bluetooth LE for data transmis-
sion and wireless charging making it completely wireless. We
perform real-time synchronization of the data collected from
the smartwatch and the custom wearable finger sensor using
an Android smartphone application. Finally, we analyze the
collected data using a neural network classifier trained on a
custom testing data set and notify the user via the smartphone
application if smoking or presmoking activity is detected.

II. RELATED WORKS

Research into the field of human grasp recognition and
prediction applies directly to human—computer interaction and
is an integral part of robotic or prosthetic control and reha-
bilitation [9]. The extant literature has focused on two main
areas of data acquisition for gesture recognition: 1) video data
and 2) sensor data.

A. Video-Based Grasp Recognition

Many researchers have studied vision-based approaches to
grasp recognition often including depth information from a
stereo camera or low-cost system like a Kinect [10]. However,
these vision-based approaches are restricted by the field-of-
view of the camera and can encounter difficulties due to
occlusion [11]. Taverne et al. [12] have attempted to blend
wearable sensors and fixed video data by creating a forearm-
mounted camera to predict hand preshaping for a given set of
objects. Preshaping is the transition of the hand and fingers in
preparation for grasping an object [13]. When generalizing the
results of their grasp recognition model, Taverne ef al. [12]
reached per frame accuracies of up to 89%, which demon-
strates the functionality of such a system. The size and
placement of the current device can impede normal movement;
however, Taverne et al. [12] discussed in future real-world
applications that these factors could be optimized for improved
usability.

B. Sensor-Based Grasp Recognition

The other prominent area of grasp recognition research
focuses on sensor data, which often comes in the form of
accelerometer or bend-angle sensors. As opposed to video
data, which is typically captured from a fixed location on
the subject’s body, sensor data are primarily collected through
wearable devices. There are many commercially available
wearable sensor gloves on the market. Commonly available
gloves include the CyberGlove, which provides 18-22 resistive
bend-angle sensors, and the SDT Data Glove, which contains
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either 5 or 14 resistive bend-angle sensors. Both of these com-
mercially available options cost above $1000 depending on
the model, making them only feasible in specialized research
applications. De Pasquale [14] provided a comprehensive look
at the recent advancements in wearable glove technology
related to medical applications, which cover the variation in
sensor types and application difficulties and underline the
potential benefits of these technologies for future medical
research. Many of these wearable gloves were developed with
artificial and virtual reality in mind, but have proved integral
to research in medical health and rehabilitation.

C. Low-Cost Sensor Gloves

Due to the high cost of a commercial wearable sensor
glove, researchers have developed low-cost solutions with
overall angle error within 5° of their commercial counter-
parts. The resistive bend-angle sensor technology is commonly
implemented for wearable sensor gloves because of its sim-
plicity, availability of resources, and low cost. Gentner and
Classen [15] and Adnan et al. [16] showed that low-cost
wearable resistive bend-sensor gloves can be used to sense
finger bend-angle within 5° of error. More recently, the capac-
itive sensor technology has been implemented in wearable
gloves, which has advantages over resistive sensors in the
linearity of measured data for calibration of the device and
reduced hysteresis [17]. Glauser er al. [18] demonstrated a
glove developed using an array of capacitive silicone stretch
sensors that boasts a 35% accuracy improvement over current
state-of-the-art sensor gloves including the CyberGlove.

D. Capacitive Bend-Angle Sensing

Resistive bend-angle sensor error accumulates with finger
digits farther from the hand because the calculation of the
next angle depends on the previous angle. This is not true
for the capacitive sensors because each bend angle is a mea-
sure of capacitance at the sensor that is independent of all
other sensors. The ShArc sensor developed by Shahmiri and
Dietz [19] took a slightly different approach to capacitive
bend-angle sensing. Instead of using capacitive stretch sensors
as Glauser er al. [18] that collects measurements by detecting
the change in material properties under a given amount of
strain, the ShArc sensor uses a geometric sensing technique
that translates the change in capacitance due to a physical
shift in two pads of a flexible parallel plate. The geometric
sensing technique results in a more direct measurement of
angular changes. The ShArc sensor was developed to provide
a low-cost solution for multibend curve sensing [19].

E. Grasp Recognition Models and Data Sets

The previous discussion focused on the development of data
collection methods for hand preshaping and grasp recogni-
tion. Once reliable data have been collected, the data must be
examined and learned to determine which data patterns corre-
spond to which physical motions. Research papers focused on
developing a grasp prediction model often start by collecting
data with a commercially available glove, like the CyberGlove,
bypassing the need to develop a possibly unreliable alternative.
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However, Nathan et al. [20] developed both the data collection
device and a thumb and index finger-based grasp prediction
model. Much research has focused on developing grasp recog-
nition models based on finger joint angle data, as opposed
to position markers or accelerometer data [21]-[26]. Each of
these papers presents a different method to take finger angle
measurements as input data and determine the object being
grasped. They include multiple regression models, latent space
mapping into a regression model, and neural network-based
approaches. Chauhan and Sebastian [22] developed two unique
prediction models based on the HUST finger and hand motion
data set and validated their findings against experimental data
collected from a commercial wearable glove.

The HUST data set provides a comprehensive database
of hand motion data from 30 able-bodied subjects. Each
subject performed 33 unique tasks, which were taken from
the activities of daily living. Each task was repeated using
three variations of object sizes, and each new object was
repeated three times. Data collection was performed using the
CyberGlove. Each trial in the data set contains timestamped
information on the angle measurement in radians from 16
unique bend-angle sensors on the CyberGlove. Of the 16 sen-
sors recorded, there are three per finger and thumb, and one
additional sensor between the thumb and index finger. The
HUST data set can be best utilized to develop and test grasp
prediction and recognition algorithms.

F. Grasp Recognition for Smoking Cessation

Smoking detection is a well-studied topic in activity recog-
nition due to its potential positive health impact. Previous work
in smoking cessation research has focused on self-reporting-
based strategies where a user is prompted throughout the day
to report on their smoking behavior and mobile devices that
attempt to classify smoking activity from sensor data. With the
increased popularity and availability of smartwatch devices,
they have become a common tool to collect wrist movement
data that can shed light on smoking activity. Shoaib et al. [27]
presented a smartwatch-based smoking detection method that
notifies the user when it has detected smoking activity to cor-
rect behavior and hold the user accountable. Chen et al. [8]
presented a smoking detection mobile application that is con-
nected to two armband sensors, which provide a constant
stream of data to the smartphone to monitor for smoking
activity. The methods implemented by Chen et al. [8] and
Shoaib et al. [27] attempted to classify smoking behavior while
a person is smoking. Therefore, these systems detect smok-
ing behavior after the participant has relapsed and started to
smoke indicating the need for users to be alerted to poten-
tial smoking behavior before they start to smoke. Currently,
there is no published work that documents the existence of a
system that detects presmoking behavior through sensor-based
learning methods. In this article, we will present an embed-
ded finger bend-sensing device based on the capacitive ShArc
bend-angle sensor that can be used to enhance presmoking
activity detection when combined with a standard smartwatch
detection method.
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Fig. 1. Smoking cessation system overview diagram.

III. SYSTEM OVERVIEW

The smoking cessation system includes three main compo-
nents: 1) the smartwatch device for basic smoking detection;
2) the wearable finger sensor for comprehensive smoking and
presmoking detection; and 3) the Android mobile application
used to compile and analyze the incoming data and provide
alerts for the smoker. An overview diagram of the combined
smoking cessation system is shown in Fig. 1.

A. Smartwatch for Basic Smoking Detection

The smartwatch, highlighted in Fig. 3, acts as the mandatory
sensor peripheral for the smoking cessation system. The smart-
watch is responsible for the collection of accelerometer and
gyroscope information on the gross arm and wrist movements
of the user. All the information collected by the smartwatch is
streamed directly to the smartphone over a Bluetooth connec-
tion. To optimize the transmission speed for real-time activity
detection, we have capped the throughput on the communica-
tion line to avoid significant buffering of data collected on the
smartwatch. By limiting the data rate to approximately one
complete accelerometer and gyroscope reading every 110 ms,
we can eliminate significant latency due to buffering during
the transmission process.

In comparison to the wearable finger sensor, the smart-
watch excels at collecting general information on the activity
of the user. Orientation and acceleration information pro-
vides us with a solid framework for activity detection. Large
body movements, such as walking or running, can easily be
classified using the information from the smartwatch alone.
As discussed above, researchers like Shoaib et al. [27] have
achieved smoking detection results between 90% and 97%
F-score using a smartwatch-based system across four possible
activity classes. These results rely on the large arm movements
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seen when moving from smoking a cigarette to resting the arm.
When dealing with smaller finger movements, such as open-
ing a pack of cigarettes, wrist-mounted accelerometer systems
will often fall short. Therefore, our goal with the smartwatch
system is to provide a baseline of activity recognition, which
can be improved with the inclusion of the wearable finger
Sensor.

B. Wearable Finger Sensor for Presmoking Detection

The wearable finger sensor acts as an additional peripheral
for the smoking cessation system. This wearable was custom
designed to provide our system with an accurate representa-
tion of the bend angle of the user’s index finger. By accurately
measuring the bend angle of the index finger, we can differ-
entiate between many similar activities that may previously
be confused with smoking. Most importantly, we have insight
into the user’s detailed finger movements, which can aid us in
the detection of presmoking activities.

There are many possible sensing techniques for a wearable
finger sensor device, including resistive and capacitive-based
sensing. For our smoking cessation system, we require accu-
rate measurement of the bend angle of the finger at multiple
points, preferably with a low cost and easily reproducible solu-
tion. Therefore, we chose to use the capacitive-based ShArc
bend-angle sensing technique, which allows for high measure-
ment accuracy, sensor customization, and simple implementa-
tion. The ShArc bend-angle sensing technique was developed
by Shahmiri and Dietz [19]. The ShArc technique uses a pair
of flexible printed circuits with pads aligned to create a series
of differential parallel plate capacitor sensors. The differential
parallel plate capacitor sensors are detailed in Fig. 2. Each
differential capacitance sensor has a transmit pad to which an
excitation pulse is applied when performing a measurement.
The resulting voltage is measured on the positive and negative
receive pads, which are used to calculate the capacitance. In
the differential capacitive sensors neutral state, both the posi-
tive and negative receive pads overlap the transmit pad in equal
proportion leading to a zero differential capacitance. However,
when the receive pads are moved in relation to the transmit
pad one pad will have a greater capacitance reading than the
other leading to a nonzero differential capacitance.

Flexible circuit polyimide

(a) Top view showing pad dimensions. (b) Side view showing spacing between transmit and receive sensor strips. (c) Dimensionally exaggerated

(b)

Fig. 3. (a) Qi wireless receiver (shown removed from system to uncover all
components). (b) Smartwatch peripheral device. (¢) Arduino Nano 33 BLE
microcontroller. (d) ShArc sensor.

The transmit and receive strips of the sensor are separated
by additional polyimide strips, which allow the transmit and
receive strips to smoothly shift in relation to each other when
a bend is applied to the sensor. Bending the sensor is similar
to bending a book and watching the end of the pages no longer
neatly align with each other. The same physical mechanism is
at play in the capacitive finger sensor. Fig. 2 shows how bend-
ing the sensor changes the overlap of the transmit pad with
respect to the positive and negative receive pads. The sensor
uses differential capacitance sensors to differentiate between
the upward and downward bending of the sensor. Therefore,
bending in a given direction is characterized by an increase or
decrease in capacitance. When this sensor is attached to the
index finger, any movement in the index finger will cause a
bend in the sensor, which will change the differential capac-
itance measured across the sensors. Using a series of four
differential capacitance sensors down the length of the finger,
we can accurately monitor the overall bend angle and shape
of the finger. The flexible sensor we developed is highlighted
in Fig. 3.
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The transmit, spacing, and receive strips of the ShArc sen-
sor must be held together to provide consistent measurements
because the capacitance measurement is directly affected by
the distance between the transmit and receive sensor pads.
Therefore, we must have a flexible sleeve that allows the sen-
sor strips to slide against each other but prevent separation. We
created a sleeve using 1.5-mm thick neoprene that spanned the
length of the sensor. We used an additional length of neoprene
inside the initial sleeve to provide extra compressive support
on the faces of the strips.

All four sensors are measured and bundled together before
being sent to the Android smartphone. The circuitry on our
wearable finger sensor performs each capacitive sensor reading
serially. Each reading takes 11 ms, so a sequential reading of
all four sensors can be completed in approximately 45 ms.
At the Android application, the finger sensor data must be
synchronized with the smartwatch data. In this situation, the
smartwatch data collection period is capped at approximately
110 ms. Therefore, we have reduced the measurement period
from 45 to 100 ms to better align with the smartwatch data
collection and avoid oversampling.

The wearable finger sensor also includes technology to
make it a completely wireless user experience. The device
comes equipped with a Qi wireless charging receiver and
a BLE-enabled microcontroller, making our wearable device
capable of wireless charging and wireless data transmission.
These devices are highlighted in Fig. 3. The Qi wireless charg-
ing standard allows our device to be compatible with the most
commonly available wireless charging devices. During charg-
ing, the Qi wireless receiver produces a 5-V output, which
is used to charge the onboard 500-mAh lithium-ion polymer
battery. The battery output voltage ranges from 3.7 to 4.2 V
and our microcontroller requires a constant 3.3-V input. We
use a switching step-up/step-down voltage regulator to con-
vert the variable battery voltage into a constant voltage source
for our components. Our device uses an Arduino Nano 33
BLE microcontroller, which is responsible for the finger sensor
capacitance measurements, data processing, and data transmis-
sion. The Arduino Nano 33 BLE is an easily implementable
and low-cost solution. Using the built-in BLE chip on the
Arduino Nano, all sensor capacitance data are streamed to the
Android application for synchronization with the smartwatch
data.

C. Android Application System Coordinator

The Android application acts as the master node in our
smoking cessation system. All information collected from the
smartwatch and wearable finger sensor peripheral devices are
sent to the Android application for synchronization, process-
ing, and activity detection.

The smartwatch transmits linear acceleration and game rota-
tion vector data. The linear acceleration data natively account
for the acceleration due to gravity using both the accelerometer
and gyroscope as their underlying sources. Likewise, the game
rotation vector data uses both the accelerometer and gyroscope
to calculate the orientation of the device with respect to a con-
stant orientation. The linear acceleration data are scaled using
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experimentally derived constants to produce output values with
a magnitude of approximately 1.5 at its estimated maximum
during activity trials. The wearable finger sensor transmits raw
24-bit capacitance data. The raw data represent capacitance
values between +4.096 pF. During processing in the Android
application, the data are zeroed using initial values and scaled
using experimental constants to produce output values with
a magnitude of approximately 1.5 at the most extreme fin-
ger bend angle. The incoming 24-bit data from the wearable
finger sensor are zeroed using initial values taken when the
finger was straight. These initial values are used to account
for the parasitic capacitances in the measurement circuitry and
system.

Synchronization is achieved by matching the incoming data
streams using timestamps within a margin of error. Incoming
disparate data that were determined to be collected within 100
ms are packaged together to create a single output row. After
aligning the smartwatch and wearable finger sensor, the final
synchronized output logs data at a frequency of approximately
8.6 Hz. The synchronized data are grouped into batches of
approximately 4.2 s and fed into the recognition model for
activity classification. If a presmoking activity is detected, the
user receives an alert notification from the application warning
them to attempt to refrain from smoking. If the system fails
to recognize a presmoking activity but recognizes a smok-
ing activity, the application also sends an alert notification to
encourage the user to refrain from smoking in the future.

The Android application implements a Tensorflow Lite
learning model to assess the collected data. Once data are
synchronized, normalized, and windowed into time segments,
it is fed into a local Tensorflow Lite model in the Android
application. To keep the computational load light for continu-
ous real-time processing, our Tensorflow Lite model uses only
four layers with one 1D-CNN, one flattening layer, and two
fully connected layers. The model design uses the 1D-CNN
layer to compile the time-series windowed data into a more
actionable format.

D. Air Quality Sensor for Smoking Contextualization

The air quality sensing wearable is an auxiliary wearable
device implemented in our smoking cessation system to help
contextualize smoking activity among a wide range of other
potential nonsmoking activities. An air quality sensing device
will allow us to utilize additional contextual data to reduce the
number of false positives when determining smoking versus
nonsmoking activities. We chose to implement a commercially
available air quality sensing device called the Atmotube PRO
that will easily integrate with our current smoking cessation
system as an additional wearable device. The Atmotube PRO
is a standalone device that can be clipped to the belt loop or
placed in the breast pocket of the user. The Atmotube PRO
measures the total concentration of volatile organic compounds
(TVOCs) and particulate matter (PM) in the surrounding air.
Over 30 different volatile organic compounds (VOCs) have
been identified in cigarette smoke as well as the release of
additional PM into the air [28]. When the patient is smok-
ing, the Amtotube PRO measures a higher concentration of
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TVOC and PM in the air. Therefore, we expect that the addi-
tional data collected from the air quality sensor will allow our
smoking cessation system to contextualize a much broader
range of smoking and nonsmoking activities than those tested
in the experiment section of this work. The air quality sensor
will also serve to reduce the number of false-positive smoking
classifications by checking the smartwatch and finger sensor
classification against the air quality readings.

The air quality data measured by the Atmotube PRO are
integrated into our smoking cessation system through a BLE
connection with the Android application. After a connection
has been established, the Android application can read the
measured TVOC and PM data as BLE characteristics broad-
casted by the Atmotube PRO. No initial message is required
to start the measurements because the Atmotube PRO contin-
uously measures the TVOC and PM concentrations. Since our
smoking cessation system uses the air quality data as a point of
reference to contextualize smoking versus nonsmoking activity
recognition, we only require measured data from the Atmotube
PRO when our system has detected smoking behavior from
the user. Therefore, our activity recognition model and data
synchronization methods that rely on the smartwatch and fin-
ger sensor data remain unaffected. Once smoking activity has
been detected, the Android application polls the air quality
data collected by the Atmotube and checks the TVOC and PM
concentrations against experimentally derived thresholds to
produce a more complete smoking activity recognition result.
If the measured air quality data read above the threshold, our
smoking cessation system proceeds as normal by classifying
the behavior as smoking and sending an alert notification to
the user. On the other hand, if the air quality data read below
the threshold, our smoking cessation system reverts its classi-
fication to nonsmoking and does not send an alert notification
to the user.

IV. EXPERIMENT

To demonstrate the capability of our smoking cessation
system to detect presmoking behavior, we compared the activ-
ity recognition results from a smartwatch-only version of the
smoking cessation system to a combined smartwatch and wear-
able finger sensor version. Data were collected from both a
smartwatch and wearable finger sensor across a constant set of
experimental activity trials. When considering the smartwatch-
only system version, we analyze only data collected from
the smartwatch sensors and disregard data collected from the
wearable finger sensor.

A. Data Collection

A representative sample of common activities from daily liv-
ing that share motion artifacts similar to that of smoking and
presmoking behavior was used to assess the accuracy of the
system. Common activities that share similar motion artifacts
to smoking are the most important to include because they are
the most likely to be confused for smoking behavior and there-
fore, provide the largest challenge for the detection algorithms
to differentiate between these activities. We also conducted
a survey of relevant smoking gesture recognition research to
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find the activities used to help inform our activity selection
[8], [27], [29]-[32]. The relevant surveyed research work did
not develop a device or study to detect presmoking activities,
so our activity selection was designed to create a scenario
similar to our research peers while making adaptions for
presmoking activity detection. We have selected seven unique
activities, including smoking gestures and gestures with simi-
lar finger and arm motions. The chosen activities can generally
be described as either smoking related or nonsmoking related.
As seen in Table I, three individual smoking-related activi-
ties cover both the act of smoking a cigarette and presmoking
activities.

When a user decides to smoke a cigarette, there is a pre-
dictable series of activities that lead up to actively smoking
a cigarette. First, the user will grab a pack of cigarettes from
somewhere like their shirt pocket or on top of the table in
front of them. The user will then continue to open the lid
of the cigarette pack, pull out a single cigarette, and light
the cigarette while holding it between their fingers. All of
these actions have taken place before the user has begun
to smoke the cigarette. The activities ‘“cigarette table” and
“cigarette pocket” cover the entire period between the first
movement with the intent to smoke a cigarette and the act
of smoking a cigarette. This includes presmoking activities
from grabbing a pack of cigarettes to lighting an individual
cigarette as described above. These two presmoking activities
are the most important to our experiment because successful
prediction will allow us to preemptively notify the user in an
attempt to actively stop them from smoking a cigarette. An
example of the “cigarette table” activity in action is shown in
Fig. 4.

Current wearable finger sensor technology can be restrictive
on the movements of the user and is impractical in certain
situations. Acknowledging this, we examine the effectiveness
of the smoking cessation system for two separate implemen-
tations. The first implementation uses only the smartwatch
peripheral for data collection, excluding the wearable finger
sensor. The second implementation uses both the smartwatch
and wearable finger sensor peripherals for data collection.

Presmoking behavior primarily includes grasping activities,
such as grabbing a pack of cigarettes or pulling an individual
cigarette from a pack. When reaching to grasp an object, the
hand and fingers automatically begin to contort to fit the shape
of the object. The movement of the hand and finger in the
expectation of grabbing an object is called preshaping. We
expect the wearable finger sensor data to provide increased
recognition accuracy of presmoking activities because of both
the finger-preshaping used when reaching to grasp an object
and the bend angle of the finger when settled on an object
grasp.

All activities were performed while collecting data from
both the smartwatch and wearable finger sensor simulta-
neously. We have developed an Android application that
establishes Bluetooth connections with the smartwatch and
wearable finger sensor to act as the main data collection and
interpretation center. The Android application is responsible
for synchronizing the incoming data from the smartwatch and
wearable finger sensor in real time and feeding the collected
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TABLE I
LIST AND DESCRIPTION OF ALL ACTIVITY RECOGNITION CLASSES

Category Activity Description
cigarette smoke | The user is actively smoking a cigarette. The user’s hand holding the cigarette moves from a resting position to
Smoking the mouth to inhale and then back down to the resting position. This motion is repeated several times.

cigarette table

The user is preparing to smoke a cigarette. The user grabs a pack of cigarettes from the table, pulls out an
individual cigarette, and lights the cigarette.

cigarette pocket

The user is preparing to smoke a cigarette. The user grabs a pack of cigarettes from their shirt pocket, pulls out
an individual cigarette, and lights the cigarette.

drink water

The user grabs a cup of water from the table and takes repeated sips from the cup of water.

Non-smoking

answer phone

The user picks up the phone from the table and brings the phone to their ear for a period of time before placing
the phone back on the table.

brush teeth

The user picks up a toothbrush from the table and brushes their teeth before returning the toothbrush to the table.

clean glasses

The user takes off their glasses and cleans them with a rag before returning the glasses to their face.

2 wm.

Smoking Cessation APP

Quattt”™”

Smoking Cessation APP

. stats
9 20

$

)

Welcome back, Xiaoliang!

Beginning of
pre-smoking motion

Our system detects
pre-smoking

Our system detects
smoking

Fig. 4. Panel depiction of the “cigarette table” activity showing each stage of detection and the smoking cessation application.

data into a local neural network for activity recognition
processing.

To demonstrate the technical capabilities of the presented
smoking cessation system, data were collected from
five participants, following Saleheen et al [30] and
Maramis et al. [33] who demonstrated their smoking cessation
systems using data collected from four and six participants,
respectively. Each activity trial was performed discretely
apart from the presmoking and smoking activities, which
are performed consecutively during data collection. All par-
ticipants performed every activity and every activity was
performed between 20 and 40 times in total accounting for
1358 time window activity data samples for training and
testing. The data collection scope is a system proof of con-
cept and serves as the basis for future large-scale clinical
implementations.

B. Data Processing

To extract useful information from the smartwatch and
wearable finger sensor, the incoming data must be syn-
chronized in our smartphone application in real time.
Synchronization is handled by grouping disparate incoming
data into 100-ms bins. The synchronized output data are
logged at a frequency of approximately 8.6 Hz.

To prepare the time-series data for the learning model, we
normalize the disparate data and apply a sliding window func-
tion to our data set, which aggregates continuous samples
into a single array to be fed to the model. Applying a slid-
ing window creates overlapping activity snapshots, which are
necessary for the model to learn the progression of sustained
activity. Each window snapshot contains 36 samples, which
cover approximately 4.2 s and each window has a 50% overlap
with the following window.

After the initial data processing, the data set is divided into a
64-16-20 split for training, validation, and holdout. The train-
ing and holdout sets were created manually to ensure an even
distribution across individual participant data. The validation
set was created automatically from the training subset using
built-in Tensorflow methods. We implemented the Adam opti-
mizer and used a learning rate of 0.001. We limited training
to 20 epochs, after which we noticed signs of overfitting from
the validation results.

C. Results

In this section, we show that it is possible to accurately clas-
sify presmoking behavior using our smoking cessation system
and we discuss the added classification benefits when using
the wearable finger sensor in combination with the smartwatch
Sensors.
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Fig. 5. Confusion matrix for the smartwatch-based smoking cessation system.
Activity explanation is given in Table I.

1) Smartwatch System: We first examine the results of
our smoking cessation system using only the data collected
from the smartwatch. The overall accuracy for this limited
model was 75.8% across all activities. From the confusion
matrix in Fig. 5, we see that our model struggled signifi-
cantly with detecting the “cigarette pocket” activity. We also
notice a significant amount of confusion across the smoking-
related activities, which is likely due to their proximity in
time because the presmoking activities are always immediately
followed by the smoking activity. The ability to differenti-
ate smoking-related activities is our main point of concern
because the accurate detection of presmoking activities is inte-
gral to the success of our system. Table II shows the precision,
recall, and F1 scores for each of the smoking-related activ-
ities. The presmoking detection activity ‘“‘cigarette pocket”
shows a 100% precision and 10% recall for an 18.2% F1
score, while the other presmoking activity “cigarette table”
is slightly better at 53.8% precision and 43.8% recall for a
48.3% F1 score. If we combine both presmoking activities
into one class label, we see a 13.8% average increase up to a
total 47.0% F1 score. This demonstrates the significant amount
of cross-categorical prediction errors between the ‘“cigarette
table” and “cigarette pocket” classes. The relatively low results
compared to the combined smoking cessation system are
expected because many of the activities involve movements
that are difficult to distinguish using only a wrist-mounted
accelerometer. However, the F1 score for the “cigarette smoke”
activity is higher at 81.3%, which shows that the smartwatch
system alone is adequate for the detection of current smoking
behavior.

2) Smartwatch + Finger Wearable System: Next, we move
on to examine the results of our smoking cessation system
when taking advantage of both the smartwatch and wearable
finger sensor. The overall accuracy for this combined model
is 85.5%, which shows a 9.7% increase over the smartwatch-
only system. From the confusion matrix in Fig. 6, we see
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Fig. 6. Confusion matrix for the smartwatch and wearable finger sensor

combined smoking cessation system. Activity explanation is given in Table 1.

TABLE 11
CLASSIFICATION RESULTS FROM SMARTWATCH-ONLY SYSTEM
AND COMBINED SYSTEM

System Activity Precision | Recall | F1
(%) (%) (%)
cigarette smoke | 72.4 92.6 81.3
Smartwatch pre-smoking” 80.0 33.3 47.0
cigarette table 53.8 43.8 48.3
cigarette pocket | 100.0 10.0 18.2
cigarette smoke | 84.5 88.2 86.3
Combined p.re-smoking* 80.6 80.6 80.6
cigarette table 62.5 93.8 75.0
cigarette pocket | 58.3 35.0 43.8

" Pre-smoking activity category is a direct combination of the ’cigarette table’
and ’cigarette pocket’ activities.

there is still difficulty discerning the “cigarette pocket” activ-
ity from the “cigarette table” activity. However, compared to
the smartwatch-only system, there is significantly less confu-
sion across the smoking and presmoking activities. Table II
details an increase in F1 scores of 5.0%, 26.7%, and 25.6%
over the smartwatch-only system in the “cigarette smoke,’
“cigarette table,” and “cigarette pocket” activities, respectively.
When combining both presmoking activities into a single class
label, we see a 21.2% F1 score increase over the average
F1 score of the presmoking activities. This shows that there
remains overlap between the presmoking activities in the com-
bined smoking cessation system. However, we can predict the
combined presmoking activities with 33.6% greater accuracy
than the smartwatch-only system. This shows that after the
inclusion of the wearable finger sensor, our smoking cessation
system can classify presmoking activity with 80.6% accuracy
and current smoking activity with 86.3% accuracy.
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V. DISCUSSION AND FUTURE WORK

We presented a smoking cessation system capable of detect-
ing smoking and presmoking activities with 86.3% and 80.6%
accuracy, respectively. Our system is the first to tackle the
problem of prediction of future smoking behavior by using the
detection of presmoking activities in a sensor-based approach.

A. ShArc Sensor Implementation

We chose to implement the ShArc bend-angle sensing tech-
nique for our wearable finger sensor because of its precision
and customizability. Our results show that the ShArc tech-
nique provided sufficient accuracy for detecting finger position
and movement; however, the construction and implementation
of the ShArc sensor itself were challenging due to several
sensitive physical attributes.

One concern is the consistent spacing between the transmit
and receive strips of the sensor. A large disparity between the
amount of copper deposited on each side of a flexible printed
circuit can create bending in the final product. The ShArc
design prints copper only on a single side of the flexible cir-
cuit. Bending occurring from the development of the flexible
printed circuit will inhibit the sensor strips from laying flat
against each other and maintaining a constant distance between
the transmit and receive pads. To counter this issue and attempt
to further compress the faces of the sensor, we added an addi-
tional rolled-up length of support neoprene inside the initial
neoprene sleeve. The additional support piece improved upon
the initial compression sleeve design; however, the underlying
bending and separation problems continue to require devices to
have meticulous and time-consuming development processes.
This creates an additional barrier to developing such devices
on a larger scale.

A second concern we have with using the ShArc technique
is the rigidity of the sensor material itself. The ShArc sensor
is created using polyimide, a common flexible printed circuit
material. This material will bend to match the shape, but it will
not stretch to maintain a specific point on the hand or finger. If
the ShArc sensor is attached to the back of the finger and the
finger moves from straight to retracted, the end of the ShArc
sensor will not remain at the end of the finger because of the
difference in curvature radiuses. In practice, this means that
the individual differential capacitance sensors shift in relation
to the finger during bending. While this is acceptable for our
current use case, the problem will be accentuated with longer
ShArc sensors, for example, those extending from the base of
the wrist to the fingertip.

B. Air Quality Sensing

We chose to implement a commercially available air quality
sensor to help contextualize the smoking classification result
from the data collected by the smartwatch and finger sen-
sor wearables. First, it may seem that relying on air quality
data to determine smoking activity may introduce additional
classification problems due to environments with poor air qual-
ity, such as those with secondhand smoke or dust. However,
because our system relies on the air quality sensor only when

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 5, MARCH 1, 2022

our other system components, the smartwatch and finger sen-
sor, have already detected smoking, the user simply being in
an environment with poor air quality will not alone trigger
smoking activity detection.

The air quality sensor will primarily serve to reduce
the number of false-positive smoking classifications although
it also has the potential to provide additional contextual
information. As discussed previously, environments contain-
ing secondhand smoke will not alone trigger the detection of
smoking activity; however, the air quality data can provide
insight into the users’ actions in secondhand smoke environ-
ments. For example, when the air quality sensor detects high
concentrations of TVOC and PM associated with smoking, but
smoking or presmoking activity is not detected by the smart-
watch and finger sensor wearables, we can infer that the user
was in a smoking environment and successfully resisted the
external temptations to partake in smoking. This information
can be useful to the overseeing clinicians or therapists to
inform the user’s smoking cessation progress.

C. Real-World Feasibility

Our smoking cessation system can be implemented in two
ways for different use cases. The first implementation uses
only the smartwatch as the peripheral sensor for data collec-
tion. The smartwatch-only version of our smoking cessation
system is designed for scalability and ease of implementation.
Smartwatches are common, consumer friendly, and incur lit-
tle to no restrictions on daily activities or movements. This
makes them ideal for smoking cessation users whose pri-
mary concern is convenience. Our smartwatch-based smoking
cessation system can be easily incorporated into a poten-
tial user’s lifestyle by simply installing our software and
wearing the associated smartwatch. Therefore, this system pro-
vides a substantial user benefit while sacrificing little to no
convenience.

Our combined smartwatch and wearable finger sensor smok-
ing cessation system significantly improves upon the detection
accuracy of the smartwatch-only system with an average
increase of 33.6% across the presmoking activities and 5.0%
for the smoking activity. However, the increase in prediction
results comes at the cost of an additional wearable device.
Increasing the number of wearable devices can be cumber-
some for the user. Wearable finger sensor devices often change
the natural movements and activities of the user because the
device covers part or all of the hand and fingers. Any change
to the users’ natural movements or activities is unfavorable.
The wearable finger sensor that we developed for our smok-
ing cessation system covers the back of the hand and index
finger. Although our wearable finger sensor does not cover
the full hand and fingers, it will still impact the user’s natural
movements and activities. Therefore, our combined smoking
cessation system is geared toward clinical test settings or
short-term use cases.

Although wearable finger sensors are currently obtrusive in
some manner. we believe that the technology and research
surrounding skin printed sensors will flourish in the near future
and enable a host of wearable sensors, which were previously
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hindered by their physical shape. Recent research regarding
skin-printed sensors done by Zhang et al. [34] demonstrated
the capability to apply sensor circuitry directly to the skin at
room temperature. This research gives us confidence that we
could soon extend this technology to implement a skin-printed
wearable finger sensor device for use in our smoking cessation
system.
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