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mHealth Technologies Toward Active Health
Information Collection and Tracking in Daily Life:

A Dynamic Gait Monitoring Example
Yi Cai , Xiaoye Qian , Huiyi Cao , Jianian Zheng , Wenyao Xu , and Ming-Chun Huang

Abstract—Monitoring the changes in gait patterns is important
to individuals’ health. Gait analysis should be taken as early as
possible to prevent gait impairments and improve gait quality.
Accurate stride-length estimation and gait rehabilitation activ-
ity recognition are fundamental components in gait monitoring,
gait analysis, and long-term gait care. This article proposes a
novel multimodality deep learning architecture to investigate the
applications of stride length (SL) estimation and rehabilitation
activity recognition. In order to verify this architecture, we have
conducted the data collection and data labeling with our cus-
tomized wearable sensing system. The sensing system can provide
sensor readings from 96 sensors-based pressure array and 3-
channels accelerometer and gyroscope. Many experiments with
multiple perspective analysis are implemented to evaluate the
models’ precision, robustness, and reliability. The multimodality
deep learning architecture can map multiple sensor readings to
the resulting SL with a mean absolute error of 3.89 cm and
accurately detect the gait activity with an accuracy of 97.08%. It
correlates the step length estimation and gait activity recognition
to fulfill comprehensive long-term gait information statistic. The
proposed applications’ implementation enriched our previous gait
study and brought insights for clinically relevant wearable gait
monitoring and gait analysis.

Index Terms—Active health, activity recognition, dynamic gait
monitoring, footworn, multimodality, stride length (SL).

I. INTRODUCTION

AVARIETY of neurological or musculoskeletal diseases
can lead to gait impairments. Particularly, poor gait and

gait disorders are common in the general elderly population.
It is mainly associated with the reduction of mobility [1].
Parkinson’s disease patients and elder patients who have grad-
ually lost their motor ability, experience at least one or more
risk factors, including the freezing of gait, rigidity, instability
of posture, balance disorders, and fall risk [2], [3]. It can be
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more severe on affecting people’s quality of life [4] and reduc-
ing their mobility if there is no effective medical interventions
or gait training.

Gait analysis should be taken as early as possible to prevent
gait impairments and improve gait quality. Multiple physical
therapies are proposed to regain mobility, improve balance,
and smooth gait. The purpose of gait training exercises is
to help gait dysfunction patients to regain their mobility.
The exercises are designed to improve posture, develop mus-
cle memory, and strengthen the muscles. Gait training has
great benefit to reduce the possibility of falling due to insta-
bility while walking or lowered mobility. It could allow
the patients to rebuild the confidence in walking as time
passes.

As many patients who suffer from gait impairments are will-
ing to conduct a self-contained gait rehabilitation, tracking the
progress of gait exercise becomes more critical, especially for
the users who have minimal medical supports involved in the
training procedures. Tracking the gait training performance
over time can prevent overtraining and provide great support
for practical training. Gait training strategies help maintain
the right training intensity and volume, essential for both
performance and health enhancement. Visual feedback of
training data could help the medical providers and the patients
evaluate the gait training performance. Training records could
also drive for further gait analysis. Nevertheless, there is a
great demand for a reliable mobile sensing system that could
measure, document, display, and analyze relevant parameters
objectively, precisely, and efficiently.

For daily exercise, stride length (SL) is an essential factor
to reflect purely physical fitness and comfort [5]. SL is the
distance traveled between successive points of initial contact
of the same foot, i.e., the heel strike of the same foot from the
starting position to the ending position. It covers two steps,
one with each foot. SL could be affected by many factors,
such as the height, age, illness, injuries, motion activities, and
terrain of walking surface [6]. Either too-short SL or too-long
SL is not appropriate to health gait training. Undesirable SL
could result in awkward, uncomfortable motion states and even
pull legs’ muscles harmfully. SL is also a significant medi-
cal indicator to reflect gait health. Monitoring the SL while
gait training exercise could help the physicians address the
gait issues timely, such as gait asymmetry [7], gait stabil-
ity [8]. It can also be beneficial to avoid secondary injury
or risk of falling caused by rehabilitation training. SL has
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TABLE I
DIFFERENCES OF THE TWO STUDIES

also been proved the contribution of increasing gait veloc-
ity [9]. Conventional SL measurements that use a pedometer
or deduction from the heights are simple and straightforward.
However, they are imprecise measurements. In this study, we
implement a multimodality convolutional neural network to
predict the SL via, including accelerometer sensor data and
under-foot ground reaction force (GRF).

Additionally, with the gait activity recognition, patients
could track their gait training performance for the specific gait
activity. It could also help both the physical therapists and the
patients easily manipulate and record each training activity’s
progress. Furthermore, other important applications such that
detection of unusual gait activity can provide timely alarm of
the potential risks for enhanced safety and security.

Our previous studies have elaborated the characteristics of
our wearable sensing system thoroughly [10] and made pre-
liminary gait parameters and gait features investigation [11].
In this study (Table I), we extend the application for effec-
tive gait monitoring via, including SL estimation and dynamic
activities classification algorithm. This research inherited the
early hardware model, integrated new data sets to explore the
comprehensive gait monitoring, including gait activities recog-
nition and SL estimation with the multimodality deep convo-
lutional neural networks. The proposed algorithm improved
the application of previous wearable insole system to reflect
the diversity of pedestrian walking patterns. Quantitative and
qualitative gait analysis experiments with the new SL and
activity data sets are implemented for supporting effective gait
monitoring.

II. RELATED WORK

The research not only focuses on performing activity mon-
itoring, it proposed a correlated gait analysis system for
comprehensive long-term gait care. The combination of our
proposed hardware units and algorithms for correlated step

length estimations and gait activity recognition is the main
contribution of this article. Comparing to the existed gait
analysis methods, the proposed system is a highly corre-
lated gait analysis system, which include a hardware unit for
high-dimensional sensor data collection and state-of-the-art
algorithm support for step-length estimation and complex gait
recognition.

A. Mobile Gait Analysis

With the development of mobile sensing technology,
sensor-based objective mobility data analysis is increasingly
developed to complete the gait exercise assessment and iden-
tify risk factors of gait rehabilitation. Conventional mobile
strategies contains nonwearable and wearable. From the per-
spective of the hardware system, the advantages to wearable
sensing systems with gait monitoring are that they are time
efficient, can evaluate multiple sequential steps [12], and
have the ability to evaluate the contralateral limbs within the
same walking pass and in the same trial [13]. Compared to
WiFi-based [14] or radar-based [15] gait monitoring, the wear-
able sensing systems are much easier to deploy with little
environment limitations, because there should be an intensive
reliable WiFi or radar networks to capture the unique varia-
tions in the channel state information to better profile human
movement, which could greatly constrain human daily activity.
Moreover, WiFi wireless is good for aiding position correc-
tion [16] via localization and orientation detection [17] or gait
speed identification [18], but it is not enough for the nominal
step length estimation or subtle gait parameters integration.

The pervasive wearable gait analysis systems are based
on accelerometers (Acc) and gyroscopes (Gyro) sensor data,
which have the inertial measurement units (IMUs) mounted
on shoes. The IMU is usually packaged inside a small case
attached on the heel of the footwear [19] or tied tightly on
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the instep position of the foot [20]. Unlike traditional wear-
ables [21], our wearable is not intrusive and comfortable
since it can be flexibly worn on the body via the shoe-based
design. There are important advantages of wearable sensors
for the assessment of gait or balance disorders [22], which
are obtaining objective measures that characterize how and
why functional performance of gait and balance are impaired,
increasing the sensitivity of gait measures, and increasing the
opportunity for immediate biofeedback. Compared to others’
works, our proposed mobile gait analysis system has advan-
tages in integrating diversity of sensors, constructing sensor
data visual feedback, and quantitative and graphical analyses.
It also has a user-friendly design that all the functional sensing
units are packaged inside an insole shape case, and this case
can be embedded into the shoes on manufacture. Meanwhile,
our proposed mobile gait analysis system has been equipped
with a functional easy-use Android-based mobile software
application for real-time data analysis and visualization. More
details are demonstrated in the system part.

B. Combined Gait Related Stride Length Investigation and
Gait Activity Recognition in Gait Analysis

In gait rehabilitation scenarios, users may experience very
complex natural walking conditions. For gait impairment anal-
ysis, the transient states of gait asymmetry and gait instability
are important signs to reflect its symptoms [23]. Moreover, the
shuffling gait or freezing gait symptoms of Parkinson’s Disease
patient [24] could quickly appear and disappear, which brings
a significant challenge to the physicians to focus on this issue
effectively if without precise data analysis. Accurate SL esti-
mation makes a principal contribution to solve these issues.
However, conventional SL calculation methods can hardly
capture the stride-by-stride variability and subtle estimation.
Therefore, there are more explorations with new technologies
involved, such as deep learning. Hannink et al. [25] claimed
the first one used convolutional neural networks to estimate
SL based on stride-specific inertial sensor data captured at the
subject’s feet. Wang et al. [20] proposed TapeLine, an adaptive
SL estimation algorithm that automatically estimates a pedes-
trian’s SL and walking distance using the low-cost inertial
sensor embedded in a smartphone. It is constituted of the long
short-term memory (LSTM) and denoising autoencoders with
multimodality of Acc and Gyro readings, higher level features.
They have studied the SL estimations with a variety of actions
and many different smartphone-carrying methods. They have
also pointed out the limitations involved in smartphone sens-
ing for SL estimation. The difficulties are hardly ensuring that
mobile phones’ movement equals the movement of pedestrians
and various actions result in inaccurate SL estimation.

Although most of these models or algorithms can achieve
relatively higher accuracy on SL estimation, explicit confir-
mation of the sensor data for a specific stride interval could
restrict these methods’ actual application. In other words,
the problem of inertial-sensor data splitting and segmenta-
tion is still an open issue in all SL estimation methods [20].
Other than the proposed studies, our system has great ben-
efits on tracking the starting position and ending position

of the specific stride, because of the inclusion of the GRF
information.

Activity recognition becomes more and more important due
to its application in the fields of entertainment, industrial,
healthcare, daily life, security, etc. [26]–[29]. Gait reeduca-
tion activities have been proved to improve walking endurance
and gait parameters [30]. Up to date, video-based activity
recognition has been explored a lot with many presented
robust algorithms. However, video-based activity recognition
could have many challenges, such as camera jitter, occlusions,
dynamic illumination changes, and background clutter [31].
In addition to potential recognition bias, personal privacy
issues can hardly be avoided while using a video camera
for activity recognition. Hence, sensor-based activity recogni-
tion could have significant benefits over video-based activity
recognition. Regarding sensor-based gait activity recognition,
Lopez-Nava et al. [32] proposed recognizing gait activities
via using smartphone-based acceleration data and wearable
inertial sensors placed on the ankles. The proposed method
that contains two stages: 1) strides detection and 2) gait
classification, is accessed through five conventional activities
classification. For stride detection, an acceleration signal-based
algorithm is demonstrated for strides segmentation. Four con-
ventional machine learning models are implemented to classify
the specific gait activity. Compared with the work of others,
our strategy has combined more gait-related sensor data, such
as gyroscope data and plantar pressure data. The pitch and
yaw of the gyroscope could explain the variation of body
motion in a horizontal plane. The continuous changing of plan-
tar pressure data is also significant gait information to identify
particular gait activity.

III. SYSTEM

The overall system design is illustrated in Fig. 1. It contains
the wearable gait lab system and the proposed multimodality
deep learning structure.

A. Wearable Gait Lab System

The wearable gait lab system is built from a hierarchical
structure [10]. The pressure distribution is measured via the
pressure sensor array embedded inside the insole shaped pack-
age. The pressure sensor array is in an insole shape, contains
96 isolated piezoresistive sensors at most. The processing PCB
board and the lithium-ion chargeable battery are packaged
inside the small plastic cases separately.

All the functional units, such as the IMU, the analog-digital
converter (ADC), the microcontroller, and the Wifi–Bluetooth
module, are mounted on the processing PCB board. The pres-
sure sensor is designed based on the piezoresistive principle.
Each pressure sensor on the sensor array is scanned, and its
value is sent to the voltage divider via multiplexer control.
The IMU can collect Acc and Gyro data with a predefined
sampling rate. The microcontroller plays the role of enabling
or disabling every functional unit. The lithium battery takes
the responsibility to provide a stable 5-V power supply for all
the components.
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Fig. 1. Architecture of the overall system design. It is constructed by four functional units (mobile sensing, information logging, mobile data visualization,
and learning analysis).

This design could significantly avoid the looseness of that
the sensors are mounted outside the footwear. By hiding all the
sensors inside, users would be willing to wear it due to its neat
outlook and few irritations. Moreover, the pressure sensing
and IMU sensing are assembled separately in the insole-shape
structure, which provides constant high spatial sensing res-
olution. The user-friendly design manifested in that all the
pressure sensors are customizable, making it feasible to trim
to fit most footwear sizes from 5.5 U.S. to 14 U.S.

The sensor data are then transmitted wirelessly via
Bluetooth or Wifi at a sampling rate of 30 Hz. On the
receiver end (i.e., the mobile devices), an Android App is
provided. This App offers a primary user interface (UI). The
information of hardware connections, power consumption,
timestamp tracking, and real-time plantar pressure distribution
could be displayed on the main UI. In light of IMU data visu-
alization and ordinary gait features analysis, a drag down UI
is implemented [11]. It manifests the logs of gait cycle time,
swing time, stance time, and plots of the sum of pressure
values, IMU data, etc.

B. Exploration of Stride Length Estimation and Activity
Classification

Two new applications are investigated in this study:
1) stride-length estimation and 2) rehabilitation activity clas-
sification.

SL refers to the distance traveled during the walking motion
of the same foot. As shown in Fig. 2, it is the distance from the

Fig. 2. SL is defined by the distance between consecutive heel strikes of the
same foot, while the step length is defined by the distance between positions
of opposite feet. The heel pressure is calculated by the sensor values in the
hind part of the entire foot [11].

heel strike of the right foot (starting position) to the heel strike
of the right foot (ending position). A step length is a distance
covered by one step. It begins with the heel strike of one foot
to the heel strike of the other foot. In this study, we focus
on the stride segmentation of the heel-strike event. We find
each stride’s borders via the consecutive heel strikes that are
reflected by the changing of under-feet pressure (Fig. 3). To
ensure the equally scaled and fixed size input to the network,
we zero-padded the sensor samples of the stride at its head
and tail equally. For each sample, if it has a scale of value
less or greater than the size of 45, it is interpolated to a fixed
size of 45.

In terms of rehabilitation activity recognition, there are ten
activities covered in this study, as shown in Fig. 4. They are
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Fig. 3. Graph of acceleration and heel pressure over time. The blue, red,
yellow lines indicate the accelerations in the directions of x, y, and z separately.
The heel pressure is obtained from the average value of the sensor data of
the heel.

Fig. 4. Ten dynamic activities: sit-to-stand, normal walking, jogging,
go upstairs or downstairs, go up-ramp or down-ramp, side-step walking,
overcoming obstacles, and walking on a slippery floor.

all dynamic activities: sit-to-stand, regular walking, jogging,
side-stepping, upstairs, downstairs, upward trail, downward
trail, stepping over an obstacle, and walking on a slippery
floor. For different activities, there are typical traits, such
as the postures difference in Fig. 5. The postures difference
can cause significant differences in the value of “foot contact
pitch” [33] or under-feet pressure distribution, which can be
reflected through the wearable sensor data. For instance, there
is an obvious difference of motions on foot for activities of
“walking,” “upstairs,” and “downstairs.” Typically, the forefoot
position is lower than the hind foot while descending stairs but
opposite while walking. While ascending stairs, the forefoot
presents a flat strike when contacting the floor, and the hind

Fig. 5. Characteristics for some dynamic gait activities. The pitch angles’
changing for activities of regular walking, jogging, upstairs, downstairs, and
stepping over obstacles. Motion characteristics of side-step walking and
walking on a slippery floor.

foot has greater pitch angles. For jogging, instead of the dou-
ble support phase, there is a dual float phase that both feet
are in the air [34], and the pitch angle of heel strike might
be greater than walking. When walking on a slippery ground
surface, people may worry about balance. They usually step
short distances and step cautiously via placing the entire foot
on the ground, such as a flat foot strike instead of heel strik-
ing [35], [36]. It helps to control the balance better and avoid
slipping. For the activity of “stepping over obstacles,” people
often lift their legs high enough and far enough to clear the
front and back edges of the obstacle [30]. The complete set
of movements includes twisting the supporting leg to leave
more space and raising the heel to complete the crossing. The
routine activity of “side-stepping” usually requires that sub-
ject is standing tall, heading up, looking straight, and keeping
their toes pointing forward [37]. Hence, the proposed charac-
teristics could be used to discriminate the activities. The data
sampling of activity recognition is based on the sliding win-
dow method. We use a 2-s window that contains 50% sample
to sample overlap to determine the sample.

C. Multimodality Deep Learning Approaches Implementation

For the learning analysis, we describe a novel approach to
estimate the SL and classify the activity using multimodality
deep convolutional neural networks. The model for SL esti-
mation is a regression model that maps both the Acc data and
under-foot pressure sensor data of specific stride to the result-
ing SL. The model for activity recognition is a classification
model that maps the sequence of Acc data, Gyro data, and
under-foot pressure sensor data to an activity type.

The raw sensor data collected from the sensing system was
preprocessed with transformation, filtering, and zero-padding
before fed into the deep learning model. Due to the raw sen-
sor readings from accelerometers inevitably contain noise and
gravity value, we use a band-pass filer to transfer it into phys-
ical unit data via eliminating the acceleration noise of all three
dimensions.

Our proposed models are implemented using Pytorch [38].
Table II summarizes the hyperparameters of the models. Fig. 6
displayed the architectures of multimodality deep convolu-
tional neural networks. The regression model on the left is
used for SL estimation, and the classification model on the
right is used for rehabilitation activity recognition. The model
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Fig. 6. Architectures of the multimodality deep convolutional neural networks. The left one is the regression model for SL estimation; the right one is the
classification models for activity recognition.

TABLE II
LIST OF MODELS’ HYPERPARAMETERS

takes parallel inputs from IMUs and pressure sensor readings.
The 1-D convolutional kernels are applied to Acc and Gyro
channels. The 2-D convolutional kernels are applied to pres-
sure channels, because we not only want the model to learn
signal features from the perspective of timeline but also want
it to learn the pressure sensor array’s spatial features. The
convolutional layers are used to extract the features, project

the source data to the hidden feature domains, and condense
the feature maps. The fully connected layers are much like
a classifier. It projects the features from the hidden feature
domains to the target domain.

The regression model is trained with inputs of sensor read-
ings from either the left side or right side. Considering the
task of estimating left SL and estimating right SL are much
similar, we could use the same feature extraction architecture
to process the symmetric sensor readings. Hence, the knowl-
edge of transfer learning and multitask learning is used in this
study. We construct the same convolutional layers to extract
the feature maps from left and right sensor readings. The fully
connected layers at the output are implemented and updated
separately, which means that there are shared and indepen-
dent parts for left sensor readings and right sensor readings.
Through this design, we have achieved knowledge transfer
between similar tasks. It is much helpful to get a robust model
with limited training data.

Comparing to the regression model, the classification model
has much similar structure at the shallow hidden layers, but
different implementation at the decoders. On the other hand,
classification model takes three kinds of sensors data from

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on October 22,2022 at 16:10:51 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: mHEALTH TECHNOLOGIES TOWARD ACTIVE HEALTH INFORMATION COLLECTION AND TRACKING IN DAILY LIFE 15083

double feet as the inputs. Same sensor readings from left and
right sides as separate feature channels are stacked together to
form the model inputs. Specifically, the preprocessed inertial
sensor data di,j and pressure sensor data pi,j with i = 1, . . . , M
channels and j = 1, . . . , N samples are the inputs of the
network. di,j contains Acc and Gyro data from left and right
as shown in (2), and pi,j contains pressure data from left and
right

di,j =
[

gxl
j, gyl

j, gzl
j, axl

j, ayl
j, azl

j
gxr

j , gyr
j , gzr

j , axr
j , ayr

j , azr
j

]
(1)

pi,j =
[
pl

j, pr
j

]
(2)

where l indicates left sensor readings and r indicates right
sensor readings. The convolutional layers have λ = 1, . . . , K
kernels. κ

(1)
λ,i,j indicates the 1-D convolutional kernels, and κ

(2)
λ,i,j

indicates the 2-D convolutional kernels. Activate function υ

is applied to the feature maps with bias terms b(1)
λ and b(2)

λ

separately to generate the output

z(1)
λ = υ

⎛
⎝

⎛
⎝ N∑

j

κ
(1)
λ,i,j × di,j

⎞
⎠ + b(1)

λ

⎞
⎠

z(2)
λ = υ

⎛
⎝

⎛
⎝ N∑

j

κ
(2)
λ,i,j × pi,j

⎞
⎠ + b(2)

λ

⎞
⎠. (3)

Then, the concatenated outputs feed into the fully connected
layers to reach the estimate of the target variable. Fig. 6 and
Algorithm 1 summarize the detailed implementation of this
architecture.

The evaluation metrics for the regression model are the
mean square error (MSE) and mean absolute error (MAE)

EMSE = 1

n

n∑
i=1

(
SLi

r − SLi
e

)2
(4)

EMAE = 1

n

n∑
i=1

(∣∣SLi
r − SLi

e

∣∣) (5)

where SLi
r and SLi

e denote the actual SL of the ith stride and
the predicted SL, respectively. n denotes the total number of
samples in the test set. MAE is a more direct representation
of the sum of error terms, because it treats all errors the same
in sum, however, MSE gives larger penalization to prediction
error.

Conventionally, accuracy, confusion matrix, and precision
and recall values are used to evaluate the classification model.

IV. EXPERIMENTS AND EVALUATIONS

A. Data Collection and Labeling

Ten participants (including seven males and three females)
enrolled for data collection for SL estimation. Each subject is
asked to walk ten steps for a single experiment and repeat it ten
times. The subject is asked to walk on the white background,
so that we use a long white paper roll for each experiment. A
highlighter is tied at the lateral side of the shoes while the sub-
ject is walking. Once the subject’s foot contacts the ground,
the highlighter will mark a point on the white paper roll as

Algorithm 1 Implementation of Multimodality Deep Learning
Architecture

Input: Time series sensor readings from left and right wearable
sensing shoes.
Output: Type of rehabilitation activity (1 10) or side based stride
length estimation (yl, yr).
/* Initialization*/
Regression model: Create network left, network right, and shared
network.
Classification model: Create network with multimodality layer,
hidden convolutional layers, and output fully connect layers.
/* Model train*/
if Stride length estimation then

for Each Stride do
Step 1: Extract Acc and Pressure sensor readings. Extract
the corresponding ground truth as label. ( Left and right train
data with actual stride length ((xl

i, xr
i , tli, tri ), i = 1, 2, ...k), test

data without actual stride length.)
Step 2: Padding zeros equally at the head and tail of the
sample.
Step 3: Extract left or right information.
if Left then

Step 4: Put input (xl
i, tli) into network left.

else
Step 4: Put input (xr

i , tri ) into network right.
end if
Step 5: Put output mi from Step 4 into shared network.
Step 6: Get predicted value yi.
Step 7: Calculate MESLoss(yi, ti) and optimize the model via
backpropagation.
if Left then

Step 8: Weights of network left and shared network get
updated.

else
Step 8: Weights of network right and shared network get
updated.

end if
end for

else
for Each sliding window sample do

Step 1: Extract Acc, Gyo (agi)and Pressure (pi)sensor read-
ings. Extract the corresponding ground truth as label(ti).
(i = 1, 2, ...k)
Step 2: Stack left and right inputs.
Step 3: pi go through 2D convolutional network, agi go
through 1D convolutional network.
Step 4: Get predicted value yi.
Step 5: Calculate CrossEntropyLoss(yi, ti) and optimize the
model via backpropagation.

end for
end if
/* Model test*/
Regression model: Step 1 to 6.
Classification model: Step 1 to 4.

the ground truth (GT), shown in Fig. 7. Then, the SL data
are manually labeled via tape measurement straightforwardly.
During each experiment, the participant started from standing
still, gone through the acceleration of walking, stable walking,
deceleration of walking, and back to standing still eventually.
Hence, comparing to existing works [39], our SL data set cov-
ers various SL, scenarios of stride variation, and SL from both
left and right foot. Besides, the addition of pressure sensors
introduces more feature information. The data diversity could
make the model more robust.
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Fig. 7. Experiment setup of data labeling via the color pen at the side of each
shoe. The SL ground truths are manually measured via tape measurement.

TABLE III
NUMBERS OF STRIDES ARE COLLECTED FROM EACH SUBJECT

TABLE IV
STATISTICAL MEASUREMENTS OF THE SL DATA SET

Fig. 8. Distribution of the SL samples.

After the stride segmentation, 1013 stride samples are col-
lected totally. Table III summarizes the numbers of strides are
collected from each subject and Table IV summarizes the sta-
tistical measurements of the SL data set. Fig. 8 presents the
distribution of the SL samples.

For gait reeducation activity recognition, data collection
from ten healthy subjects (aged between 23 and 32, height

Fig. 9. Variations of SL estimation loss with respect to train and test data
sets.

between 172 and 188 cm, and weight between 65 and 90 kg)
with natural activity patterns that have been proposed in the
system part. All of these exercises are performed on the safe
walkway.

The side-stepping begins by standing sideways at one end of
the walkway with the feet shoulder-width apart, in a quiet neu-
tral position. Subjects were asked to take a few steps along the
wall at a normal comfortable pace. When performing stepping
over obstacles, a 60-cm height box is placed in the hallway
as the obstacle. The subject is asked to cross it back and forth
ten times for one set of data collection.

Collected sensor data (under-feet pressure sensors, Acc, and
Gyro) have been preprocessed by sampling in fixed-width slid-
ing windows of 2 s and 50% overlap ratio. (there are 60
readings per window). For the period that is not part of the
phase of interested activity, all those ranges of values are dis-
carded. For instance, during the walking phase, subjects have
to stop and turn back at the end of the hallway. The turns are
redundant activities that should not be included in the phase
of walking.

B. Stride Length Estimation

To avoid the model is overfitting to the left or the right train,
the train set comprises a randomly selected equal number of
left foot samples and right foot samples. The remaining data
constitutes a test set. The test set is composed of 53 left stride
samples and 50 right stride samples.

Fig. 9 displays variations of SL estimation loss concerning
train and test data sets. As shown in the figure, the model
fits the train set gradually iteration by iteration. However, the
testing loss decreases to the minimum value after certain itera-
tions and then slightly increases back again. At the highlighted
point in green, the model has the smallest loss to the test set.
Once surpass that point, although the model can fit even bet-
ter for the train set, the performance on the test set is getting
worse. This situation can be explained by the overfitting issue.
Hence, we take the model at the highlighted point as our final
model. Fig. 10 presents the actual measurements and the esti-
mated values of the test set directly. To analyze the agreement
between the two groups, we use the Bland–Altman plot as
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Fig. 10. Results between measured (GT) and estimated (predicted) SL via
pointwise comparison.

TABLE V
MSE EVALUATION OF LEAVE-ONE-OUT TESTING

Fig. 11. Bland–Altman plot from the evaluation of results. “LoA” indicates
the limit of agreement. It is usually defined by three times of the standard
deviation. Each “CI” is its corresponding confidence interval of the LoA.

shown in Fig. 11. In this figure, the y-axis is the measure-
ment error that is computed via equation y − yGT and the
x-axis is measurement agreement that is calculated via equa-
tion (1/2)(y+yGT). From this figure, we can find that there are
only three outliers, the mean value is close to 0, and most of
the samples are between the lower and upper limits of agree-
ment. It indicates that the predicted values have a very good
agreement with the actual measurements.

To investigate the model’s robustness from subject to sub-
ject, we randomly select one subject’s data as a test set, and the
rest subjects’ data are used for training. We run the method five
times. As shown in Table V, five experiments are implemented,
and the MSE is summarized as evaluation.

Fig. 12. Box plots of SL estimation errors. In the plot, the central red mark
is the median, and the edges of the box are the 25th and 75th percentiles.
Red cross marks are some outliers.

TABLE VI
RESULTS OF LISTED APPROACHES FOR SL ESTIMATION

Fig. 13. Loss variation with respect to train and test data sets.

The state-of-the-art SL estimation method proposed by
Hannink et al. [25] is implemented with our data set as the
benchmark. For another comparative experiment, we use the
same multimodality architecture but treat the left and right
inputs as the same inputs instead of using multitasks learning
concepts. We named this experiment “Proposed Combined.”
Fig. 12 and Table VI present the evaluation of the regression
models in terms of the proposed evaluation metrics.

As we can see, the proposed and the proposed combined
methods outperform the benchmark because the introduction
of pressure sensors brings more feature information that can
contribute to model optimization. Furthermore, the proposed
method has better outcomes than the proposed combined
method. Since the sensors’ placements on the left and right
foot are symmetrical, there could be a different regression
task when using the features, even though they share similar
features.
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Fig. 14. Confusion matrix related to the whole test set.

TABLE VII
COMPOSITION OF THE GAIT REEDUCATION ACTIVITY DATA SET

C. Gait Reeducation Activity Classification

To evaluate the performance of the proposed multimodality
classification model, three different experiments are imple-
mented.

In the first scenario, we classify all processed data into
categories according to the activity types. Table VII lists the
number of instances included in each activity type. To avoid
the overfitting issue caused by data imbalance, we ensure all
the classes have equal instances for training. Therefore, the
sample size of the class that has fewer instances is selected
as the benchmark. 90% of the benchmark value is designated
as the number of instances that should be selected from each
class. Then, the rest instances are used for test. Finally, there
are 4020 instances for train and 7095 instances for test.

Fig. 14 illustrates the variation in loss function concerning
train and test set. As the figure presents, the loss for train data
decreases very fast within the first five iterations, and reaches
a stable regime after 45 iterations. The loss for the test set
fluctuates within the first 45 iterations. It decreases to a small
value with the training loss gradually reaches its stable regime.

TABLE VIII
ACCURACY OF LEAVE-ONE-OUT TESTING

TABLE IX
COMPARISONS OF DIFFERENT TYPES OF SENSOR

DATA INPUT FOR THE MODEL

Fig. 12 presents the evaluation of the classification model
from the aspect of the confusion matrix, precision, and recall.

In the second scenario, we investigate the model’s robust-
ness via data variance from subject to subject. We randomly
select one subject’s data as a test set, and the rest subjects’ data
are used for training. We run the method five times. Values of
accuracy from the five experiments are summarized to evalu-
ate the model’s robustness, shown in Table VIII. The accuracy
is pretty high from subject to subject test, demonstrating that
our model is robust in facing sample divergence.

In the third scenario, we take the sensor-measurements sepa-
rately as the models’ input sequences. One uses the under-feet
pressure sensors as the model’s input sequences, and the other
is using both Acc and Gyro as the model’s input sequences.
The purpose of the comparative experiments is to demon-
strate that multimodality deep convolutional neural network
is a promising model for gait-related activities classification.
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Table IX summarizes the performances of the models with
different types of sensor-measurements input. From Table IX,
we can see that our proposed method outperforms the other
ones greatly.

V. CONCLUSION

In this article, we proposed the multimodality deep learning
approach based on our wearable gait lab system to inves-
tigate SL estimation and rehabilitation activity recognition
applications. The entire system integrated mobile sensing,
information logging, mobile data visualization, and learning
analysis. Two data sets gathered by this system are used to
validate the works. The proposed methods have been proven
to estimate complicated changing SLs and classify ten gait
rehabilitation activities with very high accuracy. Consequently,
the entire system is more applicable for clinically relevant gait
monitoring and gait analysis.
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