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major health risk that 

influences quality of 

life. A smartphone-

centric body sensor 

network can help 

measure pulse 

transit time and 

continuously monitor 

blood pressure.

the World Health Organization found that 
one-third of adults have high blood pressure 
(BP) and that the cause of roughly half of 
all deaths is stroke and heart disease (www.
who.int/mediacentre/news/releases/2012/
world_health_statistics_20120516/en). 

BP is the amount of force applied on the 
walls of the arteries when blood is forced 
throughout the body, making it one of the 
most interesting hemodynamic parameters 
for assessing cardiovascular status. BP var-
ies continuously due to different factors such 
as physical activities, medication, and emo-
tions.2 Noninvasive measurements such as 
cuff-based methods provide discrete values 
of BP, but they’re limited to certain clinical 

or home-based scenarios. Moving beyond 
the use of external machines requires an 
alternative approach that’s similarly con-
tinuous and noninvasive. Pulse transit time 
(PTT) is how long it takes a pulse wave to 
travel from one arterial site to another,3 and 
several studies have shown it to have an in-
verse linear correlation with BP. An acute 
rise in BP causes an increase in vascular 
tone, hence the arterial wall becomes stiffer, 
causing a shorter PTT.3

Despite a strong correlation between PTT 
and BP, state-of-the-art methods using the 
former to infer the latter are still imprecise. 
A crucial reason is that the relationship be-
tween BP and PTT can change dynamically 

I t’s well known that chronic hypertension has a strong impact on people’s 

health and daily lives. Data from the Framingham Heart Study suggests 

that even though most individuals are normotensive at age 55, the chance for 

them to eventually become hypertensive is 90 percent.1 In 2012, a report from 
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Researchers have proved the validity of using a non-
invasive method to measure blood pressure (BP) in 
various studies. Current noninvasive methods can be 

classified into two categories: intermittent and continuous 
measurement.

Intermittent measurement based on the cuff method 
uses two traditional techniques: auscultation and oscil-
lometry. According to Matthew Ward and Jeremy Lang-
ton,1 these systems include three key components: an 
inflatable cuff, a method to determine the point of sys-
tolic and diastolic pressure, and a method to measure 
those pressures. Most of us are familiar with how this 
works: the cuff is placed around the upper arm and in-
flated. When the pressure point is reached, blood flow is 
prevented by the arterial wall. For auscultation, a mer-
cury sphygmomanometer measures cuff pressure, and a 
stethoscope can determine the sounds over the brachial 
artery distal to an upper arm cuff.2 Oscillometry measures 
BP by detecting oscillations in the cuff pressure during 
cuff deflation, with values estimated by using an indirect 
empirical method. However, this method is easily influ-
enced by motion.2

Continuous BP measurement methods include the 
volume-clamp, tonometry-based, and pulse transit time 
(PTT)-based methods. The volume-clamp method3 mea-
sures finger arterial pressure through a finger cuff and an 
inflatable bladder in combination with an infrared ple-
thysmograph. Plethysmograph (a volume-measuring de-
vice) consists of an infrared light source and detector: the 
infrared light is absorbed by the blood, and the pulsation 
of arterial diameter during a heartbeat causes a pulsation 
in the light detector signal. Although this method typi-
cally generates good measurement results, ambulatory 
characteristics make it unsuitable to be used reliably and 
comfortably.2

Another noninvasive continuous BP measurement 
method is based on tonometry systems, in which an ar-
ray of sensors is pressed against the skin over an artery. 
Although appealing because of its capability of provid-
ing accurate recording of arterial waveforms, applanation 
tonometry suffers two main limitations: the tonometer’s 
placement over the artery is highly critical (the difference 
between correct and incorrect placement is within fractions 
of millimeters), and the need for continuous precise sensor 
positioning means that it’s highly sensitive to motion (sub-
jects are required to remain absolutely still while measure-
ments are performed).

The PTT or pulse wave velocity (PWV) has been shown 
to be the most useful and convenient indirect parameter 
to measure BP both continuously and noninvasively.4,5 
To model the relationship between BP and PTT, Federico 
Cattivelli and Harinath Garudadri6 constructed a linear 
relation to estimate BP. Considering that BP is highly 
correlated with instantaneous heart rate (HR), accord-
ingly, Mico Wong and colleagues7 added HR to this lin-
ear relation in their work. Heiko Gesche and colleagues8 
calculated PWV using the ratio between height and 
PTT, modeling the relation between BP and PWV with a 

correction constant that yields accurate results for esti-
mating systolic BP. Many devices have been developed 
to measure PTT—for example, Daniel Wagner and col-
leagues9 developed a PTT measurement platform with 
a single-channel ECG board and a pulse oximeter board. 
Petr Zurek and colleagues10 designed a system that mea-
sures different biosignals, including electrocardiogram 
(ECG) and plethysmogram (PPG) signals, and then sends 
them to amplifiers and analog-to-digital convertors con-
nected to a PC. The signals are processed in Matlab to 
calculate PTT. Stefan Hey and colleagues11 designed a 
modular hardware setup that monitors certain physiolog-
ical parameters in a long-term, noninvasive way, with the 
signals collected and saved to a notebook or PC. How-
ever, none of these systems are suitable for pervasive BP 
monitoring.
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due to other factors—for example, 
the correlation changes significantly 
before and after exercise.4 A PTT cal-
culation from an electrocardiogram 
(ECG) or plethysmogram (PPG) in-
cludes the pre-ejection period (PEP), 
making it longer than the true PTT5 
and indicating serious limitations for 
BP estimation from using only PTT. 
On the other hand, heart rate (HR) 
changes do have an influence on PTT 
changes.6

In this article, we propose a method 
that uses a body sensor network for 
continuous BP monitoring. BP values 
are calculated based on PTT that also 
consider baroreflex, which reflects 

the relationship between BP and HR. 
We evaluated our method with 300 
sets of data from six subjects, and ex-
perimental results show that our pro-
posed method can estimate the BP 
value in real time with a good pre-
cision more accurately than a state-
of-the-art continuous BP monitoring 
method that uses only PTT. (See the 
related sidebar for others’ work in 
this area.) 

System Overview
Body sensor networks (BSNs) are 
widely used in medical health moni-
toring: they can be applied in a wear-
able device or used in a garment7 to 

perform health monitoring flexibly 
and comfortably.

Our proposed BSN system esti-
mates BP based on PTT, which is cal-
culated from ECG and PPG signals. 
As Figure 1 shows, the BSN consists 
of three parts: wristband, HR belt, 
and smartphone. The wristband is 
worn as a wrist accessory to collect 
PPG signals, and the HR belt is worn 
at the chest to collect ECG signals. 
The wristband and the HR belt com-
municate with the smartphone via 
Bluetooth. As ECG and PPG signals 
are continuously collected and trans-
mitted, an application on the smart-
phone can estimate PTT and BP. The 
user’s BP is displayed on the smart-
phone or uploaded to servers.

Because PTT is calculated via ECG 
and PPG signals collected on differ-
ent devices, synchronization between 
these two signal sources is important 
to achieve precision. ECG and PPG 
signals are transmitted to and pro-
cessed on the smartphone; Figure 2 
shows the smartphone’s analysis flow.

Our system has great advantages 
in flexibility: BP is monitored with-
out disturbing the subject’s daily 
life. Monitoring continues no matter 
whether the subject is sitting at home 
or exercising outdoors.

Hardware Platform
Figure 3 shows the system architec-
ture. The system consists of seven 
major components: two MSP430 mi-
croprocessor boards, two Bluetooth 
modules, an ECG module, a PPG 
module, and an analog-to-digital 
(A/D) converter. Subsystem 1 collects 
the ECG signal using an ECG mod-
ule, and subsystem 2 collects the PPG 
signal from one finger. Each subsys-
tem is controlled by a MSP430 micro-
processor widely used in low-power 
electronics products. The sensor and 
Bluetooth modules are connected to 
MSP430 via its general I/O interfaces. 

Heart rate belt

Smartphone

Wristband

Figure 1. The system in use. The wristband is worn to collect plethysmogram (PPG) 
signals, and the heart rate (HR) belt is worn at the chest to collect electrocardiogram 
(ECG) signals. The wristband and the HR belt communicate with the smartphone via 
Bluetooth.

Figure 2. Analysis flow overview. ECG and PPG signals are transmitted to and 
processed on the smartphone.
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The ECG module uses the AD8232 
single-lead ECG front end, and the 
PPG module is based on the SC0073 
piezoelectric pressure sensor. The sig-
nals collected by the ECG and PPG 
sensors are digitized at 250 Hz by 
A/D converters. Figure 4 shows the 
two subsystems’ hardware prototype.

The two subsystems are synchro-
nized via their Bluetooth modules 
by transmitting a timestamp to each 
other; this process repeats after a 
fixed period. The sampled data are 
converted into digital signals and up-
loaded to the smartphone via Blue-
tooth. Figure 5 shows the collected 
ECG and PPG signals.

Signal Processing Chain  
for BP Estimation
To properly introduce our system, we 
must first look at its algorithm and 
software design.

Synchronization Protocol
A master-slave protocol synchronizes 
the clocks between the ECG and PPG 
subsystems. The ECG subsystem acts 
as the master, transmitting synchro-
nization messages via Bluetooth to 
the PPG subsystem. The PPG sub-
system receives the message and an-
swers immediately. Finally, the ECG 
subsystem estimates the timing offset 
between the two subsystems. Figure 6 
shows the procedure.

The connection between the two 
Bluetooth modules is established 
when the system starts to run. Af-
ter a certain amount of time, the sys-
tem is stable and the synchronization 
procedure starts. First, the master 
device records its timestamp as T1 
and transmits it to the slave device. 
As soon as the slave receives it, the 
slave stores its own timestamp as 
T2 and sends back its timestamp to 
the master. The returned timestamp 
is recorded as T3. When the master 
receives the message, it records its 

Figure 3. Hardware system. The system consists of seven major components: two 
MSP430 microprocessor boards, two Bluetooth modules, an ECG module, a PPG 
module, and an analog-to-digital (A/D) converter.

Figure 4. Our prototype hardware platform: (a) ECG subsystem and (b) PPG 
subsystem. Subsystem 1 collects the ECG signal using an ECG module, and 
subsystem 2 collects the PPG signal from one finger. Each subsystem is controlled by 
an MSP430 microprocessor widely used in low-power electronics products.
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timestamp as T4. Influenced by ex-
ternal factors, the single chip’s sys-
tem clock may generate tiny changes 
leading to the offset between the two 

subsystems’ changes after a period 
of time, causing the synchronization 
procedure to repeat with a fixed time 
interval.

The system assumes that the time-
stamp’s transmission time between 
the two subsystems is a fixed value 
TR. The sum of the offset d of the 
two subsystems and the transmission 
time TR is given by

TR + d = T2 − T1.  (1)

The offset of the two subsystems 
subtracting the transmission time is 
given by

TR − d = T4 − T3.  (2)

Therefore, the offset between the two 
devices is calculated by

δ =
− + −( ) ( )

.
T T T T2 1 3 4

2
 (3)

After calculating the offset d in 
Equation 3, the next step is to align 
the two signals’ waveforms. If d is 
larger than zero, it means the ECG 
signal is lagging behind the PPG sig-
nal. Otherwise, the ECG signal is 
ahead of it. Algorithm 1 shows the 
procedure to align the two wave-
forms, where d is counted as the num-
ber of sampling periods.

We observe a maximum drift of 1 
millisecond between the two clocks 
per second, so the synchronization 
procedure is invoked periodically to 
resolve this drift. There’s a tradeoff 
between the processing capacity and 
energy consumption on one hand and 
clock synchronization precision on 
the other when setting the synchroni-
zation period. In all our experiments, 
we set the synchronization period to 
1 second, for which the additional en-
ergy consumption and occupied pro-
cessing capacity can be ignored.

The crystal oscillator of the MPS430 
processor used in our system can ex-
hibit frequency drift over tempera-
ture. The crystals’ standard operation 
temperature is 25oC, and the drift is 
about 80 parts per million (PPM) at 

Figure 6. Synchronization between ECG and PPG modules. The ECG subsystem acts 
as the master, transmitting synchronization messages via Bluetooth to the PPG 
subsystem. The PPG subsystem receives the message and answers immediately.

Figure 5. ECG and PPG signals. The two subsystems are synchronized via their 
Bluetooth modules by transmitting a timestamp to each other; this process repeats 
after a fixed period. The sampled data are converted into digital signals and 
uploaded to the smartphone via Bluetooth.
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–20oC and 10 PPM at 40oC. For this 
article, we conducted all experiments 
in an environment with a stable tem-
perature of about 25oC; drift due to 
temperature change wasn’t considered 
in the software design. To apply our 
system to realistic living environments 
with different temperatures, software 
can improve measurement results by 
correcting measured values, which we 
leave as future work.

Another factor affecting clock off-
set d estimation is the nondeterminis-
tic and nonuniform delay introduced 
by Bluetooth wireless communica-
tion. We performed experiments to 
evaluate Bluetooth communication 
delay variance—specifically, we let 
one MPS430 processor send mes-
sages periodically (every 20 millisec-
onds) to the other MPS430 processor, 
on which the receiving timestamps 
are recorded. We observed that vari-
ance in the separation of received 
timestamps was very small (smaller 
than 0.1 millisecond), and the effect 
on sampling precision was limited in 
our prototype system.

PTT and Hr calculation
To estimate PTT and HR, we use the 
ECG R-wave and PPG peak as fea-
ture points. Specifically, we use the 
method described elsewhere (www.
librow.com/cases/case-2) to detect 
ECG and PPG peaks, which includes 
two steps:

•	To remove the baseline drift and 
balance the baseline, we apply a 
fast Fourier transform to the orig-
inal ECG signals, and the wave-
form is restored through inverse 
transformation.

•	To identify peaks, we apply a win-
dow function to the waveform, 
leading to the discovery of one 
window’s maximum value. A pre-
defined threshold removes any 
meaningless points.

Figure 7 shows the result of peak 
detection for ECG signals. Note 
that the thresholds in our system are 
fixed; adaptive thresholds might be 
useful to improve detection quality 
in realistic environments, which we 
leave as future work.

Using the same method applied to 
the ECG signal, we can detect PPG 
signal peaks:

HR
W

n
t

= ×60
, (4)

where n is the number of PPG sig-
nal peaks within a time window of 
length Wt (in seconds).

PTT is usually determined by the 
ECG R-wave and the pulse wave’s 
arrival determined by the PPG’s 

peak value, as Figure 8 shows. 
The ECG’s R-wave represents each 
heartbeat’s start time, but there’s 
a delay between the start time and 
blood ejection from the heart when 
intracardiac force exceeds the force 
out of the heart. This delay—the 
pre-ejection period (PEP)—makes 
the measured PTT greater than the 
true PTT (denoted by tPTT). So 
the measured PTT consists of two 
parts:

PTT = PEP + tPTT. (5)

The difference between PTT and 
tPTT is an important reason why ex-
isting methods are so imprecise in es-
timating BP via PTT measurements.

Figure 7. Determination of peak ECG signal. Pulse transit time (PTT) is usually 
determined by the ECG R-wave and the pulse wave’s arrival determined by the 
PPG’s peak value.

Algorithm 1. Aligning the two waveforms to synchronize the two subsystems.

Require: timestamps T1, T2, and T3; ECG and PPG signals. 

Ensure: synchronous ECG and PPG signals 

Calculate the offset δ of the two signals in Equation 3.. 

 Add δ  data 0 toward the start of the ECG signal. 

 Delete |δ| data from the start of the ECG signal.  
end if 

If δ then ê
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bP Estimation with baroreflex
The baroreflex mechanism regu-
lates BP changes, so we developed a 
PTT-based model that considers this 
mechanism.

Baroreflex. The arterial baroreflex, a 
basic mechanism for the short-term 
regulation of BP, plays an impor-
tant role in maintaining BP at nearly 
constant levels. The regulatory pro-
cess is based on neuroregulation: 
arterial baroreceptors provide the 
central nervous system with continu-
ous information on BP, with changes 

sensed by stretch receptors in the 
walls of the carotid sinuses and aor-
tic arch. When systemic arterial pres-
sure rises, the arterial baroreceptors 
are activated, leading to a phenom-
enon where the discharging of vagal 
cardioinhibitory neurons increases 
and the discharging of sympathetic 
neurons decreases.

These phenomena result in brady-
cardia, decreased cardiac  contractility, 
decreased peripheral vascular resis-
tance, and venous return. Conversely, 
decreased systemic arterial pressure 
leads to deactivation of barorecep-

tors, which enhances the sympathetic 
activity and inhibits the vagal. These 
result in tachycardia, increased car-
diac contractility, increased vascular 
resistance, and venous return. Experi-
ments also show that an impairment 
of baroreflex mechanisms can reflect 
cardiovascular diseases—for example, 
a reduction in HR baroreflex control 
has been reported in hypertension, 
coronary artery disease myocardial 
infarction, and heart failure.8

PTT-based baroreflex model. Accord-
ing to the principle of energy conver-
sion, the work from force can convert 
into a wave’s kinetic energy and grav-
itational potential energy when a 
pulse wave travels from the heart to 
the fingertip. Other researchers9 cal-
culated BP by using the following 
formula:

BP
A

PTT
B= +2 , (6)

where A is related to the subject’s 
height,

A height= × ×( . )
.

,0 6
1 4

2 ρ
 (7)

and r = 1,035 kg/m3 is the average 
blood density.

The model in Equation 6 assumes 
an ideal condition, in which the ar-
tery is a rigid pipe when laminar 
blood flows from the heart chamber 
to the fingertip, thus the PEP is in-
cluded in the PTT, making it longer 
than the tPTT we discussed earlier.

The effect of arterial baroreflex is 
to adjust the short-term regulation of 
BP and prevent wide fluctuations. HR 
plays a main role here, and the baro-
reflex can reflect the relationship be-
tween BP and HR: to adjust BP to a 
stable state, HR decreases when BP 
increases, and vice versa. Because 
of the rapidity of vagal response, BP 
has been shown to have a propor-
tional relationship with respect to 

Figure 8. PTT determined by the ECG and PPG.

ECG

PTT

PPG

Table 1. Subject information.

Subjects Height (cm) Amount of data Age

Subject1 176 50 24

Subject2 170 50 23

Subject3 165 50 25

Subject4 160 50 24

Subject5 170 50 24

Subject6 163 50 22
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R-R  interval, which is inverse to HR. 
Baroreflex sensitivity is defined as the 
ratio between the change in the R-R 
interval and the change in BP.8 Con-
sidering arterial baroreflex, we pro-
pose a new formula for BP estimation 
consisting of a PTT part introduced 
in Equation 6 and a new part reflect-
ing HR’s influence:

BP
A

PTT

C

HR
D= + +2 2 , (8)

where A is still calculated according 
to Equation 7, and other parameters 
are estimated by least square fitting.8

The function consists of two vari-
ables, PTT and HR, which make the 

formula expressing a 3D model and 
HR is an additional item to adjust the 
BP estimation. Note that our model 
is different from one presented else-
where10 that assumes a proportional 
relation between HR and BP. That 
model is based on the observation 
that, for example, after doing exer-
cise, a subject’s HR and BP both in-
crease. However, a closer look into 
the baroreflex mechanism shows that 
an inverse relation between HR and 
BP should be used to correctly ad-
just the BP estimation and reflect the 
baroreflex mechanism in the (domi-
nating) proportional relation between 
PTT and BP.

Experimental Results
We verified our new BP model in 
Equation 8 with 300 groups of data 
from six healthy subjects collected 
under indoor conditions. We divided 
the data for each subject into two 
parts: part 1 (30 percent) to construct 
the models and part 2 (70 percent) 
for evaluation. Table 1 shows the in-
formation for every subject, and the 
measurement process was as follows:

•	The subjects were asked to re-
lax for several minutes in a sitting 
position, and then the ECG and 
PPG signals were recorded for 1 
minute with the hardware system 

Figure 9. BP values measured by sphygmomanometer (BPcuff) and BP calculated from the PTT (BPcal) of six subjects. BPcal 
tracks BPcuff with good precision. 
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presented earlier. We used the nu-
merical average of the calculated 
BP values using Equation 8 within 
1 minute for BP estimation, de-
noted by BPcal. We also measured 
each subject’s BP with the sphyg-
momanometer on the same hand, 

the result of which is denoted by 
BPcuff.

•	 Subjects were then asked to do ex-
ercises for several minutes, after 
which another group of data was 
collected immediately using the 
method just described.

•	We repeated the process 25 times 
for every subject. 

Evaluating Accuracy
The processing procedure for ev-
ery subject was as follows. We 
first  estimated the parameter us-
ing the least square method and 
established the BP function with 
different parameters for different 
subjects. Then, based on the func-
tion for each subject, we estimated 
BP (BPcal) using PTT and HR ac-
cording to Equation 8 and com-
pared it with BP measured by a 
sphygmomanometer (BPcuff). Note 
that we trained the model for each 
subject individually: we tested the 
models on the same data on which 
they were evaluated, and we didn’t 
consider real-time model adjust-
ment or recalibration.

Figure 9 shows the BPcuff and 
BPcal values for different subjects, 
where we can see that BPcal tracks 
BPcuff with good precision. Figure 10 
shows the scatter plot of BPcal versus 
BPcuff; the straight line represents 
the diagonal, which means that BP-
cuff equals BPcal. The distance be-
tween the points and the diagonal 
represents the absolute error of BPcal 
against BPcuff. Figure 11 shows the 
histogram of the relative error, where 
most of the data are less than 6 per-
cent and only a few are more than 12 
percent.

Table 2 summarizes the maximal 
absolute error, minimal absolute er-
ror, and average absolute error by 
using our method in Equation 8 and 
in Equation 6.9 Our method can 
improve the precision by about 10 
percent.

Evaluating robustness
Figure 12 shows the Bland-Altman 
plot of the BP data to compare the rel-
ative error of our model and that of 
Fung’s team.9 The mean represents the 

Figure 10. Scatter plots of BP measured by a sphygmomanometer (BPcuff) and 
BP calculated from PTT (BPcal). The straight line represents the diagonal, which 
means that BPcuff equals BPcal. The distance between the points and the diagonal 
represents the absolute error of BPcal against BPcuff.

Figure 11. Histogram of the relative error. Most of the data are less than 6 percent 
and only a few are more than 12 percent.
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average of all differences calculated 
by (BPcuff – BPcal)/BPcuff. We can see 
that 12 of all pairs of data are located 
beyond the agreement limits (mean 
+/2 SD) in Figure 12a (our model) 
and 14 in Figure 12b (Fung’s model), 
where SD is the standard deviation 
of the (BPcuff – BPcal)/BPcuff value 
over all data samples. Our proposed 
method’s SD is 0.4884; it’s 0.7486 for 
Fung’s method. This result shows that 
the data using our model are more 
concentrated and the error is limited 
to +/0.0934. Our proposed method’s 
SD is 6.492; it’s 7.156 for Fung’s 
method. Figure 13 shows the number 
of data exceeding different thresholds 
of the |BPcuff – BPcal| value.

W e can improve our meth-
od’s precision by recalibrat-

ing it. Note that each subject’s data 
were collected on different days. BP 
characteristics can slightly vary on 
different days, so daily recalibration 
could greatly improve estimation ac-
curacy. Recalibration might also be 
required based on normal and high 
BP values. Therefore, an important 
aspect for future work is to design, 
implement, and evaluate our sys-
tem’s recalibration mechanisms. 
Moreover, we’ll expand access to 
our system, inviting participants 
with different health conditions—

for example, those suffering hyper-
tenstion or stiff arteries. 
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Figure 13. Data under different error thresholds. 


