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Abstract—Nurses regularly perform patient handling ac-
tivities. These activities with awkward postures expose
healthcare providers to a high risk of overexertion injury.
The recognition of patient handling activities is the first step
to reduce injury risk for caregivers. The current practice on
workplace activity recognition is based on human observa-
tional approach, which is neither accurate nor projectable
to a large population. In this paper, we aim at addressing
these challenges. Our solution comprises a smart wearable
device and a novel spatio-temporal warping (STW) pattern
recognition framework. The wearable device, named Smart
Insole 2.0, is equipped with a rich set of sensors and can
provide an unobtrusive way to automatically capture the in-
formation of patient handling activities. The STW pattern
recognition framework fully exploits the spatial and tempo-
ral characteristics of plantar pressure by calculating a novel
warped spatio-temporal distance, to quantify the similarity
for the purpose of activity recognition. To validate the ef-
fectiveness of our framework, we perform a pilot study with
eight subjects, including eight common activities in a nurs-
ing room. The experimental results show the overall classifi-
cation accuracy achieves 91.7%. Meanwhile, the qualitative
profile and load level can also be classified with accuracies
of 98.3% and 92.5%, respectively.

Index Terms—Patient handling activity (PHA), plantar
pressure, smart insole, spatio-temporal warping (STW),
wearable health.

I. INTRODUCTION

OVERALL 19 million people, nearly 14% of the U.S. work-
force, are employed in healthcare industries [1]. Overex-

ertion injuries are the leading source of workers compensation
claims and costs in healthcare settings. According to the data
from Bureau of Labor Statistics, U.S. Department of Labor,
workforces in hospitals and nursing homes, especially nursing
aids, are at the highest risk of sustaining an overexertion in-
jury [2]. Nurses and nursing assistants are among the top five
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occupations with the highest injury rates and U.S. hospitals
report 6.8 work-related injuries per 100 full-time employees,
higher than construction and manufacturing workers [3]. These
rates likely under-represent the true injury incidence as 24%
of nurses and nursing assistants have reported using sick leave
to recover from their work [4] and eight of ten nurses report
frequent pain during work [5]. In 2012 alone, overexertion in-
juries, such as musculoskeletal disorders, low back pain and
shoulder pain, account for nearly 70 million physician office
visits in the U.S. annually, and an estimated 130 million total
health care encounters including outpatient, hospital, and emer-
gency room visits [6]. The related economic burden estimates,
including compensation costs, lost wages, and lost productiv-
ity, are about 128 billion U.S. dollars [6]. As a consequence,
work-related injuries represent a significant economic burden,
involve substantial adverse personal outcomes, and can result in
significant turnover of the nursing workforce [7], [8]. Prevent-
ing a nursing shortage, meeting patient care needs, improving
nurse job satisfaction, and determining regulatory compliance
are dependent on addressing the patient and material handling
activities leading to pain and injury.

One of the reasons for the high injury rate with caregivers is
the lack of a sophisticated approach to timely detection of in-
jury development and proactive prevention, e.g., physical ther-
apy [9] or workload rescheduling [10]. How to best quantify
workplace conditions, particularly physical exposures experi-
enced by the worker, remains an open research question [11].
Currently, the best practice of exposure assessment often re-
lies on visual inspection performed by an observer. Because
of limitations of an individual observer, sampling methods are
applied such that only a few workers are typically observed
and only for a relatively short duration [12], [13]. In addition,
observation-based approaches are often subjective, failing to in-
tegrate multifaceted traits or provide accurate quantification of
physical exposures [14]–[16].

Recent advances in technology allow for the possibility of
more dynamic assessment and monitoring of patients and older
individuals across a variety of key medical scenarios: remote
rehabilitation coaching, long-term care, home, and assisted
living. Similar views have been also echoed by occupational
safety investigators. Existing work can be summarized into two
categories, i.e., ambient sensing systems and wearable sensing
systems. The ambient sensing systems are integrated into the
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environment and less obtrusive to users. The most successful ex-
ample of ambient sensing system is the computer vision system
(including normal video, thermal, infrared, and depth cameras)
for monitoring the work conditions, user motion, and behavior
in nursing rooms [17], [18]. These methods involve costly
installation and maintenance effort [18]. Moreover, there
are still several technical challenges regarding immobility,
occlusion, varying illuminations, and privacy invasion [19],
[20]. Wearable sensing systems, such as a miniaturized inertial
motion unit (IMU), are suggested to monitor occupational
health and safety [11], [21], [22]. Most of the current workplace
sensor applications have focused on posture analysis [22],
task classification [11], basic physiological monitoring [23],
[24], or a computerized application of traditional observational
tools [25]. Although the applications of these systems have been
primarily in general manual materials handling, manufacturing,
or construction tasks, wearable sensor is still a promising
approach to caregiver monitoring due to the similar nature
of the tasks performed. However, to monitor complex patient
handling activities, multiple IMU sensors on different body
locations are often needed [26], [27], which is not convenient
for long-term use and may even disrupt the normal work flow
in the nursing room [28], [29].

Compared with daily life activity recognition [30], patient
handling activity (PHA) recognition is a challenging and
substantially unexplored topic. PHA is a complex process and
usually involves an interactive procedure between healthcare
workers and loads (e.g., patients, medical instruments). The
characterization of PHA includes not only body postures
but loads. For example, transferring a 60-pound patient from
wheelchair to bed is significantly different from that activity
with a 300-pound patient.

In this study, we propose a solution to overcome the afore-
mentioned obstacles in PHA recognition, which comprises a
Smart Insole 2.0 and a spatio-temporal warping (STW) pattern
recognition framework. Smart Insole 2.0 utilizes an advanced
electronic textile (eTextile) fabric sensor technique providing
accurate plantar pressure measurement in both ambulatory and
static status. Furthermore, Smart Insole 2.0 is unobtrusive, just
like a normal insole without any extra cable, antenna, or ad-
hesive equipment. The STW pattern recognition framework is
proposed to quantify the similarity among different PHAs by
exploiting the plantar pressure attributes in spatial and temporal
domains with a novel warped spatio-temporal distance (WSTD).
We perform a pilot study with eight subjects including eight
common activities in nursing room. The experimental results
show our method succeeds in qualitative profile recognition,
PHA recognition, and load estimation with the overall classifi-
cation accuracy of 98.3%, 91.7%, and 92.5%, respectively.

The organization of the remaining paper is as follows. Section
II introduces the related work and sensing modalities. Section
III provides the overall system diagram and the feasibility of
using plantar pressure for PHA recognition. In Section IV, we
describe the hardware and software design on smartphone for
Smart Insole 2.0. Section V elaborates the WSTD algorithm.
Section VI describes the STW pattern recognition framework
for PHA recognition. Section VII presents the evaluation
results for the proposed STW pattern recognition framework. In

Section VIII, we perform a discussion on the potential solutions
for speedup of the computing and the connection to caregivers
injuries prevention. Finally, the conclusion and future work are
discussed in Section IX.

II. RELATED WORK AND SENSING MODALITIES

A. Related Work on Human Activities Recognition

While the previous work in occupational safety has focused
primarily on posture determination, task classification is es-
sential for obtaining the job context for solution implementa-
tion [31]. Kim and Nussbaum classified six generic manual ma-
terials handling tasks, including box lifting, carrying, pushing,
and pulling, with a precision of 90%. Although the classification
was precise, the predicted task duration was typically shorter
than ground truth as the classifier had difficulty in identifying
the start and end time of the task [31]. In addition, the partic-
ipants were required to wear 17 IMUs and 2 pressure-sensing
insoles, which can interfere with task performance and would be
impractical for implementation in a healthcare environment. At
the other end, vision-based approaches to activity recognition
using depth cameras, which require no on-body sensors, can dis-
tinguish among overhead work, lifting a load from the ground,
kneeling, and crawling during construction work [21]. However,
this system was similarly limited by failing to account for task
repetition and, more importantly, forceful exertions, which are
critical ergonomic risk factors.

Wearable sensor is another alternative approach to monitor
human actions. In nursing, wearable sensors have been used to
recognize activities important for staffing decisions and doc-
umentation of nursing workload [32], tracking hygiene [33],
and monitoring patient care activities such as blood draws and
medication distribution [33], [34]. Recognizing the importance
of awkward postures in the causation of work-related injuries
among nurses, recent research efforts have focused on track-
ing specific postures adopted by nurses [35]. This study looked
at trunk postures and tracked the frequency and duration of
specific extreme or awkward positions, particularly trunk incli-
nation >20◦ and >60◦.

To date, the main research on automatically recognizing
human–object interaction is based on image [36] and video [37]
parsing. The camera records the process and machine learning
approaches are applied to understand the scene. There is one ap-
plication close to PHA recognition task, which is construction
activity monitoring. The existing research study is also image
and camera based [38], [39]. However, cameras are impractical
in the monitoring of patient handling due to privacy concerns
and technical challenges.

According to our literature research, there are no work on
PHA recognition using wearable technologies.

B. Related Work on STW

Malassiotis and Strintzis [40] exploited the spatio-temporal
coherence of the motion in the scene, where the displacement
function is approximated by isoparametric cubic finite elements,
and provide better representation of local motion. Rav-Acha
et al. [41] proposed a new framework for STW, named evolving
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Fig. 1. Diagram of overall system design including Smart Insole 2.0 and the STW pattern recognition framework. Caregivers’ activities and injury
risk estimation are the input and output of the system.

the fronts, which is able to manipulate the time flow of a
video sequence by sweeping an evolving time front sur-
face through the videos aligned space-time volume. Zhou and
Torre [42] proposed canonical time warping (CTW) for accurate
spatio-temporal alignment between two behavioral time series
to distinguish subjects performing similar activities. CTW
combines canonical correlation analysis (CCA) with dynamic
time warping (DTW) and it extends CCA by allowing local
spatial deformations.

C. Sensing Modalities

Images and videos captured by still or video camera are pop-
ular methods to survey activities confined in a certain place. The
skeleton visualization created by Kinect [43] is another visual
representation. However, privacy concerns prevent these sys-
tems from being widely deployed. IMUs including accelerome-
ter, gyroscope, and magnetometer are widely applied in activity
monitoring either using one type of IMU sensor or combining
multiple type sensors together. Besides, angular displacement
sensor and flex sensor to measure the curvature are also used
in activity recognition. However, these wearable sensors usu-
ally require high adherence from the user as binding on the
arm, waist, or thigh, which causes discomfort and raise the low-
compliance issue. Plantar pressure measured by piezoelectric
pressure is another modality for activity recognition since both
upper extremity and lower extremity exercise impose influence
on the plantar pressure. To the best of our knowledge, it is the
first time to employ plantar pressure for PHA recognition.

III. SYSTEM OVERVIEW

Our proposed system for PHA recognition consists of two
modules including Smart Insole 2.0 and the STW framework.
The diagram of this system design is shown in Fig. 1. In this
design, Smart Insole 2.0 is developed acting as a sensor to
collect plantar pressure during various PHAs unobtrusively.
The computing of the STW framework is implemented in the
smartphone. The STW framework contains a WSTD calcula-
tion including both spatial and temporal domain matching, and
a WSTD-based kNN classifier, which together contribute to
the similarity measurement for disparate PHAs classification.
Caregivers’ activities and injury risk estimation are treated as

Fig. 2. Different activities show distinct patterns in terms of plantar
pressure: (a) and (d) are the template samples obtained from walking.
(b) is the testing sample obtained from walking performed in another trial.
(e) is the testing sample obtained from bending. (c) shows same activi-
ties have similar patterns. (f) shows different activities have unmatched
patterns.

input and output of the system. This system provides a sensor-
rich wearable device that is capable of recognizing patient han-
dling activities, quantifying postural demands, and identifying
handling loads. This contributes a practical exposure assessment
tool that can support musculoskeletal disorder prevention with
minimal time requirement and cost. Accurately capturing nurs-
ing workload, has applications on identifying “best practice” for
safe patient handling programs (NORA HSA Activity/Output
Goal 2.2.1 [44]).

Plantar pressure variation during ambulation is employed as
a unique feature for gait analysis [45], which characterizes the
pressure change along the time axis. During PHAs, the plantar
pressure also shows prominent patterns to differentiate among
the activities, which rationalizes the utilization of such pat-
terns for PHA recognition. Fig. 2 shows that performing same
PHAs results in similar patterns while different PHAs exhibit
unmatched patterns. To get a better visualization, we pick 6 out
of 48 pressure sensors and show their pressure amplitude in the
figure, of which each curve corresponds to a single pressure
sensor. The choice of pressure sensors is described in Section
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Fig. 3. Overall architecture design for Smart Insole 2.0 and each component.

VII-B. The left figures (a) and (d) are the template samples
obtained from walking, the middle sub-figures (b) and (e) are
the two testing samples in which (b) is obtained from walking
performed in another trial and (e) is obtained from bending legs.
Sub-figures (c) and (f) show the matching results, specifically,
(c) shows same activities have similar patterns while (f) shows
the patterns from different activities differ from each other.

IV. WEARABLE SENSOR: SMART INSOLE 2.0

In this section, we introduce a novel wearable sensor for ac-
tivity monitoring: Smart Insole 2.0. Our team has developed
Smart Insole 1.0 [46], which enables precise gait analysis. In
Smart Insole 2.0, the functionality and usability have been en-
hanced in two aspects. First, Smart Insole 2.0 is more com-
pact and lightweight: separated accelerometer, gyroscope, and
magnetometer in previous design are replaced by an integrated
nine-axis IMU, making a small form factor of printed circuit
board (PCB) design in Smart Insole 2.0. Second, the battery
life is prolonged by changing Bluetooth protocol from Blue-
tooth 2.0 to Bluetooth low energy (BLE) and enabling selective
sampling [47].

A. Hardware

The role of Smart Insole 2.0 is to characterize the plantar
pressure variation caused by the ongoing activity, comfortable to
wear and convenient to use. The overall architecture design with
each component is depicted in Fig. 3 together with real photos.
The components inside the red dashed frame are integrated in
a single PCB. The detailed PCB design of Smart Insole 2.0
control system is shown in Fig. 4(a), in which each component is
covered by a rectangle with different colors and indices marked
on the left bottom of each component. The integrated modules
are 1) the MCU and BLE module, 2) the nine-axis inertial motion
sensor, 3) the microUSB connector, 4) the battery module, and
5) the 48 to 1 channel MUX.

1) Textile Pressure Array: The textile pressure sensor ar-
ray is used to obtain the high-solution pressure map under feet.
It is based on advanced conductive textile fabric sensor tech-
nique [48] and can be efficiently integrated in Smart Insole 2.0
system. There are 48 pressure sensors embedded in the insole,
as shown in Fig. 5. Each pressure sensor is with the size of

Fig. 4. Control system and prototype of Smart Insole 2.0. (a) The PCB
design of the control system in Smart Insole 2.0. (b) The prototype of
Smart Insole 2.0.

Fig. 5. Location and index of pressure sensors in Smart Insole 2.0.

15 mm× 15 mm. With 48 sensors in total, more than 80% of
the plantar area is covered. The diagram of driving circuit is de-
picted in Fig. 6. The sensor array is coated with a piezoelectric
polymer, and the initial resistor between the top–bottom surfaces
is high. When extra force is applied on surface of the polymer,
the inner fibers will be squeezed together and the throughout re-
sistor becomes smaller. As a result, the output voltage level will
be high. The output voltages are chosen by three 16 to 1 chan-
nel MUXs (ADG706 from Analog Device) to connect to the
analog-to-digital converter (ADC) input of the microcontroller.

2) Inertial Motion Sensor: The accelerometer and gyro-
scope are inertial sensors which measure the movement infor-
mation of the subject. The magnetometer is used as the baseline
when the inertial sensors (accelerometer and gyroscope) are be-
ing calibrated. We adopted BMX055 from Bosch Sensortec [49]
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Fig. 6. Diagram of pressure sensor array circuit of Smart Insole 2.0.
The output signals of pressure sensors are chosen by three 16 to 1
channel MUXs.

in Smart Insole 2.0 system, which integrates a 12-bit accelerom-
eter, a 16-bit gyroscope, and a magnetometer in a single chip.
The X- and Y-axis of magnetometer is 13-bit each and the Z-axis
of magnetometer is 15-bit. The ranges of accelerometer, gyro-
scope, and magnetometer are ±16 g, ±2000◦/s, and 2500μT,
respectively. The BMX055 communicates with the MCU us-
ing an interintegrated circuit (I2C) bus. Accelerometer, gyro-
scope, and magnetometer data in X-, Y-, and Z-axes are sampled
simultaneously.

3) Micro Control Unit and Bluetooth: The MCU and
Bluetooth are implemented by a single device CC2541 from
Texas Instruments [50]. The CC2541 combines a radio fre-
quency transceiver with an enhanced 8051 MCU, a 256-kB in-
system programmable flash memory, an 8-kB random-access
memory, a 12-bit ADC, and a hardware I2 C bus. The sensor
data from three MUXs are digitalized by eight-channel, 12-bit,
and 0-3.3 volt ADC module. The sampling rate can be adaptive
for specific applications, up to 100 samples/s (Hz).

4) Battery and MicroUSB Connector: The battery mod-
ule contains a battery connector, a 3.3-V low-dropout regulator
(XC6206-3.3), a system power switch (SI2301), and a metal-
oxide-semiconductor field-effect transistor (MOSFET). The MOS-
FET is controlled by the MCU for connecting and disconnecting
power for nine-axis inertial sensor and channel MUXs. The mi-
croUSB connector is used for charging battery, programming
CC2541, and online debugging.

5) Package and Ergonomic Design: Smart Insole 2.0 is
lightweight (<2 oz.), thin, and convenient to use. It is well
packed that there are two layers on top of the pressure sensors
and circuits. First, one layer made of waterproof polymer is to
prevent water from permeating down to the sensor and circuit
area. On top of it there is another water absorbing layer made of
fabric, so little sweat or water will not impact the performance
of the insole. It also does not need calibration and only requires
minimal setup procedures. The package of Smart Insole 2.0 is
shown in Fig. 4(b). Smart Insole 2.0 is similar to a normal insole
without any extra cable, antenna, or adhesive equipment.

B. Software Stacks and Visualization

The software system on the smartphone for Smart Insole 2.0 is
shown in Fig. 7(a). In order to perform the real-time computing,

Fig. 7. Software system on the smartphone. (a) Stacked software
structure. (b) Data GUI visualization.

the software is implemented with multithreading technology. In
general, there are four main threads in the software program in-
cluding data access, data preprocessing, data analysis, and data
graphic user interface (GUI) visualization. Specifically, the data
access thread handles asynchronous communication to Smart
Insole 2.0 over the Bluetooth serial port profile. The thread syn-
chronizes the incoming sensor data before forwarding to the
client programs over interconnect sockets. Data preprocessing
thread performs data preprocessing, including de-noising of the
collected pressure sensor data [48], calibrating inertial sensor
values with filtering, and initializing the baseline with mag-
netometer data. After the above steps, the clean, compressive,
and informative data are obtained. After that the following pro-
cessing will be dispatched to the corresponding services on the
next layer. Data analysis is the core part in the software, and
it will analyze the streamed data from insole. In this specific
application, it will recognize the activities of patient handling.
The detail of this thread will be presented in Section V. Data
GUI visualization has been developed to record, visualize, and
analyze the data from Smart Insole 2.0, as shown in Fig. 7(b).
The data are transmitted to the smartphone from Smart Insole
2.0 via Bluetooth, and stored in the memory of the smartphone.

V. WARPED SPATIO-TEMPORAL DISTANCE

Suppose we have two high-dimensional time series Γ and ˜Γ

Γ = {γ1 , γ2 , . . . , γm , . . . , γM} , (1)

˜Γ = {γ̃1 , γ̃2 , . . . , γ̃n , . . . , γ̃N} (2)

where M and N are the sample sizes, γm and γ̃n can be repre-
sented as

γm =
{

pm
1 , pm

2 , . . . , pm
j , . . . , pm

Np

}T

, (3)

γ̃n =
{

˜pn
1 , ˜pn

2 , . . . , ˜pn
k , . . . , ˜pn

˜Np

}T

(4)

where Np and ˜Np are the dimensions of γm and γn , respectively.
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In spatial domain, for each pair of γm and γ̃n , the data are
normalized as

qm
j =

pm
j

∑Np

j=1 pm
j

, (5)

˜qn
k =

˜pn
k

∑˜Np

k=1
˜pn

k

. (6)

Then, we define the cost cjk of transporting between jth data
from γm , which is qm

j , and kth data from γ̃n , which is ˜qn
k . The

definition of cost depends on the specific applications. Some
examples include Euclidean distance and Taxicab distance.

The next task is to find a flow, F (j, k) = fjk , such that the
matching work between two datasets γm and γ̃n will have the
least cost [51]:

min
Np
∑

j=1

˜Np
∑

k=1

cjkfjk (7)

subject to

Np
∑

j=1

qm
j =

˜Np
∑

k=1

˜qn
k , (8)

fjk ≥ 0, 1 ≤ j ≤ Np, 1 ≤ k ≤ ˜Np, (9)

Np
∑

k=1

fjk ≤ qm,
j , 1 ≤ j ≤ Np, (10)

˜Np
∑

j=1

fjk ≤˜qn
k , 1 ≤ k ≤ ˜Np, (11)

Np
∑

j=1

˜Np
∑

k=1

fjk = min

⎛

⎝

Np
∑

j=1

qm
j ,

˜Np
∑

k=1

˜qn
k

⎞

⎠ . (12)

Once the above problem is solved, and we have found the
optimal flow F, the spatial warping (SW) metric is found as the
matching work normalized by the total flow as follows:

SW (γm , γ̃n ) = SW (γ̃n , γm ) =

∑Np

j=1
∑˜Np

k=1 cjkfjk
∑Np

j=1
∑˜Np

k=1 fjk

. (13)

In temporal domain, to measure the similarity between these
two high-dimensional time series Γ and Γi , an N ×M matrix
D is created, called distance matrix. The value of the (nth,mth)
element in D represents the distance d (γ̃n , γm ) between high-
dimensional points γ̃n and γm , as shown below:

D (n,m) = d (γ̃n , γm ) (14)

where SW defined in (13) is adopted as the distance metric, so
we obtain

D (n,m) = SW (γ̃n , γm ) . (15)

With help of the distance matrix, the shortest warped path
through the matrix can be derived [52]:

cd(n,m) = SW (γ̃n , γm ) + min

⎧

⎪

⎨

⎪

⎩

cd(n,m− 1)

cd(n− 1,m)

cd(n− 1,m− 1)

1 ≤ n ≤ N, 1 ≤ m ≤M (16)

where cd(n,m) is the current minimum cumulative distance
for D(n,m), and the initial setting is cd(0, 0) = 0, cd(0,m) =
cd(n, 0) =∞.

After that, the overall minimized cumulative distance
cd (N,M) can be found. Finally, the WSTD is calculated as
below:

WSTD =
√

cd(N,M). (17)

The whole operation procedure of WSTD calculation is sum-
marized in Algorithm 1 named WSTD.

Algorithm 1: Warped Spatio-Temporal Distance.

1: Input: high-dimensional time series Γ and ˜Γ;
2: Initial:
3: cd(0, 0) = 0, cd(0,m) = cd(n, 0) =∞;
4: for m = 1 : M do
5: for n = 1 : N do
6: for j = 1 : Np do
7: qm

j ← pm
j ; //Normalization

8: end for
9: for k = 1 : ˜Np do

10: ˜qn
k ← ˜pn

k ; //Normalization
11: end for
12: cjk //Cost Calculation

13: Fjk ← min
∑Np

j=1
∑˜Np

k=1 cjkfjk ; // (7)–(12)
14: SW (γm , γ̃n )← cjk , Fjk ;
15: D (n,m)← SW (γm , γ̃n );

16: cd (n,m)←

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

D (n,m)

min

⎧

⎪

⎨

⎪

⎩

cd (n,m− 1)
cd (n− 1,m)

cd (n− 1,m− 1);
// (15), (16)

17: end for
18: end for
19: cd (N,M);
20: WSTD ← cd (N,M);
21: Output: WSTD.

VI. PHA RECOGNITION FRAMEWORK

In this section, we will present the STW pattern recognition
framework for PHA recognition including WSTD-based pres-
sure pattern recognition and a WSTD-based kNN classifier.
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Fig. 8. Spatio-temporal matching in a walking while pushing wheelchair
forward activity. For better visual effect, we only show six channels pres-
sure waveforms in the lower part of this figure.

A. Framework Foundation

The study proposed in this project is motivated by the ob-
servation that most of patient handling activities and body pos-
tures can be associated with characteristic spatio-temporal pres-
sure patterns under foot. Patient handling and movement ac-
tivities [35], [53] are the tasks involving transfer of a load or
patient. Safe PHAs follow standardized procedure in order to
prevent the risk to the caregivers’ lumbar spine and injury to
the patient. Vibrations, changes in center of gravity, balance
shifts, and even hand motions can propagate throughout the en-
tire body to influence the pressure distribution of the feet on the
ground. For example, the pressure distribution of the feet when
the caregiver is standing in front of the patient bed is different
from when she is reaching and turning a heavy patient from the
other side. In the temporal domain, the plantar pressure can be
modeled as a bunch of time series along the period of patient
handling. The basic principle of temporal matching is to allow
two time series that are similar, but locally out of phase, to align
in a nonlinear manner by warping the time axis iteratively un-
til an optimal match (according to a suitable metric) between
the two sequences is found [54]. Therefore, it is able to handle
subjects with different walking speed. In the spatial domain, the
plantar pressure is distributed in different locations including
toe, metatarsal, and heel area. As a result, the pressure varia-
tion occurs among the pressure points distributed in the whole
foot area and in different stages of the activity, which shows the
spatio-temporal nature of plantar pressure during activities.

B. Spatio-Temporal Characteristics of Plantar Pressure

The plantar pressure during activities exhibits spatial-
temporal characteristics. For example, the diagram of pres-
sure in spatial-temporal distribution in a walking while pushing
wheelchair forward activity is shown in Fig. 8. In t0 , the subject
stands still. Starting from t1 , the subject begins to walk ahead.

As time elapses, the pressure changes along the temporal axis.
As shown in Fig. 8, when heel-strike happens, the pressure in
heel area increases, followed by a pressure increase in toe area
leading to toe-off. In each time stamp ti , the spatial domain data
are plantar pressure collected from 48 pressure points, as shown
in Fig. 5, covering the whole foot area. For better visual effect,
we only show six channels pressure waveforms in the lower part
of Fig. 8.

After completing the spatial-temporal matching, a WSTD is
obtained to quantify the similarity between two activities.

C. WSTD-Based Pattern Recognition

Let z(t) be the continuous-time sensed pressure data and Ts

be the sampling period. The discrete pressure sample in each
pressure sensor can be written as

zi = z (iTs). (18)

Assuming each pressure sensor in Smart Insole 2.0 is sampled
Ns times, the total pressure data can be represented in the form
of (1) as

Γz = {γ1 , γ2 , . . . , γi, . . . , γNs }, (19)

γi =
{

zi
1 , z

i
2 , . . . , z

i
l , . . . , z

i
Np r

}T

(20)

where γi is a vector containing all the pressure data in the ith
sampling, zi

l is the pressure from lth sensor in ith sampling, and
Npr is the number of pressure sensors used in the insole.

Suppose Γz is the training data, ˜Γz is the testing data defined
similar to (2). The sample size of ˜Γz is ˜Ns and the number of
pressure sensors is also Npr .

The Euclidean distance is adopted as the cost = cjk between
each training and testing pair as

cjk =

√

(

Xj − ˜Xk

)2
+

(

Yj −˜Yk

)2
(21)

where (Xj , Yj ) and
(

˜Xk, ˜Yk

)

represent the coordinates of the

pressure points in the insole of training set and testing set, re-
spectively. The choice of Euclidean distance is because the pres-
sure is distributed in a 2-D plane.

Then, we apply Algorithm 1 to the pressure data by taking Γz

and ˜Γz as Γ and ˜Γ, respectively. After completion of Algorithm
1, we can obtain the WSTD between the training data and testing
data of the plantar pressure.

The Sakoe-Chiba [55] band is used to constrain the warping
path for speeding up the temporal domain calculation. The most
important parameter of this method is the constraint R, which
is defined as the rate of the warping length over the whole
sequence, and it varies from 0 to 100%. Considering the fact
that our pressure data for different activities are unsynchronized,
the unique pattern corresponding to each activity may appear in
arbitrary position of the pressure sequence. In addition, the data
lengths of each activity are usually different because the time
spent on a PHA for a subject is arbitrary in real life. In order to
tolerate the mismatch gap as big as possible, we do not impose
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a constraint on the warping path. Therefore, R is set as 100% in
our framework.

D. WSTD-Based kNN Classifier

k-nearest neighbors embedding with WSTD forms the PHA
classifier. In this classifier, an object is classified by a major-
ity vote of its neighbors with the object being assigned to the
class most common among its k nearest neighbors, in which the
nearest neighbors are determined by the aforementioned WSTD
between them rather than using the Euclidean distance.

VII. EVALUATION

A. Experimental Setup

We ran a series of experiments in a laboratory environment
to evaluate the performance of our proposed spatial-temporal
framework for PHA recognition. The dataset is collected by
our Smart Insole 2.0 from eight subjects including seven male
subjects and one female subject.11 The weights of all partic-
ipants are from 58 to 85 kg and heights from 160 to 185 cm.
Each subject performed eight different PHAs [35], [53] includ-
ing: 1) bend to lift an item from floor level; 2) stand while lifting
patients leg; 3) stand while lifting patient from wheelchair; 4)
stand while rolling patient; 5) sit normally; 6) walk normally;
7) walk while pushing wheelchair forward; 8) walk with both
hands carrying a chair. To be specific, in 2), the subject lifts a
patient’s leg and keeps for 3 s then slowly puts down the leg.
Likewise, in 4), the subject rolls over a patient and also keeps
for 3 s then rolls back to the original position. In 8), the subject
first lifts the wheelchair up then walks forward with two hands
carrying the wheelchair. The real experimental scenes are shown
in Fig. 9.

In the data collection protocol, each activity was completed
within 6 s which correspond to 90 samples. Two seconds period
corresponding to 30 samples were used as guard interval for the
subject preparing for the next activity such as turning around or
getting proper position ready to perform the action. Therefore,
the data from each pressure sensor were segmented every 120
samples with the first 90 effective samples used for the patient
handling activities recognition and the rest 30 samples ignored.
The length of each segment is 120 samples.

B. Quantitative Evaluation in a Controlled Study

For this part, we evaluate the classification performance of
our proposed framework. A leave-one-out cross-validation is
adopted to quantify the accuracy. Specifically, the whole dataset
is divided into two sets. One observation is selected as the val-
idation set and the remaining observations as the training set.
The whole procedure requires to learn and validate Ncv times,
where Ncv is the number of observations in the original sample.
In this quantitative evaluation, each subject is required to per-
form 10 trials on each activity. Therefore, Ncv equals to 640 in
our case.

1Our team holds an active IRB protocol in the State University of New York
at Buffalo (#: 695026-2), which allows for recording motion through wearable
sensors while performing patient handling activities.

Fig. 9. Eight different PHAs performed in experiments including: (a)
Bend leg to lift an item from floor level. (b) Stand while lifting pa-
tients leg. (c) Stand while lifting patient from wheelchair. (d) Stand while
rolling patient. (e) Sit normally. (f) Walk normally. (g) Walk while pushing
wheelchair forward. (h) Walk with both hands carrying a chair.

1) Pressure Data Visualization: The spatial-temporal
pressure data and 3-D visualization are shown in Fig. 10. In
each sub-figure, top one is the 3-D representation and bottom
one is the raw pressure data. Since we observed that the curves
with all 48 channels data from Smart Insole 2.0 in one figure
makes the pressure variation pattern too dense to be seen clearly,
we pick six out of 48 pressure points and show their waveforms
for a better visualization. The choice of the six pressure points
are Number 1, 11, 22, 32, 39, and 47 marked on Smart Insole
2.0, as shown in Fig. 10(i). The order of the six pressure points
corresponds to the order of sensor ID in the 3-D visualization
part with the lines between two sub-figures showing the one-to-
one relationship.

Take a closer look at the waveforms in Fig. 10, each sub-
figure shows discriminating pattern affiliated with different
PHAs. Among them, (f) walk normally; (g) walk while push-
ing wheelchair forward; and (h) walk with both hands carrying
a chair are all walking-based activities, which exhibit similar-
ity in some extent, because they all possess pseudo-periodic
nature in ambulation. However, the differences among them
are still noticeable to distinguish these three activities. In walk
with both hands carrying a chair, before walking, the subject
needs to lift the chair first, such lifting behavior causes promi-
nent pressure fluctuation at the beginning of the time series
data which makes itself an unique identifier of such activity.
For comparison between walk normally and walk while push-
ing wheelchair forward, we notice that walking normally has
higher average pressure amplitude than walking while pushing
wheelchair forward. Meanwhile, the data obtained from walk
while pushing wheelchair forward in different sensor locations
have less variability than those obtained from walk normally.
This phenomenon is due to that part of the body weight is shared
by the handle of the wheelchair when the subject holds it to push
the wheelchair forward. For comparison between (b) stand while
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Fig. 10. Spatial-temporal pressure data and 3-D visualization from Smart Insole 2.0: (a) Bend to lift an item from floor level. (b) Stand while lifting
patients leg. (c) Stand while lifting patient from wheelchair. (d) Stand while rolling patient. (e) Sit normally. (f) Walk normally. (g) Walk while pushing
wheelchair forward. (h) Walk with both hands carrying a chair. (i) Pressure points selection and matching.
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TABLE I
CONFUSION TABLE OF RECOGNITION ON 8 PHAS USING 48 PRESSURE SENSORS

a b c d e f g h Total Recall (Sensitivity)

a 80 0 0 0 0 0 0 0 80 100%
b 0 72 6 2 0 0 0 0 80 90%
c 7 2 70 0 0 1 0 0 80 87.5%
d 0 5 2 73 0 0 0 0 80 91.3%
e 0 0 0 0 80 0 0 0 80 100%
f 3 0 0 0 0 76 1 0 80 95%
g 0 0 3 0 0 6 71 0 80 88.8%
h 1 0 3 0 0 4 7 65 80 81.3%
Total 91 79 84 75 80 87 79 65
Precision 87.9% 91.1% 83.3% 97.3% 100% 87.4% 89.9% 100%
Specificity 98.0% 98.8% 97.5% 99.6% 100% 98.0% 98.6% 100%

TABLE II
CATEGORIZATION OF PHA INTO HIGH LEVEL ACTIVITIES

Activity category Activities description

a Stand Bend to lift an item from floor level
b Stand while lifting patients leg
c Stand while lifting patient from wheelchair
d Stand while rolling patient

e Sit Sit normally

f Walk Walk normally
g Walk while pushing wheelchair forward
h Walk with both hands carrying a chair

lifting patients leg and (d) stand while rolling patient, we ob-
serve that the pressure changing peaks in stand while rolling
patient are steeper than the ones in stand while lifting patients
leg, because the load imposed by rolling a body is heavier than
lifting a leg.

2) Accuracy Evaluation: The quantitative evaluation per-
formance is measured by classification accuracy. Given the large
number of testing inquiries, the framework should offer the cor-
rect responses with high probability. The accuracy (ACC) is
defined as

ACC (%) =
TP + TN
P + N

× 100% (22)

where TP represents the true positive, TN represents the true
negative, P represents the positive, and N represents the negative.
In injury risk estimation, qualitative profile recognition, PHA
recognition, and load estimation are three key parameters [56].
PHA recognition is used for estimating injury probability for
each PHA. Qualitative profile recognition and load estimation
are used in estimating workload and load in performing PHA,
respectively.

a) Qualitative Profile Recognition: Qualitative profile
recognition is used to estimate the workload in a nursing envi-
ronment. Based on the percentages of all-body activities (i.e.,
walk related), upper-body activities (i.e., standing related), and
break (i.e., sitting) in a working period, we can infer the inten-
sity level of the workload. Here, all the aforementioned eight
PHAs are categorized into three qualitative profiles as described
in Table II, which facilitates the workload estimation. First

TABLE III
CONFUSION TABLE OF RECOGNITION ON THREE CATEGORIZED ACTIVITIES

Stand (a, b, c, d) Sit (e) Walk (f, g, h) Total Recall

Stand (a, b, c, d) 319 0 1 320 99.7%
Sit (e) 0 80 0 80 100%
Walk (f, g, h) 10 0 230 240 95.8%
Total 329 80 231
Precision 97.0% 100% 99.6%

profile is stand including bend to lift an item from floor level;
stand while lifting patients leg; stand while lifting patient from
wheelchair; and stand while rolling patient. Second profile is
sit including sit normally, and third profile is walk including
walk normally; walk while pushing wheelchair forward; and
walk with both hands carrying a chair. Both recall and preci-
sion achieve more than 95.8% as shown in Table III. The overall
accuracy is 98.3%, which shows high performance of qualitative
profile recognition. Note that the performance from qualitative
profile recognition is better than the one with PHA recognition,
which is because several confusing activities actually belong to
the same qualitative profile such as stand or walk. In such case,
these PHAs are treated as no difference in terms of qualitative
profile. The qualitative profile recognition can be further applied
in other workplaces such as construction industry and wholesale
and retail trades [57].

b) PHA Recognition: The goal of PHA recognition is
to accurately classify each PHA defined in Fig. 9. Table I shows
the confusion table with respect to PHA classification using 48
pressure sensors. The overall accuracy is 91.7%. We notice that
the activity walk with both hands carrying a chair has the lowest
recall rate 81.3%, which is often confused with walk normally
and walk while pushing wheelchair forward. The reason of this
is that all the three activities are performed in walking status, in
which the pressure obtained from them all shows similar pseudo-
periodic nature, as shown in Fig. 10. This accuracy can be further
improved by analyzing IMU data together with pressure data.
The remaining seven recall rates are above 87.5%. Specifically,
sit reaches 100% recall and 100% precision because of the
minimal fluctuation it exposed that differentiates it from other
activities. In terms of precision, stand while lifting patient from
wheelchair shows the lowest rate of 83.3% because the data
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TABLE IV
CATEGORIZATION OF PHA INTO LOAD LEVELS

Load levels Activities description

c Heavy Stand while rolling patient
d Stand while lifting patient from wheelchair
h Walk with both hands carrying a chair

a Light Bend to lift an item from floor level
b Stand while lifting patients leg
g Walk while pushing wheelchair forward

e No Sit normally
f Walk normally

TABLE V
CONFUSION TABLE OF RECOGNITION ON THREE

CATEGORIZED LOAD LEVELS

Heavy (c, d, h) Light (a, b, g) No (e, f) Total Recall

Heavy (c, d, h) 213 22 5 240 88.8%
Light (a, b, g) 11 223 6 240 92.9%
No (e, f) 0 4 156 160 97.5%
Total 224 249 167
Precision 95.1% 89.6% 93.4%

from other activities show similarity to the data of stand while
lifting patient from wheelchair leading to mis-classification.

c) Load Estimation: The load estimation is to estimate
the load imposed on caregivers when they perform certain PHA.
To be specific, stand while lifting patient from wheelchair, stand
while rolling patient, and walk with both hands carrying a chair
are categorized as heavy load because caregivers need to use
more force when performing such PHAs. Bend to lift an item
from floor level, stand while lifting patients leg, and walk while
pushing wheelchair forward are considered as light load as
these activities involve moderate force exertion. Sit normally and
walk normally are considered as no load as they are performed
without external load. The grouping criterion depends on the
specific ongoing activity. Note that we decide bend to lift an
item from floor level as light load because that item the subject
picked up indicates the specific weight of the object in our
experiment. The load level category is summarized in Table IV.
Likewise, the confusion table with respect to load levels is shown
in Table V. The overall accuracy is 92.5%. Heavy load has the
lowest recall of 88.8%, in which 22 activities are mis-classified
as light load. Since these two load level both involve forceful
exertion, they may be confused with each other.

3) Investigation on Sensor Dimension Reduction: In
this experiment, we investigate the impact of pressure sensor
number to the algorithm performance, which is measured by
balanced accuracy (BAC). BAC is defined as the average of the
sensitivity and the specificity as

BAC (%) =
Sensitivity + Specificity

2
(23)

or the average accuracy obtained on either class [58], which
avoids inflated performance estimates on imbalanced datasets.

Fig. 11. Impact of sensor dimension on BAC.

Fig. 12. Set of eight PHAs performed sequentially against ground truth.

The default sensor number is 48 including all the sensors in
Smart Insole 2.0, and all the above results are obtained with this
configuration. Now, we start reducing the numbers by dividing
two until the sensor number reaches 6. Fig. 11 shows the BAC
result in terms of sensor number. We notice that the BAC de-
crease with the decrement of sensor number, which implies the
spatial diversity is not fully explored in reduced sensor cases.

C. Evaluation of a Longitudinal Pilot Study

As a further evaluation of this spatial-temporal framework
for PHA recognition in real life, we carried out a longitudinal
study of continuous monitoring through a number of aforemen-
tioned PHAs. More specifically, each of the eight activities was
performed sequentially to test whether the proposed framework
can classify them correctly. Fig. 12 shows the evaluation result,
where the red dash line indicates the ground truth, and the blue
line indicates the actual classification outcome. We observed
that only two out of 24 activities are mis-classified.
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VIII. DISCUSSION

A. Computing Time

The actual computing time is related to the number of pressure
sensors. As stated in Section VI, Npr is the number of pressure
sensors used in the insole. After applying Algorithm 1 to the
training and testing data, Np and ˜Np in STW framework are
both instantiated as Npr in the Section VI. As a result, Np

and ˜Np equal to the number of pressure sensors. Also as seen
from (7) to (13), Np and ˜Np are directly related to the WSTD
calculation. So that is the reason that the algorithm computing
cost relates to the number of pressure sensors.

In theory, the WSTD algorithm is computationally costly be-
cause the distance calculation has no close form solution yet.
Specifically, it worst case time complexity is O(n5 logn) where
the spatial matching is O(n3 logn) and the temporal warping
is O(n2). There are considerable work on reducing the com-
plexity of earth mover’s distance (EMD) and DTW by approx-
imation. For example, in spatial matching, the worst case com-
puting cost can be reduced to approximate 50% by applying
the preprocessing procedure of EMD [59]. In temporal match-
ing, the Sakoe-Chiba band optimization method [60] used in
DTW can be applied to speed up the temporal warping by ad-
justing the constraint R, whereas the recognition performance
will be sacrificed in some extent. In such circumstance, a better
tradeoff between accuracy performance and computing speed
is required. Furthermore, the lower bound optimization method
used in DTW can achieve additional 10–50× speedup for tem-
poral matching [61]. Note that in our application, the analysis
is performed in nonreal time, and the processing algorithm is
implemented in the back.

B. Connection to Caregivers Injuries Prevention

Our system can contribute to caregiver injury reduction in
multifaceted aspects. First, there are many solid facts that most
of nurses suffered chronic occupational diseases such as mus-
culoskeletal disorders, low back pain and shoulder pain due to
awkward body postures, overexertion and long-term fatigue [6].
It is critical to monitor their work routine and estimate the possi-
ble injury risk. Smart Insole and the proposed STW framework
can serve as a cost-effective practical exposure assessment tool
for healthcare workers to provide a set of qualitative profile,
patient handling activities, and load recognition, where qualita-
tive profile with work duration contributes to long-term fatigue,
patient handling activities contributes to awkward body pos-
ture, and load estimation contributes to overexertion, respec-
tively. Our results can help nurses to monitor their working
action in long-term and guide the correct patient handling to
avoid unprofessional actions. Second, nurses workload is di-
verse and event-driven. Particularly, some awkward postures,
such as rolling/carrying a patient [35], are ad hoc according to
the need in the field. It is necessary to perform the monitoring
during their daily workspan. Third, for the purpose of nurse or
nursing students training, currently, the best practice of exposure
assessment often relies on visual inspection performed by an

observer [13]. Our system holds the potential to transform the
current episodic, subjective observation-based approach into
a continuous, unobtrusive and objective measurement-based
method in monitoring caregivers and nursing workforce.

IX. CONCLUSION AND FUTURE WORK

To accurately recognize the PHA, we first developed Smart
Insole 2.0 to capture the plantar pressure change information
caused by the PHA. A WSTD algorithm and a WSTD-based
recognition framework were proposed to analyze the pressure
data for classification. The experimental results showed that
our framework can achieve 91.7% overall accuracy with eight
different PHAs. Meanwhile, the qualitative profile and load level
can also be classified with accuracies of 98.3% and 92.5%,
respectively. Moreover, we also discussed the influence of sensor
numbers, which shows that the performance decreases with the
reduction of sensor numbers. On the other hand, the computing
cost is also decreased which will speed up the WSTD algorithm.

In the future, the system will be further enhanced in the fol-
lowing aspects. First, in this WSTD-based PHA recognition, we
only use pressure information from Smart Insole 2.0. IMU data
can be employed as additional features to help recognize the
activities which will be a promising research direction in the
future work. Second, a larger cohort will be included for a large
population test.
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