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Abstract— The spike classification is a critical step in the
implantable neural decoding. The energy efficiency issue in the
sensor node is a big challenge for the entire system. Compressive
sensing (CS) theory provides a potential way to tackle this prob-
lem by reducing the data volume on the communication channel.
However, the constant transmission of the compressed data is
still energy-hungry. On the other hand, the feasibility of direct
analysis in compression domain is mathematically demonstrated.
This advance empowers the in-sensor light-weight signal analysis
on the compressed data. In this paper, we propose a novel
selective CS architecture for energy-efficient wireless implantable
neural decoding based on compression analysis and deep learn-
ing. Specifically, we develop a two-stage classification procedure,
including a light-weight coarse-grained screening module in the
sensor and an accurate fine-grained analysis module in the
server. To achieve better energy efficiency, the screening module
is designed by the Softmax regression, which can complete the
low-effort classification task at the sensor end and screen the
high-effort task to transmit their compressed measurements to
the remote server. The fine-grained analysis located in server end
is constructed by the customized deep residual neural network.
It can not only promote the spike classification accuracy, but
also benefit the model quality of in-sensor Softmax model. The
extensive experimental results indicate that our proposed selective
CS architecture can gain more than 60% energy savings than
the conventional CS architecture, yet even improve the accuracy
of state-of-the-art CS architectures.

Index Terms— Compressed sensing, energy-efficient architec-
ture, deep learning.
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I. INTRODUCTION

THE spike detection in neural decoding is one of the most
significant procedures to investigate and understand the

neural activity mechanisms [1], [2]. Meanwhile, wireless and
implantable sensor network technologies are widely explored
to facilitate the patient-centric tele-monitoring and improve the
quality of life [3], [4]. The typical wireless implantable sys-
tems for spike classification comprise an Electroencephalogra-
phy (EEG) signal acquisition sensor and a remote processing
center. However, the huge amount of data exchanging in the
wireless communication makes the sensor design face with
severe energy efficiency issues. Compressive sensing (CS)
is a promising way to reduce the front-end data volume in
that its sampling is proportional to the signal information,
breaking the conventional Shannon-Nyquist rule on the data
sampling [5], [6]. Recent works proved that the CS-based
sampling rate can reduce a significant portion of energy
consumption in data processing and wireless communica-
tion [7], [8]. However, constant compressed data transmission
is still energy-hungry and how to further increase the energy
efficiency in the wireless implantable applications remains a
big challenge.

There are some prior works on spike classification and
CS architecture, which targets on biosignals processing.
Zhang et al. [9] proposed a compact microsystem to apply
CS into the implantable neural recording. Suo et al. [10]
optimized the neural recording system by a two-stage sensing
and a sparsifying dictionary. Fallahzadeh et al. [11] designed
a novel adaptive compressed sensing architecture for activity
recognition. However, all these works just split the signal
recording and classification into two independent procedures,
and only concentrate on the single-facet optimization. This
also constrains the integral combination of the signal recording
and analysis procedure.

Meanwhile, direct analysis in the compression domain pro-
vides a theoretical cue to support the light-weight analysis
computing occurring in the energy-constrained sensor-end.
Direct analysis of compressed data can significantly reduce
the computational cost [12], [13]. One successful example
is that special visual features can be extracted from MPEG
video files for understanding physical properties of video con-
tents [14]. The random projection based compression analysis
is also explored, where the text and image are successfully
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classified [15]. Since the birth of Compressed Sensing,
the mathematicians have been exploring the possibility of ana-
lyzing compressively sensed data without reconstruction [16].
Shoaib et al. [17] have even proved that direct analysis can
obtain better results on unreconstructable compressed data
which doesn’t satisfy the RIP constraint. In recent years,
some researchers start to implement the compressed analysis
algorithms into the front-end hardware in wearable medical
applications [18].

To make up the occasional error from the light-weight signal
analysis in the compression domain, an inference unit with
super discrimination ability is necessary to be employed at
the server end. Deep learning [19] is widely emerging in
recent years due to its remarkable ability to sense the potential
rule behind the big data. Thanks to the parallel computing
on GPU and advanced training skills, the current deep learn-
ing framework can support an extremely deep network with
surprising learning ability. A lot of deep learning models are
designed and improved in computer vision domain, such as
image classification, object tracking and image captioning. The
performance of deep learning is also examined on biomedical
signals [20].

In this paper, we propose a novel selective CS architecture
to combine the signal acquisition and partial analysis into
the front-end sensing architecture for energy-efficient neural
decoding system. Our entire design is driven by compres-
sion domain analysis and deep learning algorithm. Instead of
always transmitting the compressed data, our new architecture
integrates the signal recording and analysis, and only transmits
the bit-wise analysis result when certain criteria are met.
Specifically, we design a light-weight coarse-grained screening
module to evaluate the classification effort in the sensor end.
Given the sensor data, the architecture can conduct either the
coarse-grained screening module or the fine-grained analysis
modules, depending on a confidence score. For the former one,
we propose to use Softmax regression model by considering
the complexity and hardware-friendly requirement. For the
latter one, we deploy the deep learning algorithm to execute
the high-effort analysis at the server end. To keep the state-of-
the-art accuracy, we particularly customize the deep residual
neural network in the fine-grained analysis module. By seam-
lessly cooperating the two proposed modules, the selective CS
architecture can provide more than 60% energy savings for the
wireless implantable neural decoding. The spike classification
accuracy is even improved. It’s worth to point out that most
physiological signals are proved to be applicable with CS
(e.g., Electroencephalography [21], Electrocardiography [7]
and Electromyography [22]). Therefore, our architecture can
be expanded to other applications in bio and health-related
sensing.

The contribution of our work can be summarized in three
folds:

• We propose a new selective CS architecture to combine
the signal acquisition and partial analysis into the sensor
end to achieve better energy-efficiency for the neural
decoding system.

• We implement our proposed architecture based on
deep learning. The proposed customized technique can

benefit both the coarse-grained screening and fine-grained
analysis modules.

• We evaluate our model through extensive experiments
with regard to the energy consumption and the spike
classification accuracy. We further discuss the superiority
of our design by exploiting the quality of critical design
freedoms.

The remainder of this paper is organized as follows:
Section II introduces the preliminaries and backgrounds. The
details of our proposed selective CS architecture is discussed
in Section III, and Section IV presents our experiments and
evaluations to examine the selective architecture. The paper is
concluded in Section V.

II. BACKGROUNDS AND PRELIMINARIES

A. Compressed Sensing Theory

The compressive sensing theory is a new emerging analog-
to-information sampling scheme. We assume that x is an
N-dimension vector and is sampled using M-measurement
vector y:

y = �x, (1)

where � ∈ RM×N is the sensing array and M is defined
as the sampling rate. The elements in � are random vari-
ables. Because of M � N , the formulation in Eq. (1) is
undetermined. However, under certain sparsity-inducing basis
� ∈ RN×N , the signal x can be represented by a set of sparse
coefficients u ∈ RN :

x = �u. (2)

Therefore, based on Eq. (1) and (2), the sparse vector, u, can
be represented as follows:

y = ��u = �M×N u, (3)

where �M×N = �� is an M × N matrix, called the
measuring matrix. In practical applications, original signals
need to be quantized for transmitting. Then the compressed
signal, y, is processed by a quantization model formulated as
follows:

ŷ = Qb(y), (4)

where Qb(.) is the quantization function [21], [23], and ŷ is
the quantized representation of y with b bits.

Due to the prior knowledge that the unknown vector u is
sparse, u can be estimated by �1 minimization to approximate
the optimal �0 minimization formulation as follows:

û = min ‖u‖1 s.t . ‖ŷ − �u‖ < ε, (5)

where ε is the reconstruction error margin. The �1 minimiza-
tion is convex and can be solved within the polynomial time.
Therefore, the reconstructed signal, x̂ , is retrieved by:

x̂ = � û. (6)
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B. Compression Domain Analysis in Sensor

Many researchers paid effort on exploring the opportunity
of low-power sensor node design based on CS paradigm.
In the beginning, only data compression and quantization
were employed in the front-end (sensor node), while the
signal reconstruction and machine learning techniques were
executed in the back-end (aggregator with powerful computing
capability) [24]. The main task was to develop the new
reconstruction algorithm to extend the lower bound of sample
number while keeping data analysis accuracy [9]. Some others
were also working on the energy-efficient wireless communi-
cation protocols [25].

Subsequently, in-sensor signal processing was investigated.
Mathematicians demonstrated the possibility of directly ana-
lyzing the compression data [26]. Random projection can
preserve signal intrinsic information from high-dimensional
raw data to low-dimension compressed representation [15].
This empowered us to avoid the computation-expensive recon-
struction step and integrate the machine learning procedure
into the front-end. In this way, the system can drastically
reduce the communication burden by only sending the analy-
sis result instead of the entire data. Thus, the low-power
compressed-domain computing engine with the entire analysis
ability [27] became a hot topic. All kinds of the platform are
explored for the feasibility. The general-purpose computing
devices are not suitable for computing engine design due to
limits of power or resources. For example, low-power micro-
processor, represented by ARM M-series, is not ready for
very tight power applications [28], and the micro-controller
as TI msp430 are equipped with too few resources to
support machine learning implementations [29]. Therefore,
application-specific integrated circuits (ASIC) stood out by
its low-power consumption, which can make the power over-
head of computing engine in front-end decrease to about
100uW [30]. However, the popular idea until this time was
still to implement the analysis logic as a whole.

C. Deep Learning

Deep learning [19] becomes a prevalent machine learning
approach in recent years. It makes the great breakthrough
compared with the traditional algorithm in many applications,
such as computer vision [31], speech recognition [32] and text
analysis [33]. Deep learning organizes “deep” neural networks
to process the input data. Its layer-by-layer scheme makes
deep learning digest the data features from the low level to
the high level. Therefore, deep learning can learn effective
data representation from big data to enable better application
performance.

Deep learning originates from the traditional neural net-
work [34]. Due to the constrains from data size, computing
ability and advanced training skills, the neural network was
not becoming “deep”. With the development of Imagenet
large scale visual recognition challenge (ILSVRC) [35], deep
learning steps into the people’s sight and shows its superiority
on the discrimination ability. In 2012, Krizhevsky et al. [36]
designed the first deep learning framework to get the cham-
pion of the challenge with a large gap to the second place.

This work opened the door of deep learning. Besides the big
labeled high-quality data, it also brought the new training skills
to suppress the overfitting problem effectively, including ReLU
activation function, dropout and local response normalization.
It also employed GPU as its computing platform to achieve
training time breakthrough. Subsequently, VGG [37] and
GoogLenet [38] were proposed to further optimize the deep
neural network architectures. Their common goal is to imple-
ment “deeper” network to improve the network performance.
Some advanced training stills were also developed, such as
batch normalization [39] and auxiliary classifier. Recently,
the deep residual network was proposed to even advance
the network discrimination capability by residual design [40].
This idea solved the gradient varnishing problem in the deep
learning and extend the network layer to more than 1000.
All these deep neural network improvements will provide us
a good reference to design our selective CS architecture.

III. SELECTIVE COMPRESSED SENSING ARCHITECTURE

In this section, we present our proposed selective CS
architecture for neural decoding. Specifically, we design a
coarse-grained screening module to judge the effort of signal
identification in the front-end. Correspondingly, we adopt a
robust deep learning algorithm in the fine-grained analysis
module to process the high-effort task in the server end.

A. Architecture Overview

The selective CS architecture for wireless implantable
neural decoding is illustrated in Figure 1. The entire archi-
tecture includes a low-power CS front-end and a remote
server. Our ultimate goal is to optimize the energy efficiency in
the front-end (the sensor node) while minimizing the accuracy
compromise of signal analysis.

The front-end design comprises three key components,
a random encoding module, a quantization module and a
coarse-grained screening module. As shown in Figure 1,
analog N-dimension raw sensor signal x is compressed into
M-dimension measurements y in the random encoding mod-
ule. The random encoding module consists of M branches
with each completing a randomized combination for one
measurement. Every branch includes a multiplier, a column
vector in sensing array � and an integrator to accumulate the
intermediate results. In the quantization module, there are b
comparators and a digital encoder. Each comparator outputs
a binary decision of comparing the input analog signal and a
reference voltage level. The digital encoder organizes the final
quantization result ŷ based on these comparison decisions. The
newly proposed coarse-grained screening module analyzes the
compressed measurements ŷ. It outputs the category prediction
and a confidence score. If the score is larger than the pre-
defined threshold, the wireless transmitter only needs to send
the final prediction to the remote server instead of the entire
compressed data. Only when the score is below the threshold
does it stream the compressed measurements ŷ to the server
for fine-grained analysis by deep learning algorithm. In the
server end, the decoder first copes with the data acquired
by the wireless receiver. If the data indicates the softmax
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Fig. 1. The block diagram of the selective CS architecture for energy-efficient wireless implantable neural decoding, which comprises a coarse-grained
screening module in the front-end and a fine-grained analysis module in the back-end. The former one conducts the energy-efficient softmax prediction upon
the compressed data. If the generated confidence score is below the threshold, the latter module performs the fine-grained analysis based on deep-learning.

classification is reliable in the sensor-end, it will bypass the
final prediction to the neural recording module. Otherwise,
it will transmit the intermediate compressed measurements to
the deep learning module for fine-grained analysis. Afterward,
the final prediction is sent to the neural recording.

Note that the coarse-grained screening module and fine-
grained analysis module are two most significant components
to improve the energy efficiency of the CS front-end, yet
reserving the classification accuracy. In the following section,
we continue to discuss the design of these two modules in
detail.

B. Coarse-Grained Screening Module

1) Softmax Prediction: It is important to have a reliable
clue to determine the effort of signal category prediction in
the front-end. Some low-effort tasks can be completed in the
sensor node, avoiding the energy overhead of transmitting
the compressed data. To this end, we consider the softmax
regression, a probabilistic model, to construct the coarse-
grained screening module.

The softmax regression [41] is the extensive form of logistic
regression to deal with multi-class classification problem.
As the logistic regression, the hypothesis function hθ for the
softmax regression outputs a probability vector:

hθ (z) =

⎡

⎢

⎢

⎢

⎣

P(l = 1|z, θ)
P(l = 2|z, θ)

...
P(l = K |z, θ)

⎤

⎥

⎥

⎥

⎦
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∑K

k=1 eθk z
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⎢

⎢

⎢

⎣
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eθK z

⎤

⎥

⎥

⎥

⎦

, (7)

where θ is the weight matrix, denoted as θ = [θ1, θ2, . . . , θK ].
Each weight component θ j is a weight vector as in the logistic
regression. It is reasonable to identify the input signal as
the category with the largest conditional probability. Let zi

be the input feature vector in the training set, and li be its
corresponding multi-class label, which ranges from 1 to K .

The cost function to evaluate the hypothesis function hθ is:

J (θ) = −
∑

i

K
∑

j=1

(li == j)log(
eθ j z

∑K
k=1 eθk z

), (8)

where li == j is to judge the equality. If li is not equal
to the label j , the judge is false, denoted as “0”. Otherwise,
the judge is true, as “1”. Similarly, we can use the gradient
descent algorithm to minimize this cost function to search for
the optimal weight matrix θ . The derivative of the cost function
with respect to the specific weight vector θk is as follows:

∇θ j J (θ) = −
∑

i

[zi ((li == j) − P(li = j |zi , θ))]. (9)

This training phase is computation-intensive, and will be
accomplished offline. Therefore, we implement the prediction
phase into the front-end to analyze the compressed measure-
ments with the pre-trained parameters. The formal formula of
the prediction phase is as the following:

P(l = j |z, θ) = eθ j z

∑K
k=1 eθk z

, (10)

when z is given, the l with the maximal probability is the
prediction category. We also take this maximal probability as
the confidence score S. It is reasonable that larger score has
more probability of correct classification.

The prediction phase of Softmax has low hardware com-
plexity yet robust performance, as the coarse-grained screening
module shown in Figure 1. When compressed measurements
come, the screening module has two parallel procedures, one is
to store the input vector and the other is to start the prediction
of Softmax method. In the prediction procedure, We first
calculate the score eθ j z by parallel chains, where each chain is
equipped with a multiplier, an accumulator and an exponential
calculator. The super computation of the exponential calculator
is implemented by the CORDIC algorithm [42]. Then the
parallel max structures compute the maximal probability and
record the related category result.
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2) Confidence Score for Screening: After we obtain the
category result, we also would like to know the effort to
this classification task. We propose to apply confidence score
to quantitatively measure this effort. The formula of the
confidence score is defined as the following:

S = P(l = jmax |z, θ) − P(l = jsub|z, θ), (11)

where the jmax corresponds to the category whose probability
is the maximal one and the jsub is the category with probability
as the second maximal. According to this equation, we can find
that the confidence score S indicates the distance between the
most probable one with the other options. The larger the confi-
dence score is, the less the effort is needed to classify the input.

In practice, we set a pre-defined threshold ths to determine
whether the current effort is large enough to be processed by
the fine-grained analysis module. If the confidence score is
larger than the threshold, the selector, MUX module, trusts
the softmax classification and chooses the prediction result
for the wireless transmission. Otherwise, the MUX outputs
the compressed measurements buffed in the memory. This
screening can greatly reduce the energy consumption of sensor
node by processing the low-effort input before the wireless
transmission.

C. Fine-Grained Analysis Module

When the coarse-grained screening module bypasses the
compressed measurements to the remote server, a fine-grained
classifier is highly required for the accurate classification
without energy concerns. To this end, we propose to design
our fine-grained classifier based on deep residual network
(ResNet) [40], which is the state-of-the-art deep learning algo-
rithm in the computer vision domain. The ResNet is the most
popular algorithm in deep learning domain with the superior
performance to the other machine learning approach. It even
empowers the discrimination capability exceeds the humans
on 1000-category image classification on the large dataset.

1) Architecture: Our fine-grained analysis module is illus-
trated in Figure 2. The entire network consists of five key
parts, a visible input layer, a large-size convolutional layer,
residual network blocks, an average pooling and a Softmax
output. The visible input layer uses the compressed data ŷ
without any feature extraction operations. Then, the input data
is processed by the first large-size convolutional layer. Note
that the convolution is 1-D operation in all our fine-grained
analysis modules. The large reception field next to the visible
layer can provide enough information to extract the low-level
feature, which is critical for the deep layers’ processing.

The residual network block is the core part of our fine-
grained analysis design. One typical block includes two convo-
lutional layers and uses a small kernel size, such as 3, to learn
the data representation on a fine-grained scale. Note that a
batch normalization layer, a dropout layer and a ReLU layer
are following each convolutional layer. We omit them here
for the simplicity. In the training phase, the dropout layer is
in effect and the dropout ratio is set as 0.5. However, it is
closed when the network is in the inference stage. At the end
of the residual network block, there is a shortcut to forward

Fig. 2. The framework of our fine-grained analysis module. The whole design
is enlightened by the deep residual network.

its original input to superimpose on the block output feature
map as the input of the next layer. In the meantime, the second
convolutional layer follows a pooling layer with stride 2. Thus,
the next layer will have a double number of convolutional
filters but a smaller feature map. We also would like to
emphasize that the residual network blocks can be stacked
to each other and produce a much deeper network structure.
This is because the shortcut can effectively solve the gradient
vanishing problem and the dropout/batch normalization can
suppress the overfitting when parameter size increases.

After stacking residual network blocks, we also use the
global average pooling to replace the fully-connected layer.
This technique is more and more popular thanks to its ability
to resist the overfitting of the network. Finally, the pooling
result is fed into the softmax layer for final prediction retrieval.

2) Training Phase: Due to the dataset size, we don’t train
the entire framework from scratch. Instead, we reuse the
pre-trained ResNet model to initialize our network. For the
dimension difference of the convolutional kernel between our
model and ResNet model, we use its diagonal elements to
initialize our 1-D kernel. Then we use finetuning to train
our designed fine-grained analysis module. Thus, the proposed
fine-grained deep neural network can obtain the signal’s pre-
dominant representation automatically for the classification.
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Fig. 3. The energy consumption comparison of the three architectures under the four different compression ratios. For the name of a specific architecture,
the hyphen sign connects the signal domain and fine-grained analysis method. “C” indicates the compression domain and “R” is the reconstruction domain.

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
selective CS architecture in the neural decoding application.
We first introduce the experimental setup. The energy and
accuracy of proposed selective CS architecture are compared
with the state-of-the-art baselines. We also investigate the
impact from the confidence score on the trade-off between
energy and accuracy. What’s more, we compare the accu-
racy of the entire CS architecture with other popular deep
learning back-ends. Finally, we demonstrate that the direct
compression-domain analysis outperforms the analysis on
reconstructed signals.

A. Experimental Setup

1) Datasets: The spike sorting dataset [43] provides us
diverse spikes which are from the real-world brain signals.
We select 10000 spikes in total from the difficult-noise-01,
difficult-noise-02 cases in the dataset, whose data is chal-
lenging to be classified due to the noise contamination in
acquisition. Each spike has the same length of N = 64.
We randomly choose 8500 spikes as the training set and the
rest 1500 spikes as the testing set.

2) Compressed Sensing: In the compressed sensing setup,
we choose four compression ratios C R (C R = M/N) in
all the experiment to examine the performance of the archi-
tectures, i.e., 5%, 10%, 20% and 30%. In the compressed
encoding module, we use the inverse discrete wavelet trans-
form (IDWT) as the sparsity-inducing basis � , which can
always transform the spike signals into a sparse representation.
The Bernoulli random variable is taken as the sensing array.
In the quantization module, the uniform quantization strategy
is applied. We choose the bitwidth of quantization as a constant
number 16, i.e., b = 16. For the wireless communication
channel for the compressed measurements, the energy model
can be defined as E = C × M × b, where the average energy
consumption C = 3 nJ/bit, based on an efficient 350 μW
MSK/FSK transmitter [44] specifically designed for medical
wearable and implantable devices.

3) Deep Learning: For the deep learning module in the
fine-grained analysis module, we customize the 18-layer deep
residual network (ResNet-18) into our spike classification
application. We use open-source deep learning framework
Caffe [45] to build the ResNet-18 architecture and train it
based on our prepared spike waveforms. Instead of training
from scratch, we finetune the ResNet-18 with the pre-trained

model from Caffe model Zoo [46]. Our batch size is set as 32
and learning rate is 1e-6 with decay rate 0.9 every 4 epochs.

4) Softmax in Sensor: The softmax model is also trained
from our selected spike datasets. Different from random
initialization, we use the Softmax layer of deep learning
architecture as a good initial estimation. For its hardware
implementation, we choose the Synopsys Design Suite [47]
to accomplish the design and exploration. We use TSMC
90nm standard cell libraries [48] and implement the design
in Verilog with Verilog Compile Simulator (VCS). The design
compiler (DC) is adopted to synthesize the Verilog design and
Power Compiler is used to report the power consumption.

5) Baselines: Our first baseline is the conventional CS
architecture, which classifies the spikes on the reconstructed
signals at the server end. The algorithm is supporting vector
machine. Deep belief network (DBN) is another popular deep
learning branch. We also choose DBN on compression-domain
as the second baseline, which is presented in [8]. The specific
setup of DBN structure is two hidden layers with 48 neurons
for each. The top classifier is the softmax regression. The
activation function is set as “sigmoid”, and the batch size is 32
and the learning rate is 0.1.

B. Energy and Accuracy of Selective CS

In this section, we examine the energy consumption and
accuracy of the proposed selective CS architecture. We train
the deep learning model, ResNet-18, to construct the fine-
grained analysis module. We also build the Softmax-based
coarse-grained module. The threshold for confidence score
is set as 0.4. If the confidence score S is larger than 0.4,
the current input is considered as low-effort segment and
transmit the final prediction result back to the server end.
Otherwise, the wireless transmitter streams the compression
measurements ŷ back to the server for fine-grained analysis.
The screening module and analysis module are both executing
the analysis in the compression-domain of the input spike.
We use “C-ResNet” to indicate our selective CS architecture,
where “C” means compression domain. The two baseline
methods, traditional CS architecture and DBN-based CS archi-
tecture, are also examined. They are referred as “R-SVM” and
“C-DBN”, where “R” means reconstruction domain. We col-
lect the information of the three models under all the four
compression ratios. The energy consumption is the total value
by processing all the spikes in the testing set. The statistics
of all the energy consumption is shown in Figure 3 and the



SONG et al.: SELECTIVE CS: ENERGY-EFFICIENT SENSING ARCHITECTURE FOR WIRELESS IMPLANTABLE NEURAL DECODING 207

Fig. 4. The comparison of the spike classification accuracy of the three architectures under the four different compression ratios.

comparison of the corresponding classification accuracy is
illustrated in Figure 4. Note that the energy is shown under
logarithmic scale for a better comparison.

1) Summary: We can observe from Figure 3 and Figure 4,
our proposed ResNet-based selective CS architecture can
achieve the best spike classification accuracy and the best
energy efficiency among all the architectures. Compared with
the traditional CS architecture, our selective CS architecture
can achieve more than 60% energy savings under all the
compression ratios. It can also improve the spike recognition
accuracy over 90%, even under the harsh compression ratio
as low as 5%. For the DBN-based solution, although it out-
performs the traditional CS architecture, it is still worse than
our ResNet-based solution. This demonstrates the effectiveness
of selective CS architecture and the importance of the fine-
grained deep learning module. It’s worth emphasizing that our
goal is to improve the energy-efficiency of the front-end sensor
node. The fine-grained analysis is not accounted into the total
energy consumption because the remote sever is line-powered
and not sensitive to the energy.

2) Energy Comparison: Specifically, compared with the
traditional SVM-based CS architecture, our proposed selective
architecture gains the energy saving of 59.47%, 62.19%,
72.80% and 71.33% under the compression ratio 5%, 10%,
20% and 30%, respectively. This is because the traditional CS
scheme has no in-sensor processing part, so that it suffers from
the huge volume of data on the communication channel. When
comparing the performance of our ResNet-based solution and
the DBN-based solution, our proposed architecture can beat
it by a small advantage. This is due to the difference of
the Softmax implementation in the coarse-grained screening
module. Thanks to training ResNet-18 first, our in-sensor Soft-
max model obtains a good initialization. However, the DBN
case only uses the Gaussian-based random initialization in the
Softmax training.

3) Accuracy Comparison: Our selective CS architecture
achieves the best spike classification accuracy, even more
than 99% under 30% compression. The accuracy of our
proposed scheme outperforms the baselines under all the
compression ratios. Under 5% compression ratio, the accuracy
of our selective solution is still more than 90%, whereas the
traditional CS only obtains 84.24%. However, the improve-
ment of our architecture becomes smaller as the compression
ratio increases. The server end can acquire more information
under the larger compression ratio. With enough information,
the different fine-grained algorithms can have a similar spike
classification accuracy.

Fig. 5. The accuracy-energy curve under different confidence thresholds.

C. Confidence Score Impact in Selective CS

In this section, we investigate the impact from the con-
fidence score S on energy and accuracy of our proposed
selective architecture. The configuration of our ResNet-based
scheme is the same as Section IV-B. The compression ratio
of compressed sensing module is chosen as 10%. In this
experiment, we consider the confidence threshold thS as a
parameter. We range confidence score threshold thS from
0.0 to 1.0 with step as 0.02. We collect the energy consump-
tion and classification accuracy of our selective CS architecture
under each different thS . The final statistical result is shown
in Figure 5.

We can observe that as the confidence score threshold thS

increase, the accuracy of proposed selective architecture is
improved. In the meantime, the energy budget of the sensor
end is also increasing rapidly. In the beginning, the threshold
thS is 0, which means all coarse-grained prediction result is
the confident low-effort task. So the transmitter only sends
the prediction results back to the server end. This aggressively
decreases the energy consumption on the wireless channel due
to the data volume reduction. Thus, the spike classification
accuracy is equal to the discrimination result of the in-sensor
Softmax implementation.

As the confidence threshold increases, our selective archi-
tecture obtains a rapid increasing period. In this threshold
slot, the accuracy increases rapidly while only consuming
a reasonable amount of the energy. Considering the trade-
off between accuracy and energy budget, this stage is good
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TABLE I

ACCURACY OF SELECTIVE CS ARCHITECTURE USING
DIFFERENT DEEP LEARNING MODELS

for the energy-efficient design requirement. The reason of
forming this period is that as the threshold increases, more
high-effort input spikes are transmitted back to the server end
for fine-grained analysis. These spikes can confuse the coarse-
grained Softmax screening, but can be recognized by high-
discrimination deep learning model.

Finally, the accuracy approximates to saturation but the
energy budget is still increasing. This stage is just wasting
the energy without significant accuracy improvement. This is
because as the confidence threshold continuously increases,
more low-effort spikes are not screened by the coarse-
grained screening module. Their compression representations
are transmitted back to the fine-grained analysis. Although
they obtain the correct result eventually, they waste the energy
consumed on the wireless channel. In our experiment, this
turning point happens around thS is equal to 0.4. This
is why we choose the confidence score threshold as 0.4
in Section IV-B. Therefore, we can find that the confidence
threshold can affect the accuracy and energy budget of our
selective CS architecture simultaneously. We can find a good
trade-off between energy and accuracy of selective architecture
by selecting an appropriate confidence threshold.

D. Deep Learning Model of Selective CS Architecture

The deep learning model in the fine-grained analysis is a
significant factor affecting the accuracy and energy consump-
tion of the selective CS architecture. Its impact on energy is
due to its contribution to the initialization of the in-sensor
Softmax model. In this experiment, we explore the architecture
performance under different popular deep learning models.
We choose AlexNet, VGGNet and GoogLenet to design the
fine-grained analysis module at the server end. All the con-
volutional layers in these networks are transformed into 1D
convolution. We keep their architecture details and training
scheme. They are all trained using finetuning and initialized
by their pre-trained models from Caffe model zoo. We also
choose two compression ratio, 10% and 30%, to simulate the
low and high compression representations. We collect the spike
classification accuracy in all the cases. The final statistics are
listed in TABLE I.

We can see that our ResNet-based solution achieves the
best accuracy under the both low and high compression ratios.
From network architectures, the capability of deep models is
ordered as ResNet, GoogLenet, VGGNet and AlexNet. This
conclusion is confirmed by the final accuracy. Their accuracy
decreases according to this order. Due to the dataset size,

Fig. 6. The accuracy comparison of fine-grained analysis methods on both
compression and reconstruction domains.

we choose ResNet-18 as the base deep learning model. The
deeper ResNet architecture is also promising to achieve better
accuracy. On the other hand, if we compare the performance
of these deep models with DBN and SVM, we can find
that the AlexNet behaves the worst. This is because AlexNet
has deeper network architecture than DBN and SVM, but
it doesn’t apply the advanced training skills to resist over-
fitting problem [49], [50]. Therefore, we can conclude that the
ResNet-based selective CS architecture can achieve the best
performance among all the state-of-the-art machine learning
models.

E. Compression Domain and Reconstruction Domain

In all above experiments, we directly use compression-
domain data to feed the deep learning models for accurate pre-
dictions because it can preserve the salient information of the
high-dimensional representation. Although this is supported by
mathematicians [26], we would like to confirm this assumption
in this experiment. We only compare the spike classification
accuracy of different models by feeding data on reconstruction
domain. This is done by omitting the in-sensor coarse-grained
processing module. We choose ResNet-18, DBN and SVM as
the benchmark. We adopt CVX tool to execute the reconstruc-
tion from the compressed measurements. We also collect the
spike classification accuracy of all these three models on both
compression domain (“C”) and reconstruction domain (“R”).
All the information is summarized in Figure 6.

We can observe from Figure 6 that the compression domain
achieves better accuracy in all the cases compared with the
reconstruction domain by 1% to 3%. In the figure, we use solid
lines to indicate the accuracy trend in compression domain
and dashed lines to show the accuracy in reconstruction
domain. In the low C R case, the accuracy difference is much
larger than that in the high C R case. This is because high
C R case can always provide more information for signal
reconstruction in order to obtain more accurate results. As the
distortion of the spikes decreases, the different models tend
to achieve a similar accuracy result. One interesting finding
is that although ResNet in compression domain has the best
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accuracy, the DBN in compression domain can beat the ResNet
in reconstruction domain. This demonstrates that the input data
quality is more significant than the network architecture for
our selective CS framework. Another interesting finding is that
SVM behaves well in the reconstruction domain. It is better
than the DBN case and slightly worse than our ResNet case.
This demonstrates that the shallow learning has better noise-
resistant ability than the deep learning model.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a selective CS architecture for
wireless implantable neural decoding. We designed two coop-
erative modules, a coarse-grained screening module designed
by softmax regression and a fine-grained analysis module
equipped with customized deep residual neural network, for
different effort-level classification tasks. The screening module
processed the low-effort classification and transmitted the
high-effort task to the fine-grained module at the server
end. Experimental results validated the data analysis in the
compressed domain. By the collaboration of the two proposed
modules, our selective CS architecture gained more than 60%
energy savings, while even improving the spike classification
accuracy when compared to the traditional CS architecture.

In the future, we plan to deeply combine the signal analysis
procedure with the compression operations of compressed
sensing framework and deploy the architecture in real world.
Another promising direction is to design a controller which can
adjust the configuration of the compressed sensing functional
modules and the confidence threshold in the coarse-grained
screening module to improve the energy-efficiency of the
entire system further.
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