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Abstract

Background: Smoking is a leading cause of preventable death, and people with HIV have higher smoking rates and are more
likely to experience smoking-related health issues. The Sense2Quit study introduces innovative advancements in smoking cessation
technology by developing a comprehensive mobile app that integrates with smartwatches to provide real-time interventions for
people with HIV attempting to quit smoking.

Objective: We aim to develop an accurate smoking cessation app that uses everyday smartwatches and an artificial intelligence
model to enhance the recognition of smoking gestures by effectively addressing confounding hand gestures that mimic smoking,
thereby reducing false positives. The app ensures seamless usability across Android (Open Handset Alliance [led by Google])
and iOS platforms, with optimized communication and synchronization between devices for real-time monitoring.

Methods: This study introduces the confounding resilient smoking model, specifically trained to distinguish smoking gestures
from similar hand-to-mouth activities used by the Sense2Quit system. By incorporating confounding gestures into the model’s
training process, the system achieves high accuracy while maintaining efficiency on mobile devices. To validate the model, 30
participants, all people with HIV who smoked cigarettes, were recruited. Participants wore smartwatches on their wrists and
performed various hand-to-mouth activities, including smoking and other gestures such as eating and drinking. Each participant
spent 15 to 30 minutes completing the tasks, with each gesture lasting 5 seconds. The app was developed using the Flutter
framework to ensure seamless functionality across Android and iOS platforms, with robust synchronization between the smartwatch
and smartphone for real-time monitoring.

Results: The confounding resilient smoking model achieved an impressive F1-score of 97.52% in detecting smoking gestures,
outperforming state-of-the-art models by distinguishing smoking from 15 other daily hand-to-mouth activities, including eating,
drinking, and yawning. Its robustness and adaptability were further confirmed through leave-one-subject-out evaluation,
demonstrating consistent reliability and generalizability across diverse individuals. The cross-platform app, developed using
Flutter (Google), demonstrated consistent performance across Android and iOS devices, with only a 0.02-point difference in user
experience ratings between the platforms (iOS 4.52 and Android 4.5). The app’s continuous synchronization ensures accurate,
real-time tracking of smoking behaviors, enhancing the system’s overall utility for smoking cessation.

Conclusions: Sense2Quit represents a significant advancement in smoking cessation technology. It delivers timely, just-in-time
interventions through innovations in cross-platform communication optimization and the effective recognition of confounding
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hand gestures. These improvements enhance the accuracy and accessibility of real-time smoking detection, making Sense2Quit
a valuable tool for supporting long-term cessation efforts among people with HIV trying to quit smoking.
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(J Med Internet Res 2025;27:e67186) doi: 10.2196/67186
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Introduction

Background
The global health burden of tobacco use remains a formidable
challenge for public health initiatives, with smoking-related
illnesses claiming approximately 6 million lives worldwide
annually [1]. Despite decades of efforts to reduce smoking rates
through various interventions, including public education
campaigns, taxation policies, and cessation programs, tobacco
use persists as the leading preventable cause of morbidity and
premature mortality worldwide [2]. The issue of smoking is
prevalent and challenging to address among people with HIV.
Approximately 50% of the 1 million people with HIV living in
the United States smoke cigarettes, which is about 4 times higher
than the prevalence observed in the general US adult population
[3]. This highlights the urgent need for innovative,
technology-driven smoking cessation interventions and real-time
monitoring of smoking behaviors. Recent research has shown
an increasing focus on developing smartphone apps for this
purpose [4]. These apps offer various features such as SMS
reminders, progress tracking, and peer support [5]. Concurrently,
the proliferation of wearable technology has opened new
avenues for continuous health monitoring and behavior
modification. Integrating wearable devices into smoking
cessation programs holds considerable potential for enhancing
intervention efficacy and enabling real-time monitoring of
smoking behaviors [6,7]. Smartwatches and smartphones with
sensors can detect smoking events in real time, offering
opportunities for timely interventions. Wearable technology,
particularly smartwatches equipped with accelerometers and
gyroscopes, provides a promising avenue for automatic smoking
detection and intervention [8,9]. For instance, the SmokeBeat
app [10], which leverages wearable sensors to identify smoking
gestures, has shown promising results in smoking reduction by
alerting users to their smoking episodes. Leveraging
advancements in machine learning, these devices can analyze
sensor data to accurately identify smoking gestures [11-13] and
even presmoking activities, potentially offering real-time support
for individuals attempting to quit [14,15]. However, despite the
demonstrated feasibility and promising results in controlled
settings, several critical challenges hinder these technologies’
widespread adoption and effectiveness. One major limitation
is the lack of focus on high-risk populations with unique needs,
such as people living with HIV. These groups, despite exhibiting
distinct behavioral patterns and facing higher smoking rates,
remain underrepresented mainly in current research efforts.
Furthermore, there is a noticeable gap between technological
innovation and evidence-based practice. While numerous studies

explore the technical feasibility of smoking detection, few
demonstrate how these systems can be effectively integrated
into real-world settings while adhering to established health
care guidelines. Most available mobile apps lack input from
health care professionals and a strong theoretical framework
[16], raising concerns about their efficacy and practical impact.
This disconnect is compounded by the scarcity of research
showcasing end-to-end solutions that combine automatic
smoking detection with the unobtrusive and user-friendly nature
of everyday devices such as smartwatches and smartphones.
Finally, technical challenges persist, including maintaining
reliable connectivity between wearable devices and smartphones
[9] and the trade-off between detection accuracy and resource
consumption [17]. Using multiple sensors or higher sampling
rates can improve accuracy but increases battery drain, hindering
usability [18]. This challenge is particularly relevant when
considering real-world deployment [19], where the performance
of smoking detection models often degrades compared to
controlled laboratory settings. One key factor contributing to
this decline is the presence of confounding gestures, which
interfere with the model’s ability to detect smoking-specific
movements accurately [20]. Confounding gestures are hand
movements that closely mimic smoking behaviors, including
eating, drinking, yawning, or applying chapstick. These gestures
pose considerable challenges due to their repetitive
hand-to-mouth motions, often causing false positive detections,
undermining user trust, and reducing intervention systems’
effectiveness. Moreover, distinguishing smoking from less
repetitive but visually similar activities presents additional
difficulty, further complicating accurate gesture recognition.

Our Sense2Quit study addresses critical gaps in current smoking
cessation apps by following a rigorous, theoretically guided
development framework and closely collaborating with health
care professionals. This study aims to develop mHealth (mobile
health) technology to support tobacco cessation in people with
HIV. The mobile app supports people with HIV quitting
smoking by using smartwatches for behavioral assessment and
delivering just-in-time interventions. The primary research
question driving this study is: can integrating confounding
gesture data into the training of a smoking gesture recognition
model significantly enhance its accuracy and real-time
applicability in a high-risk population, specifically people living
with HIV? We hypothesize that explicitly incorporating
confounding gesture data into the model training process will
significantly reduce false positives and negatives, thus
improving overall accuracy and real-world effectiveness.
Importantly, this approach does not require additional sensor
inputs or increased computational complexity; instead, it uses
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targeted training enhancements to address the issue of
confounding gestures, ensuring that the model remains efficient
and practical for real-time deployment on widely available
mobile devices. A pilot study was conducted to assess the
feasibility, acceptability, and early effectiveness of the
Sense2Quit app as a tool for individuals with HIV who are
motivated to quit smoking. Upon enrollment, participants
received Android smartwatches with the Sense2Quit app
preinstalled. Some participants were provided with Android
smartphones, while others had the Sense2Quit app installed on
their own devices with assistance from the research staff. Both
smartwatch and smartphone apps were used throughout this
study. The pilot study lasted from March 2023 to January 2024
and involved 60 participants [21,22]. The development of the
Sense2Quit app was guided by the Information Systems
Research framework, incorporating focus groups, design
sessions [3], and usability testing [23]. This comprehensive
framework ensures a user-centered and iterative development
process, incorporating valuable feedback from focus groups
and design sessions with the target population, specifically
people with HIV. By tailoring the intervention to this high-risk
group, we aim to enhance the app’s efficacy and address the
unique challenges faced by people with HIV in their smoking
cessation journey. A key distinguishing feature of the
Sense2Quit app is its innovative integration of smartwatches
with a smartphone app (Figure 1), enabling the provision of
real-time, just-in-time cessation interventions. This
technology-driven approach leverages the potential of
continuous health monitoring through smartwatches using a
sophisticated artificial intelligence (AI) model for accurate
smoking gesture detection. This paper outlines the
comprehensive technical implementation of the Sense2Quit
app, designed for smoking detection. This study’s core is the

confounding resilient smoking (CRS) model, an AI solution
specifically proposed to address the challenges of smoking
detection. The CRS model is developed to enhance resilience
against confounding gestures by significantly reducing false
positives and negatives. This study emphasizes the importance
of incorporating confounding gesture data into the training
process, demonstrating how this approach improves model
performance and applicability in real-world settings. Notably,
the CRS model was evaluated for a high-risk population, people
living with HIV, showcasing its effectiveness in addressing
smoking detection in populations with unique behavioral and
health care needs. The CRS model is designed for seamless
integration into real-world environments with the Sense2Quit
app, using standard smartwatches and smartphones with
cross-platform functionality for Android and iOS systems.
Additionally, we compare the CRS model against 2
state-of-the-art baselines, demonstrating its superior performance
in both smoking and nonsmoking gesture detection.
Generalizability experiments using leave-one-subject-out
evaluation further validate the model’s robustness across diverse
individuals, ensuring its reliability even for unseen participants.
Recommendations are provided for adapting the CRS model to
more extensive and diverse datasets, highlighting its scalability
and applicability in various scenarios. Furthermore, we evaluated
the smartwatch’s power consumption to ensure its
continuous-use feasibility. The usability testing of the
Sense2Quit smartphone app was performed to assess user
experience (UX) and identify potential improvements for
real-world deployment. Data collection methodologies are
meticulously designed to capture confounding gesture data,
with a dedicated app module developed for seamless data
acquisition.

Figure 1. Overview of the Sense2Quit smartphone and smartwatch system architecture.

The subsequent sections of this paper are organized as follows:
first, we introduce the technical components that constitute the
Sense2Quit app and provide an in-depth overview of the CRS
model. Next, we elaborate on the methodologies used to enhance
the model’s resilience against confounding gestures, including

details of the data collection protocol, evaluation procedures,
and cross-platform app functionality. Following this, we
comprehensively compare the CRS model with state-of-the-art
baselines, discuss generalizability experiments using
leave-one-subject-out evaluation, and provide recommendations
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for scaling the model to larger datasets. Additionally, we report
on the results of smartwatch power consumption testing and
Android app usability testing. Finally, we conclude with the
results of our study and explore potential future directions for
this research, emphasizing the CRS model’s readiness for
deployment in real-world applications.

Sense2Quit App Overview

Overview
Sense2Quit consists of 2 primary components: the smartphone
and smartwatch apps, and an online dashboard. These elements
synergistically work together to provide users with a
comprehensive solution for smoking cessation, including
real-time participant data tracking to address potential issues
and minimize participant attrition proactively. The pilot study
used Android smartphones and smartwatches, restricting
participant recruitment to Android users. To overcome this
limitation, we developed a cross-platform app version using
Flutter, making it available for iOS and Android devices. This
ensures smooth installation from both Google and Apple app
stores, improving access to potential participants and enhancing
user accessibility. The following sections provide a detailed
overview of each component’s technical functionalities and
contributions, illustrating how they support users on their
journey to quit smoking.

Smartwatch App Development
The Sense2Quit smartwatch app serves as a crucial instrument
for collecting essential movement data, thereby enabling the
detection of smoking behaviors in users. Strategically placed
on the participant’s wrist, this app leverages the advanced
capabilities of built-in smartwatch sensors, including the 3-axis
accelerometer and gyroscope, to capture intricate motion
patterns. With a sampling rate of approximately 20 Hz, the
smartwatch records hand movement data in real-time. This
sensor data is efficiently transmitted to the user’s smartphone
for comprehensive analysis. In addition to monitoring movement
data, the smartwatch app offers valuable cessation tips to aid
users in their journey to quit smoking. Importantly, this app is
compatible with a broad range of smartwatches, encompassing
Android and Apple devices. Extensive testing has been
conducted on popular models such as the Ticwatch (HK
SMARTMV LIMITED), Fossil watch, and Apple Watch SE,
ensuring reliable performance and compatibility across various
wearable platforms.

Smartphone App Development
The Sense2Quit smartphone app serves as the central interface
for users, offering comprehensive features to support smoking
cessation (Figure 2). The app’s smoking dashboard provides a
detailed summary of smoking habits, including the number of
cigarettes consumed, expenditure, and daily trends, all visualized
through intuitive graphs. This functionality enables users to
monitor their progress and make informed decisions effectively.
To help manage cravings, the app includes interactive games
such as Pac-Man and Tetris, which serve as distractions to
promote healthier coping mechanisms. Additionally, the tips
section provides informative videos and practical advice to help
users overcome challenges. The Sense2Quit app empowers

users to achieve a smoke-free lifestyle by integrating monitoring,
distraction, and educational components. Our earlier work details
the various user interface (UI) features and usability testing
[23].

A specialized data collection module was integrated into the
app to facilitate data collection on confounding gestures. This
module was designed to provide research staff with a
streamlined system for gathering and uploading data to a cloud
server, enabling the technical team to access and refine the
baseline smoking detection model. The UI (Figure 3) was
engineered for efficiency and simplicity, allowing the collection
and upload of gesture data from each participant to be minimally
complex. A crucial UI feature was the prominent connection
status indicator positioned at the top of the screen. This indicator
dynamically displayed the pairing status between the smartwatch
and smartphone. When successfully connected, it showed
“connected” and instantly switched to “disconnected” if the
connection was lost. Significantly, any ongoing data collection
would automatically halt in the event of a disconnection. This
real-time feedback mechanism ensured data integrity and
continuity throughout the experiment. It allowed research staff
to immediately identify and address connectivity issues, thereby
minimizing data loss and reducing the need for repeated trials.

The UI also included (1) a connection status indicator at the top
of the screen; (2) an input field for activity names, where the
gesture was performed, and the participant’s username was
entered; (3) a duration input field to specify the recording length
in seconds; (4) a start button to initiate data collection; (5) a
countdown display indicating the remaining time for data
collection; (6) a confirmation dialog postcollection to verify
data quality before upload; and (7) separate indicators for data
saving and successful upload to provide real-time feedback to
data collectors.

The confirmation mechanism was implemented to prevent the
upload of data from instances where participants could not
perform gestures as intended, thereby mitigating data corruption
at the source. Upon confirmation, the data was transmitted to
Amazon Web Services (AWS) cloud storage, specifically to a
DynamoDB instance. Each entry in the database included 3-axis
accelerometer and gyroscope data, along with the activity name,
participant ID, and timestamp.

The Sense2Quit app, designed for iOS and Android platforms,
was developed using Flutter [24]. This cross-platform
compatibility significantly improved over the previous version,
which only supported Android devices, thereby restricting the
inclusion of participants who used Apple devices in this study.
Porting the existing Android app to a cross-platform framework
presented challenges, particularly regarding the core
functionality of transferring sensor data between the smartwatch
and the mobile device across both platforms. The standard
open-source packages in Flutter were insufficient to achieve
this functionality due to platform-specific limitations. We
encountered restrictions related to how long the app could run
in the background and the number of background operations
permitted by the package. As a result, platform-specific code
had to be implemented for Android and iOS. However, the UI
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code remained broadly consistent across platforms, ensuring a similar UX for participants regardless of their device.

Figure 2. User interface screenshots of the Sense2Quit smartphone app, showcasing the (A) login, (B) home, (C) smoking trends, (D) list of games,
(E) Tetris game, and (F) tips screens.
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Figure 3. User interface for the data collection screen demonstrating the states before data collection on the left and after data collection is completed
on the right.

Connectivity
The smartwatch’s accelerometer and gyroscope sensor data are
transmitted to the smartphone via a Bluetooth Low Energy
connection. Establishing this connection involves a 3-way
handshake, such as the TCP protocol [25]. The handshake begins
with the smartphone sending a greeting message, to which the
smartwatch responds with an acknowledgment message.
Subsequently, the smartphone sends a “heartbeat” message to
prompt the smartwatch to start transmitting sensor data. Once
a participant is onboarded and the connection between the
devices is established, data transfer occurs continuously in the
background.

The heartbeat mechanism maintains a stable connection and
uninterrupted data flow. The smartphone sends a heartbeat every
3 seconds to ensure the smartwatch continues to send data. If
the smartwatch does not receive a heartbeat for 6 seconds, the
data transfer ceases, and the Sense2Quit app notifies the
participant via the smartphone. This method ensures reliable
data transmission between the smartwatch and the smartphone.

Automatic Smoking Detection
The smoking detection algorithm is divided into multiple steps
(Figure 4). The sensor data is sent from the smartwatch to the

smartphone. The sensor data contains a timestamp, 3-axis total
accelerometer, and 3-axis gyroscope values. Gravity g always
influences the measured acceleration; therefore, to accurately
measure the actual acceleration, the contribution of gravitational
force must be eliminated. This is typically achieved through
filtering the data using either a high-pass or a low-pass filter.
Our app implemented a low-pass filter that smooths out rapid
fluctuations in the acceleration data, isolating the gravity
component. The 3-axis accelerometer values sent to the
smartphone are the total accelerometer values; the gravity
component is separated using the following recursive low-pass
filter formula:

Where α is a constant between 0 and 1 that determines the
responsiveness of the filter, which is set to 0.8 in our app, this
is performed for all the 3 readings (x, y, z) axes. Once the
gravity component is separated, the linear acceleration is
calculated using the equation:

The linear equation is also performed for all 3 readings, giving
us the linear acceleration values without the gravity component.
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The smartwatch’s gyroscope data is sent as a rotation vector
representing the orientation; no further filtering is applied.

Once the data is cleaned, the smartphone stores the linear
acceleration and gyroscope values locally. It then schedules the
local data to be uploaded to AWS cloud storage every hour.
The data is transferred from local storage to 2 queues, each
holding the values until they accumulate 200 entries. These
values are then processed by the machine learning model for

inference, which calculates a prediction to determine if a
smoking gesture occurred within the sample period. This process
is repeated continuously until a smoking gesture is detected. A
notification is sent upon detection, and the smoking data is
recorded in the app. To avoid redundancy, no further messages
are sent for 450 seconds, which is assumed to be the average
duration of smoking for this application and treated as a
cooldown period for smoking detection.

Figure 4. Workflow of the automatic smoking detection system, from sensor data collection and processing to using the smoking detection model to
provide user feedback.

Smoking Gesture Detection Model
This study used a convolutional neural network (CNN) to
enhance the accuracy of detecting smoking gestures from
wearable sensor data. The CNN model was trained to classify
smoking versus nonsmoking gestures using time-series data
from a smartwatch’s accelerometer and gyroscope. The choice
of a CNN architecture was driven by its ability to effectively
extract spatial features from raw sensor data, a critical factor in
differentiating smoking gestures from similar activities.
Additionally, CNNs demonstrate strong performance in
recognizing smoking gestures even when performed
simultaneously with other actions [26], achieving high accuracy
in person-independent evaluations. By integrating data from
accelerometers and gyroscopes, the model’s accuracy in gesture
detection improves further [27]. The CNN’s low computational
complexity and high classification accuracy make it well-suited
for real-time deployment on wearable devices [28].

The input data comprised 200 time points with 6 sensor values
(a 3-axis accelerometer and a 3-axis gyroscope). The architecture
(Figure 5) is well-suited for this app because the input data
consists of sequential sensor readings with subtle but
discriminative temporal and spatial patterns. The convolutional
layers enable the model to capture these patterns efficiently,
while the progressively increasing filter counts (8, 16, and 32)

ensure hierarchical learning of features, from simple motion
patterns in the lower layers to more complex and specific
smoking gestures in the higher layers. The initial larger kernel
size (5×5) captures broader motion characteristics across time,
while the smaller kernels (3×3) in subsequent layers refine these
patterns to focus on gesture-specific features. Leaky ReLU
activation is used in all convolutional layers to address the dying
ReLU [29] problem and enhance gradient flow. Two
MaxPooling layers (2×1) are interspersed to reduce
dimensionality. The network also includes a dense layer with
1024 units and a 0.5 dropout rate for overfitting prevention. The
output layer uses softmax activation for binary classification
between smoking and nonsmoking gestures. This architecture
is specifically designed to capture the subtle temporal and spatial
patterns characteristic of smoking gestures, with its progressive
feature extraction and dimension reduction facilitating efficient
and accurate classification. Using Leaky ReLU, strategic
pooling, and dropout contributes to robust learning and
generalization, making the model well-suited for real-time
smoking gesture detection in wearable devices. The categorical
cross-entropy loss function, the learning rate 0.001, a total of
100 epochs, and 32 samples per batch were used for training.
The model captures complementary motion information by
leveraging accelerometer and gyroscope data, improving
classification accuracy for smoking versus nonsmoking gestures.
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Figure 5. Smoking detection model architecture illustrating the underlying layers.

Online Dashboard
An online dashboard (Figure 6) was developed and implemented
for the research staff to facilitate real-time monitoring of study
participants. This web-based interface, created using the Flask
framework and hosted on AWS Elastic Cloud, provided critical
insights into participant engagement and data collection
processes. The dashboard displayed vital metrics for each
enrolled participant, including (1) total duration since

onboarding with the app, (2) timestamp of the most recent local
data backup to the cloud, and (3) timestamp of the participant’s
last interaction with the app.

This live information served as a vital data point for this study,
enabling researchers to promptly identify any anomalies in app
performance, monitor participant adherence to this study’s
protocol, and initiate timely follow-ups with participants who
demonstrated prolonged periods of inactivity.

Figure 6. The Sense2Quit dashboard for research staff provided usage information to participants enrolled in this study.
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Methods

Study Design
The pilot study revealed a significant challenge: frequent false
positive notifications triggered by participants’ routine activities
[21,22]. Upon investigation, we identified a range of
confounding gestures and actions that closely resemble
smoking-related motions, compromising detection accuracy.
Confounding gestures are everyday hand-to-mouth actions that
involve repetitive or subtle movements, like smoking, such as
bringing the hand to the mouth or face area. Specifically, these
include gestures such as eating, drinking, yawning, talking with
hand movements, applying chapstick, scratching the face,
adjusting glasses, waving, and answering phone calls. These
gestures closely mimic the smoking motion because they involve
similar wrist rotations, hand positioning, and timing patterns,
presenting significant challenges to automated gesture
recognition systems. Accurately differentiating these actions
from genuine smoking gestures is essential to avoid false
positive alerts, maintain user trust, and ensure that real-time
interventions are timely and appropriate.

Additionally, as the pilot study was conducted exclusively on
Android devices, we could not recruit participants who used
Apple devices, which limited the overall participant enrollment.
Some participants also reported connectivity issues between
their smartphones and smartwatches, further complicating data
collection and analysis. Addressing these limitations became
crucial for improving detection accuracy and system
performance. To tackle these challenges, we implemented 2
methods:

First, we recruited 30 participants from the pilot study and
recorded 16 common hand-to-mouth gestures from their daily
activities, including the smoking gesture. The typical smoking
gesture sequence—characterized by the user bringing their hand
to their mouth for inhalation, lowering it to a resting position,
and then repeating the motion for subsequent puffs—is not
unique to smoking. Similar action patterns can be observed in
other activities, such as drinking or answering a phone call,
which we have included in our investigation. This data evaluated
the model’s ability to distinguish smoking-related gestures from
similar actions, such as drinking or answering a phone call.
These gestures were collected across 3 distinct postures to ensure
comprehensive coverage of potential confounding movements.

Second, to evaluate the app’s cross-platform functionality and
performance, we recruited 8 additional participants who had
yet to participate in the pilot study. These participants were
asked to rate the smartphone app’s usability on iOS and Android
platforms. We also performed a power consumption analysis
on the smartwatch to assess its energy efficiency when running
the app. These combined methods enhanced the model’s
discriminative accuracy and addressed previous connectivity
issues without introducing additional computational complexity.

Confounding Gestures: Experiment Design and
Evaluation
The experiment aimed to collect confounding gesture data from
30 participants aged 34 to 71 (mean age 59.07, SD 8.92) years
who were people with HIV, smoked cigarettes, and participated
in the Sense2Quit pilot study. This sample size was chosen
based on similar studies in wearable gesture recognition and
smoking detection, which have successfully employed 10-30
participants to capture sufficient variability in gesture
performance [12,15,18,20]. Given the challenges in recruiting
a specialized high-risk population, such as people living with
HIV, and the fact that each participant contributes multiple data
points across various gestures and postures, this sample size is
justified for this exploratory study. Participants were recruited
at their 12-week follow-up appointment or through phone calls
following completion of this study. The gender distribution
among the participants was 16 males and 14 females. Regarding
ethnicity, the cohort included 2 (6.7%) White participants, 25
(83.3%) Black participants, and 6 (20%) Hispanic or Latino
participants. The participants’ mean height was 166.88 (SD
8.83) cm, their mean weight was 77.14 (SD 16.34) kg, and their
mean BMI was 27.91 (SD 6.54) kg/m² (Table 1). The visits took
place at Columbia University School of Nursing and lasted
between 15 and 30 minutes. During the visits, participants
completed a series of tasks while wearing a smartwatch on their
wrists under the instruction of a research staff member. The
smartwatch was connected to the Sense2Quit smartphone app,
which recorded accelerometer and gyroscope data of the gestures
performed. This study included 16 distinct gestures, comprising
15 confounding gestures and 1 smoking-related gesture. The
list of activities that the participants performed during
confounding gestures data collection is drinking without straw,
drinking with straw, eating with fork, eating without fork,
talking with hand gesture, using a phone (making a phone call),
adjusting glasses, arm cross, scratching face, applying chapstick,
yawning, pinching chin, wiping nose, messaging head, waving,
and smoking. The gestures selected for this experiment were
chosen because they closely resembled the motions involved
in smoking, thereby serving as confounding gestures that an AI
smoking detection model could misclassify. These confounding
gestures simulate everyday actions that involve similar wrist
and arm movements, such as eating, drinking, or waving, which
are prone to generating false positives in smoking detection
[30]. Each gesture was performed for 5 seconds, and participants
executed them in 3 distinct postural conditions: seated, standing,
and walking. However, it is essential to note that not all
participants could perform the gestures in all 3 postural
conditions due to the limited mobility of some participants. Data
collection was limited to those postures in which participants
reported and demonstrated comfort in performing the required
gestures. This approach was adopted to ensure the ecological
validity of the data while prioritizing participant comfort and
safety.
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Table 1. Characteristics of participants (N=30).

ValuesCharacteristic

59.07 8.92)Age (years), mean (SD)

14 (46.7)Female, n (%)

16 (53.3)Male, n (%)

25 (83.3)Black, n (%)

6 (20)Hispanic or Latino, n (%)

2 (6.7)White, n (%)

166.88 (8.83)Height (cm), mean (SD)

77.14 (16.34)Weight (kg), mean (SD)

27.91 (6.54)BMI (kg/m2), mean (SD)

To develop the CRS model, we trained a CNN, as described in
the previous section, by incorporating newly acquired
confounding gesture data. The CRS model was evaluated to
systematically assess the impact of confounding gestures and
compare its performance against baseline and state-of-the-art
models. Baseline CNN, trained without confounding gesture
data, was compared to the CRS model to determine whether
including such data improved resilience to false positives and
negatives without altering the architecture or adding complexity.
The baseline CNN had performed well in identifying smoking
gestures during the pilot study but struggled with categorizing
nonsmoking gestures, often misclassifying them as smoking
gestures. This limitation highlighted the need to include
confounding gesture data in training to address these
misclassifications. The CRS model was further benchmarked
against 2 state-of-the-art models. Baseline 1: a bottom-up
method for monitoring smoking behavior using wrist-mounted
inertial sensors [12], and baseline 2: PuffConv [11]. All models
were evaluated using the confounding gestures dataset, which
included data from 21 participants. Data from 9 of the original
30 participants were excluded due to corruption during
collection, leaving 1054 usable samples. These samples were
partitioned into training (632/1054, 60%), testing (211/1054,
20%), and evaluation (211/1054, 20%) subsets, following
standard machine learning practices. Metrics for evaluation
included the confusion matrix, with true positive rate (TPR)
and false positive rate (FPR) defined as:

TP, FP, FN, and TN represent true positives, false positives,
false negatives, and true negatives, respectively. The receiver
operating characteristic (ROC) curve was used to analyze the
trade-off between sensitivity (TPR) and specificity (1–FPR),
with performance quantified by the area under the curve (AUC):

Representing the continuous summation of TPR values over
the range of FPR. However, in practice, AUC is computed

numerically using the trapezoidal rule based on discrete points
along the ROC curve. The F1-score was also used to provide a
balanced measure of precision and recall, particularly valuable
for imbalanced datasets. The F1-score is defined as:

Precision (TP/[TP+FP]) quantifies the ability to avoid false
positives, and recall (TPR) quantifies the ability to identify true
positives. The F1-score captures the trade-off between precision
and recall, ensuring a comprehensive assessment of the model’s
classification performance. Finally, leave-one-subject-out
cross-validation was conducted to assess generalizability. The
model’s performance was evaluated on unseen participants to
ensure individual robustness and applicability.

Usability Evaluation of the Sense2Quit Apps
To assess the usability of our smartphone app on both iOS and
Android platforms, a UX survey was conducted with 8 student
participants from the University at Buffalo. The survey aimed
to gather quantitative and qualitative data on the app’s
performance, feature parity, and UI design. It was designed with
questions that focused on key performance indicators such as
app launch time, smoothness of the UI, and the app’s
responsiveness to user inputs. Participants rated these aspects
on a Likert scale [31] from 1 to 5, with 1 indicating the lowest
satisfaction and 5 the highest. Moreover, the survey explored
the presence of feature parity between the iOS and Android
versions, probing whether any significant features available on
one platform needed to be added to the other. To gather insights
into the app’s overall UI design, respondents were also asked
to rate the intuitiveness and usability of the app’s interface on
both platforms. They provided feedback on the overall UX to
identify potential improvements to enhance usability and
satisfaction across different devices.

Additionally, we wanted to understand the impact of continuous
data transmission on smartwatch power consumption, so we
conducted a test using the Mobvoi Ticwatch Pro 3 (HK
SMARTMV LIMITED), set up with an Android phone. The
watch ran Sense2Quit, a custom app to collect power
consumption data and the default preinstalled apps. The

J Med Internet Res 2025 | vol. 27 | e67186 | p. 10https://www.jmir.org/2025/1/e67186
(page number not for citation purposes)

Das et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


20-minute test consisted of 3 phases: a 5-minute baseline phase,
a 10-minute active phase with the Sense2Quit app running in
the background collecting and transmitting sensor data, and
another 5-minute baseline phase after the active phase. Our
custom power consumption monitoring app collected current
and voltage information every 5 seconds.

Ethical Considerations
This study was conducted in full compliance with ethical
standards and approved by Columbia University’s Institutional
Review Board (protocol number AAAT7031). Before
enrollment, all participants provided written informed consent,
and every effort was made to ensure that their privacy and
confidentiality were rigorously maintained throughout this study.
Participants signed a consent form before participating in any
study activities and were compensated with US $30 for their
time.

Results

Confounding Gestures Dataset Evaluation

Overview
This section comprehensively analyzes the models’performance
on the confounding gestures dataset. First, we present the CRS
model evaluation results, the baseline CNN, and state-of-the-art
models, baseline 1 and baseline 2, on the collected confounding
dataset. Next, we explore the CRS model’s generalizability,
emphasizing its ability to perform well across diverse
individuals. Finally, we examine the factors influencing
individual confounding gesture performance, identifying key
elements that impact the model’s accuracy and robustness for
specific gestures.

CRS Model Performance and Comparison
The results of our analysis underscore the substantial
improvement achieved by the CRS model over the baseline
CNN and the 2 state-of-the-art baselines, highlighting its
effectiveness in smoking gesture recognition. The F1-score was
a valuable metric for this evaluation because it combines
precision (the ability to avoid false positives) and recall (the
ability to identify true positives correctly) into a single balanced
measure. In the context of smoking gesture detection, this
balance is crucial. High precision ensures that nonsmoking
gestures, such as eating or drinking, are not misclassified as

smoking, thereby reducing unnecessary alerts and maintaining
user trust. Meanwhile, high recall ensures that actual smoking
gestures are accurately identified, minimizing the risk of missed
detections and allowing timely interventions. This makes the
F1-score an essential metric for evaluating smoking detection
models’ reliability and practical applicability, where false
positives and negatives can have significant implications for
real-world use. The CRS model achieved an F1-score of 97.52,
demonstrating a substantial advancement over the baseline
CNN, which had an F1-score of only 67.06. The large gap
between these 2 models highlights the critical role of
incorporating confounding gesture data in reducing false
positives and negatives, making the CRS model far more reliable
and robust. Baseline CNN struggled to distinguish nonsmoking
gestures, resulting in a high FPR and lower overall precision
(Figure 7, confusion matrix B). In contrast, the CRS model
effectively addressed these limitations, reflected in its
significantly higher F1-score (Figure 7, confusion matrix A).
Compared to the state-of-the-art baselines, the CRS model
outperformed baseline 1 with an F1-score of 94.87 (Figure 7,
confusion matrix C) and baseline 2 with an F1-score of 90.84
(Figure 7, confusion matrix D). The higher F1-score of the CRS
model indicates its superior ability to balance precision
(avoiding false positives) and recall (identifying true positives),
even in challenging scenarios with confounding gestures.
Although relatively strong performers, the state-of-the-art
baselines exhibited slightly higher false positive and false
negative rates than the CRS model, which could lead to
occasional misclassifications in real-world applications. The
CRS model demonstrated clear superiority over baseline 1 and
2 in handling confounding gesture-based smoking detection,
mainly due to architectural differences. Baseline 1, which used
a sequential convolution long short-term memory architecture,
relied on 1D convolutional layers to extract temporal features.
However, this reliance limited its ability to capture complex,
hierarchical features necessary to distinguish confounding
gestures from smoking gestures, particularly in scenarios with
overlapping motion patterns. Similarly, baseline 2, which
incorporated squeeze-and-excitation blocks within a 2D
convolutional framework, endured the relatively shallow depth
of its network. This hindered its capacity to extract and
generalize the subtle patterns characteristic of confounding
gestures, reducing its ability to separate smoking gestures from
nonsmoking ones in diverse datasets effectively.
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Figure 7. Confusion matrices for models (A) CRS, (B) baseline CNN, (C) baseline 1, and (D) baseline 2. CNN: convolutional neural network; CRS:
confounding resilient smoking.

We also used ROC curve analysis to visualize the trade-off
between TPR (sensitivity) and FPR (Figure 8). This approach
adds another layer of insight into the models’performance. The
ROC curve allows a nuanced understanding of the balance
between correctly identifying smoking gestures (sensitivity)
and minimizing false alarms (FPR). By analyzing the curve, we
can identify an optimal classification threshold, which is
especially important in real-world applications where the
consequences of misclassification are significant. For instance,
overly high sensitivity may increase false positives and
unnecessary interventions, while low sensitivity might result in
missed detections, undermining the system’s utility. The AUC
derived from the ROC analysis is a robust summary of each
model’s discriminative power. The CRS model achieved an
impressive AUC of 0.99 for both smoking and nonsmoking
gestures, significantly outperforming the baseline CNN, which

had AUC values of only 0.66 and 0.67, respectively. The
significant performance gap underscores the critical importance
of incorporating confounding gesture data, dramatically
enhancing the model’s robustness and applicability. Compared
to state-of-the-art models, the CRS model still demonstrated
superior performance. Baseline 1 achieved AUC values of 0.95
for both smoking and nonsmoking gestures, while baseline 2
achieved AUC values of 0.95 and 0.97 for smoking and
nonsmoking gestures, respectively. While these results indicate
that the state-of-the-art models are relatively strong performers,
their slightly lower AUC values suggest they are less effective
in distinguishing between smoking and nonsmoking gestures
across various threshold settings. The state-of-the-art models’
reliance on less optimized architectures for handling
confounding gestures likely contributed to this performance
gap.
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Figure 8. ROC curves for the smoking detection model. The blue lines represent the CRS model, the green lines correspond to the Baseline CNN, and
the yellow and red lines represent the state-of-the-art baseline 1 and 2 models, respectively. Solid lines represent smoking detection, and dotted lines
represent nonsmoking detection. The AUC fractions indicate the performance for smoking (first value) and nonsmoking (second value) detection. AUC:
area under the curve; CNN: convolutional neural network; CRS: confounding resilient smoking; ROC: receiver operating characteristic.

Generalizability of the CRS Model
Leave-one-subject-out cross-validation was conducted on the
CRS model to evaluate its generalizability and per-participant
performance. This method ensures the model’s robustness by
testing its ability to accurately predict outcomes for unseen
individuals, a critical requirement for real-world applications.
Among the participants, SQ86 achieved the highest accuracy
at 99%, indicating that the model effectively captured patterns
specific to this individual’s gestures. Conversely, SQ70 had the
lowest accuracy at 77%, suggesting more significant variability
or overlap between smoking and nonsmoking gestures for this
participant, potentially due to unique behavioral nuances or
differences in sensor placement.

The average accuracy across all participants was 86%, lower
than the overall F1-score evaluated across the entire dataset.
This discrepancy arises because the F1-score is calculated based
on the combined data from all participants, benefiting from a
larger sample size and the ability to average out interindividual
variability. In contrast, the leave-one-subject-out approach
evaluates performance on a per-participant basis, where the
model is trained without access to data from the test participant.
This setup inherently amplifies the impact of interindividual
differences, such as variations in gesture dynamics, sensor
orientation, or individual motion patterns. However, despite the
decrease in average accuracy, the result still demonstrates the
model’s substantial potential for generalization. An 86% average

accuracy indicates that the CRS model maintains a high level
of performance even when applied to new individuals,
highlighting its practical applicability and suitability for
real-world scenarios where data from unseen users is inevitable.
Another interesting discovery based on this analysis was that
all the outliers, defined as participants with accuracy greater or
less than 1 SD from the mean, were male by birth. Additionally,
both the maximum (99% for participant SQ86) and minimum
(77% for participant SQ70) accuracies were observed among
male participants in the dataset.

Lastly, to adapt this architecture for more extensive and diverse
datasets, modifications may include increasing the number of
convolutional layers or filters to handle greater data complexity,
incorporating recurrent layers such as long short-term memories
or gated recurrent units to capture long-term dependencies in
extended time-series data, and applying batch normalization
for stable and efficient training. For larger datasets, dropout
rates can be adjusted, and larger dense layers can be used to
model complex interactions. Furthermore, optimization
strategies such as learning rate schedulers and training with
larger batch sizes would improve computational efficiency.
These modifications ensure the architecture remains robust and
effective when scaling up or transitioning to different datasets
while retaining its suitability for real-time wearable apps.

Contribution of Confounding Gestures
To better understand the confounding factors affecting gesture
recognition accuracy in our model, we expanded the output
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layer from 2 to 16 classes. This allows us to visualize the
model’s predictions in a confusion matrix (Figure 9). The matrix
reveals several key insights. The actual smoking gesture was
correctly predicted as smoking 21% of the time. However, the
model also frequently misclassified smoking as other gestures,
a type of error known as a false positive. Notably, eating with
and without a fork, drinking with a straw, and yawning were
incorrectly predicted as smoking 14% of the time. These
gestures share similarities with smoking, such as hand-to-mouth
movements, which explains the model’s confusion. Conversely,
false positives occur when the model incorrectly predicts other
gestures, such as smoking. The confusion matrix reveals that
applying chapstick and waving were misclassified as smoking
30% and 29% of the time, respectively. These errors underscore

the model’s difficulty distinguishing gestures from motion
patterns such as smoking.

This pattern of errors indicates that the model’s learning process
aligns with human intuition regarding gestures that resemble
smoking visually or contextually. For instance, the
misclassification of yawning and drinking with a straw likely
stems from the model’s difficulty distinguishing between subtle
hand movements near the face, daily across these gestures. The
raw sensor data of these confounding gestures have been
visualized (Figure 10) for better understanding. While the model
effectively identifies smoking when all confounding gestures
are combined, the confusion matrix highlights which specific
gestures the model struggles to differentiate from smoking when
each gesture is classified individually.

Figure 9. Confusion matrix for 16-class classification: red highlights indicate false negatives and false positives for the target class “smoking.”.
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Figure 10. Visualization of raw accelerometer and gyroscope data of various confounding gestures (smoking, eating, drinking, yawning, waving, and
scratching the head).

Evaluation Results of the Sense2Quit Apps
The UX survey results confirmed minimal difference in usage
between the Sense2Quit apps developed for iOS and Android,
highlighting the app’s cross-platform functionality without
negatively affecting usability (Table 2). Participants provided
similar ratings across both platforms, with iOS scoring an
average of 4.75 and Android scoring 4.7 for app performance.
Both platforms received high scores for responsiveness, with
iOS rated 4.7 and Android rated 4.8. Feature parity, however,
showed a slightly lower average, with iOS scoring 4.1 and

Android scoring 4.3. This difference is attributed to 2 factors:
on iOS, the smoking detection feature must be manually
activated by pressing the smartwatch, a restriction that stems
from Apple’s watch OS, while on Android, it starts
automatically. Additionally, users reported a noticeable lag in
the game feature due to a bug in the Flutter package, which will
be addressed in future updates. Despite these minor
discrepancies, the overall UI was rated similarly on both
platforms, with iOS scoring 4.7 and Android 4.5, reinforcing
the app’s consistent cross-platform experience.

Table 2. Average Likert scores of the participants to assess the performance, feature parity, and user interface of the Sense2Quit smartphone apps.

Android scoreiOS scoreEvaluation type

4.74.75App performance

4.64.8How would you rate the app launch time on the device you tested?

4.84.7How responsive is the app to your inputs on the device you tested?

4.34.1Feature parity

4.34.1How well do the following features work on the device you tested: Games, adding reminders, watching tips
videos, performing smoking gesture?

4.54.7User interface

4.54.7How would you rate the overall user experience of each device

The smartwatch power consumption results demonstrated that
the Sense2Quit app consumed an average of 356.49 mW when
active, compared to baseline averages of 121.75 mW before
and 150.42 mW after the active phase. A graph (Figure 11)
illustrating power consumption over time, with overlaid average
power lines for baseline (green) and active (orange) phases,

visualizes these results. This evaluation is crucial given that our
app operates continuously in the background, potentially
affecting the device’s overall power consumption and battery
life. The slight increase in baseline power consumption after
the active phase (from 121.75 mW to 150.42 mW) may indicate
residual effects on the device’s power management.
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Figure 11. Smartwatch power consumption during active and baseline states.

Discussion

This study’s primary findings indicate that the Sense2Quit
system detected smoking gestures with remarkable accuracy,
achieving an F1-score of 97.52% and an AUC of 0.99. This
significantly improved recognition of smoking gestures
compared to state-of-the-art models [11,12]. It also shows
cross-platform compatibility and smooth connectivity between
smartphones and smartwatches. Furthermore, user feedback
indicated nearly equivalent usability on iOS and Android
devices, suggesting strong potential for widespread deployment
across varied mobile platforms.

The Sense2Quit study significantly advances smoking cessation
technology, mainly through real-time smoking gesture
recognition innovations and cross-platform app functionality.
By integrating confounding gestures such as drinking, eating,
yawning, and similar hand-to-mouth actions during model
training, the CRS model significantly reduced false positive
and false negative rates, enhancing accuracy and real-world
usability. These improvements align with existing research,
highlighting the critical need to address confounding activities
often leading to false-positive smoking detections in wearable
sensor-based interventions [32,33]. Sense2Quit provides
just-in-time interventions tailored to the specific needs of
high-risk populations, such as people with HIV who smoke.
The system’s precise detection of smoking gestures underscores
its robustness and reliability, making it an invaluable tool for
smoking cessation efforts. A key strength of this study is its
ability to address the long-standing challenge of confounding
gestures using the CRS model, a core component of the
Sense2Quit system. Integrating confounding gestures, such as
drinking, eating, or other hand-to-mouth actions that closely
mimic smoking, into the training process, the CRS model

significantly reduces false positives and negatives, enhancing
the accuracy of smoking gesture recognition. The CRS model’s
ability to maintain high discriminative power while balancing
sensitivity and specificity makes it particularly well-suited for
real-world applications, where the consequences of
misclassification can be significant. This high level of precision
is achieved without adding unnecessary complexity, ensuring
the model remains efficient and capable of running smoothly
on mobile devices.

The inclusion of leave-one-subject-out evaluation further
validated the CRS model’s robustness and generalizability,
demonstrating consistent performance across diverse individuals.

Sense2Quit was developed using the Flutter framework,
enabling seamless integration across Android and iOS platforms.
This cross-platform compatibility significantly expands the
app’s accessibility, allowing a broader user base to benefit from
its real-time smoking gesture detection and intervention features,
regardless of device preference. The UX of both apps was
evaluated in 3 main categories: app performance, feature parity,
and UI. This evaluation was based on feedback from 8
participants. The average score for iOS was 4.52, and for
Android, it was 4.5. The score difference was only 0.02 on a
5-point Likert scale, indicating a similar overall UX on both
platforms. The smartphone app incorporates engaging interactive
elements, including tips, reminders, and games such as Pac-Man
and Tetris. These help users manage cravings while keeping
them actively involved with the app over extended periods. This
focus on engagement through gamification enhances user
retention and supports long-term smoking cessation efforts [7].
The app fosters continuous interaction by combining real-time
tracking with behavioral interventions and gamification, critical
for sustaining smoking cessation progress [9,10]. Regular
reminders serve as behavioral prompts, reinforcing users’ focus
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on their quitting goals and increasing the app’s effectiveness as
a daily tool in their cessation journey. The online dashboard
developed for research staff provides real-time user engagement
and behavior insights. This feature allows health care providers
to monitor participant adherence, address potential drop-offs in
engagement, and ensure adherence to this study’s protocol,
ultimately improving the overall success rate of the smoking
cessation program. This study also examined the power usage
of a smartwatch running the Sense2Quit app and looked at how
other movements could affect the accuracy of detecting smoking.
These findings are essential for understanding how the app
affects the smartwatch’s battery life and ensuring it remains
usable for a long time. The analysis of other movements also
showed that the model’s learning closely matches human
intuition when distinguishing visually or contextually similar
gestures, such as smoking.

While the Sense2Quit system shows great promise, areas for
improvement and limitations still need to be addressed.
Real-world testing is essential to validate the system’s enhanced
performance in everyday situations, as the current results have
been primarily obtained from controlled environments.
However, insights gained from the pilot study [21,22] and the
promising results of integrating confounding gestures suggest
that the system will likely perform better in real-world settings.
The fixed cooldown period, during which no further smoking
alerts are triggered after initial detection, along with the fixed
sampling rate for collecting sensor data from the smartwatch,
could be dynamic to enhance detection accuracy and improve
battery life. By adjusting these parameters based on real-time
conditions, the system could optimize performance, reducing
unnecessary power consumption while maintaining high levels
of accuracy. Although the model’s ability to handle confounding
gestures has significantly improved smoking detection by
reducing false positives, a limitation remains in its ability to

differentiate between specific nonsmoking gestures, such as
eating or drinking. While distinguishing individual gestures is
beyond the current scope of this study, future versions of the
system could address this challenge to enhance its accuracy
further. Addressing these limitations will be crucial for refining
the system’s practical application and ensuring its success in
real-world use. This study also revealed potential gender-related
differences in the model’s accuracy, suggesting the possible
influence of physiological or behavioral factors on gesture
recognition. These differences may be due to variations in hand
size, gesture amplitude, or smoking patterns between genders,
which can affect sensor readings and model performance. To
address this limitation, future research should first conduct a
detailed sensor data analysis to quantify how such physiological
and behavioral factors differ across genders. Specific
recommendations include incorporating demographic-specific
data into training and developing personalized submodels or
adaptive algorithms that adjust to individual differences. For
instance, using transfer learning techniques [34] to fine-tune
the model on gender-specific datasets [35] or incorporating
demographic variables as additional input features may help
improve accuracy across diverse user groups. Moreover,
collecting a larger and demographically balanced dataset would
enable more rigorous statistical analysis and validation,
ultimately leading to a more robust model that accounts for
interindividual variability. These steps are crucial for enhancing
the generalizability and equity of the system in real-world
applications. Combining cutting-edge gesture recognition with
user-centered design and real-time interventions, the Sense2Quit
system sets a new standard for smoking cessation technology.
Future research should explore integrating demographic-specific
factors, real-world performance evaluations, and model
optimizations to bridge the gap between advanced technology
and impactful health care applications.
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