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A B S T R A C T

Photoacoustic tomography (PAT) is an emerging imaging modality with widespread applications in both pre
clinical and clinical studies. Despite its promising capabilities to provide high-resolution images, the visualiza
tion of vessels might be hampered by skin signals and attenuation in tissues. In this study, we have introduced a 
framework to retrieve deep vessels. It combines a deep learning network to segment skin layers and an adaptive 
weighting algorithm to compensate for attenuation. Evaluation of enhancement using vessel occupancy metrics 
and signal-to-noise ratio (SNR) demonstrates that the proposed method significantly recovers deep vessels across 
various body positions and skin tones. These findings indicate the method’s potential to enhance quantitative 
analysis in preclinical and clinical photoacoustic research.

1. Introduction

Photoacoustic (PA) tomography (PAT) is an emerging imaging 
technique based on the photoacoustic effect, which maps the optical 
absorption with acoustic detection [1–3]. This technique demonstrates 
promising capabilities in generating high-resolution images in deep 
tissues as the attenuation of acoustic waves is much less than the light in 
tissue. Such advancements position PAT favorably for diverse applica
tions in both preclinical and clinical imaging fields, including but not 
limited to breast cancer detection [4–8], foot ulcer imaging for perfusion 
[9–11], palm biometric extraction [12], and skin cancer detection [13].

Like other optical imaging methods, the performance of PAT is 
affected by skin color. It is widely observed that the PA signal in dark 
skin surpasses those in light skin due to higher optical absorbance [14]. 
Consequently, it impedes the visualization of vessels beneath the skin. In 
addition, most PAT results were demonstrated in Maximum Amplitude 
Projection (MAP), where the skin signals might easily suppress the un
derlying vasculature. Considering that various photoacoustic studies 
rely on analyzing vascular features [8,15,16], this limitation might lead 

to compromised results, especially in subjects with dark skin [17,18]. In 
addition, the optical and acoustic attenuation in tissues will also degrade 
the PA signals over depth. This is extremely important in peripheral 
arterial disease, in which African American can disproportionately 
effected [19]. Without proper consideration of the skin location, a 
depth-enhanced weighting strategy would amplify both the skin and 
vessel signals.

Different methodologies have been introduced to mitigate the effects 
of skin signals in PA imaging. Zhang et al. developed an automatic skin 
profile detection method to locate the skin layers in photoacoustic mi
croscopy (PAM) images [20]. Kim et al. revealed deep vessels by 
removing skin layers in PA images from super-resolution localization 
PAM [21]. However, clinical PAT systems usually employ low-frequency 
transducers for a deep imaging depth, and the axial resolution is much 
poorer compared to PAM systems. Therefore, it is challenging to 
distinguish the edge of skin layers in PAT. To address this issue, Lee et al. 
and Choi et al. utilized ultrasound (US) to identify the skin contour and 
then used that information to remove the skin signals in PAT[9,22]. 
However, some PAT systems do not have US imaging capabilities.
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Deep learning, as a rapidly growing field, has been widely applied to 
medical imaging in recent years. Numerous deep learning methodolo
gies have been proposed in photoacoustic imaging, targeting to improve 
the image quality from different aspects [23–26]. As for skin signal 
identification, Ly et al. presented a Sliding-U-Net model for segmenting 
skin and vessel profiles in PAM [27]. Yuan et al. proposed Hy-Net for 
blood vessel segmentation for PA images [28]. Zhao et al. implemented 
HM-3DCE-Net to segment the OR-PAM images in 3D space [29]. While 
all these models can detect the vessels in PA images and hence eliminate 
the effect of skin signals, they were all trained and validated on PAM 
images, which have much higher resolution due to high-frequency 
transducers. Therefore, they might not perform well on low-frequency 
PAT imaging systems, because the skin features are different. Schel
lenberg et al. developed a deep-learning network for semantic segmen
tation on multispectral PA images [30]. However, it requires 
multi-wavelength PA images where vessels are enhanced, posing prac
tical limitations in single-wavelength PAT systems [11]. Zheng et al. 
implemented a 3DFD UNet to enhance the vessel in the PA images from 
the linear-array PAT system and reduce the signal signals [31]. How
ever, this model was trained based on simulation data, which cannot 
fully mimic the variation in human skin color. Recently, Wang et al. 
introduced a skin-removal algorithm based on a 2.5D-DeepFPN model 
[32]. While their method worked well in light-skin-colored subjects, the 
team did not demonstrate its effectiveness in a clinical setting nor in 
subjects with dark skin color. In addition, subjects were scanned with 
skin immersed in water, which may not be feasible in clinical practice.

In this study, we proposed a novel framework combining a deep 
learning network for segmenting the skin layers and an adaptive 
weighting algorithm to account for signal attenuation beneath the skin. 
This combined approach aims to recover deep vessels in PA images, 
facilitating quantitative analysis in translational research.

2. Methods

2.1. Overall workflow

The overall workflow is shown in Fig. 1. We started with the manual 
labeling of skin pixels in more than 5000 frames extracted from PA 
images of human breasts and feet. These data were used to train a re
sidual UNet. The trained network is named the Skin Localization 
Network (SL-Net). Leveraging on the skin locations predicted by SL-Net, 
we further developed an adaptive weighting method to restore deep 
vessels, resulting in better recovery of vascular features across different 
depths. The efficiency of this approach is evaluated by quantitatively 
comparing the vessel occupancy before and after processing.

2.2. Dataset preparation

2.2.1. Data source
The original photoacoustic imaging data used in this study comes 

from two PA clinical studies: The breast cancer imaging project and the 
foot ulcer imaging project [11,31]. We selected the breast and foot as the 
anatomical sites for our experiments based on their clinical significance. 
Breast cancer is the most diagnosed cancer worldwide and one of the 
leading causes for cancer related death in women, early detection is 
extremely important to improve survival rate [33,34]. Compared to 
traditional imaging techniques such as X-ray mammogram, MRI and 
ultrasound, photoacoustic imaging provides a high-resolution, non-
radiation and cost-effective imaging solution for breast especially in 
dense breast [35,36]. Chronic leg ulcers affect approximately 6.5 million 
Americans and are associated with significant morbidity, reduced 
quality of life and high treatment cost [37]. Since many chronic ulcers 
have underlying vascular insufficiency, accurate assessment of tissue 
perfusion is critical to treatment planning and monitoring. Compared to 
other existing diagnostic techniques, photoacoustic imaging systems are 
capable of precisely evaluating perfusion conditions without radiation 
or contrast agent injection [9–11].

In the breast imaging system, a U-shaped scan is used to enlarge the 
field of view to ensure that the whole breast of the subject is covered. 
The light source is provided by a portable laser with a 20 Hz pulse 
repetition frequency (PRF). Photoacoustic signals are captured by a 
customized linear transducer array with a central frequency of 
2.25 MHz. The received signals are then transmitted to a 40 dB pre
amplifier (Photosound) and acquired by a data acquisition system 
(Vantage 256, Verasonics) with 14.28 MHz sampling rate. For the foot 
imaging system, a customized linear transducer array with 2.25 MHz is 
mounted on the translation stage to perform the imaging of the dorsal 
side of the foot. A 10 Hz portable laser is employed to provide excitation 
and a portable DAQ (Photosound) is used to capture the PA signals with 
40 MHz sampling rate. More details of the experiment setup can be 
found in the reference [5,11]. For in-vivo imaging experiments 
mentioned above, all studies were approved by the Institutional Review 
Board of the University at Buffalo, under different study protocols for 
breast imaging and foot imaging. All human subjects provided informed 
consent after fully understanding the implications of their participation. 
Subjects were recruited by clinical collaborators.

The acquired PA signals are first filtered by a 2–4 MHz bandpass 
filter and then reconstructed using the delay-and-sum method [38]. The 
cross-sectional frames are then stacked to form C-scan images. For breast 
imaging, we have 850 frames in each C-scan, while for foot imaging, we 
have 500 frames in each C-scan. Notably, since the same transducers are 
implemented for both breast and foot imaging, these images are fed into 
the same network.

Fig. 1. Framework of the proposed algorithm. The workflow can be divided into two sections: SL-Net training and image enhancement. The SL-Net is trained with 
manually labeled images, and the trained model can predict skin locations in the in-vivo PA images. Based on the labeled skin location, the image enhancement 
section utilizes an adaptive weighting algorithm to recover deep vessels.
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2.2.2. Data labelling
We utilized slices in the axial-lateral direction of the reconstructed 

data as the network input. Each frame (B-scan) in the dataset underwent 
normalization by scaling image intensity to a range from 0 to 1. Manual 
labeling of the skin layer in PA images was executed using the brush tool 
within the MATLAB ‘Volume Segmentor’ toolbox. After labeling all the 
frames, we saved the resulting labels as a logical matrix mirroring the 
size of the C-scan image. Subsequently, frames lacking labels were 
omitted from the dataset. The final dataset includes 5313 pairs of frames 
and labels, with 2438 pairs from the foot imaging dataset and 
2,8752875 pairs from the breast imaging dataset. Notably, images 
included in the training set are captured from multiple subjects with 
various skin tones to improve the model’s generalization ability.

However, it’s important to note that the labels might lack precision 
at the pixel level due to limitations stemming from the relatively poor 
resolution of the low-frequency transducer used in both human imaging 

studies. Additionally, the presence of noise in the reconstructed data 
might further complicate the accurate delineation of the skin layer.

2.3. Data pre-processing and data augmentation

As the original PA images are acquired from different subjects at 
different positions and from different systems, the sizes of the frames are 
different. After loading the images and labels from the training dataset, 
the images and corresponding labels that have pixel numbers less than 
256 along the axial direction are padded to 256 pixels to fit the input size 
of the network. After that, the intensity of the image is scaled into a 
range from 0 to 1.

Owing to the intricate nature of PAT images, the manual labeling of 
the skin region at the pixel level is challenging and time-intensive. 
Consequently, the adoption of data augmentation techniques becomes 
imperative to this study. The augmentation process involves a series of 

Fig. 2. The architecture of the proposed Skin-Localization Net (SL-Net).

Fig. 3. The workflow of the adaptive weighting calculation.
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operations. Initially, the image undergoes random scaling, with a scaling 
factor chosen uniformly between 0.8 and 1.25. Subsequently, the scaled 
images are subjected to random rotation within an angular range of 
− 0.05 to 0.05 radians. Following rotation, the algorithm randomly 
cropped the image into four sub-images, each with dimensions of 256 by 
256 pixels, with the central pixel corresponding to a location within the 
skin region. Additionally, the augmentation protocol incorporates flip
ping, executed with 0.5 probability. Meanwhile, the same trans
formations have been applied to the corresponding labels. These 
augmentation strategies diversify and enrich the training dataset, 

thereby enhancing the model’s capacity to generalize across various skin 
features.

2.4. The model architecture of Skin-Localization-Net (SL-Net)

As shown in Fig. 2, the SL-Net is developed based on 2D deep residual 
UNet architecture [39]. The model facilitates the transfer of spatial in
formation from the encoder to the decoder through skip connections. 
Furthermore, the inclusion of residual connections addresses the van
ishing gradient problem, ensuring effective gradient learning and 

Fig. 4. Model performance during training. (a) The dice loss in the training dataset and validation dataset. (b) The dice metric and intersection over union (IoU) 
performance in validation. (c) The accuracy, f1 score, and precision in validation.

Table 1 
The comparison of the performance of various models. IoU: intersection over union; Acc: Accuracy; Prec: Precision.

Model Dice score Dice loss IoU Acc F1 score Prec Trainable Params num Inference time per frame (ms)

SL-Net 0.795 0.205 0.669 0.993 0.804 0.739 6.495 M 0.049 ± 0.006
UNet 0.765 0.235 0.628 0.992 0.763 0.703 2.638 M 0.024 ± 0.003
UNet+ + 0.747 0.253 0.607 0.990 0.732 0.632 0.152 M 0.088 ± 0.011
VNet 0.794 0.206 0.666 0.992 0.801 0.702 9.358 M 0.056 ± 0.006
SwinUNetR 0.792 0.208 0.655 0.992 0.795 0.723 25.122 M 0.158 ± 0.019

Fig. 5. Performance evaluation on the in-vivo data. (a) An original cross-sectional image of the breast in the test dataset. (b) An original cross-sectional image of the 
foot in the test dataset. (c) A manual skin label of the breast image in (a). (d) Manual skin label of the foot image in (b). (e) Predicted skin location of the breast image, 
using the trained SL-Net. (f) Predicted skin location of the foot image, using the trained SL-Net.
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propagation through the network’s deep layers.
The network comprises four residual blocks in both the encoding and 

decoding pathways, with a bottleneck residual block serving as an 
intermediary between these two branches, as shown in Fig. 2. The 
spatial dimension reduction of feature maps is achieved with the 
convolution with a stride of 2, which replaces the max pooling layer in 
the basic UNet model, allowing the network to learn flexible spatial 
transformations. The residual connection is widely applied to all the 
blocks. Within the contracting path, each block integrates a residual 
connection and a convolution unit featuring a stride of 2 (gray block). 
The residual connection encompasses a two-stride convolution (yellow 
block) and a one-stride convolution (cyan block), both utilizing a kernel 
size of 3. In the bottleneck structure, the residual connection involves 
two convolutions with a kernel size of 3 and a stride of 1, while the 
convolution unit (orange block) deploys a kernel size of 1 and a stride of 
1. Within the expansive path, all convolutions employ a kernel size of 3. 
Each layer consists of a transpose convolution (green) with a stride of 2, 
a convolution with a stride of 1, and a residual connection. The model 
uniformly implements instance normalization with the momentum set 
to 0.1 and an epsilon value of 10− 5. Additionally, Parametric Rectified 
Linear Unit (PReLU) activation functions are utilized across the network 
for non-linear transformations.

2.5. Deep learning implementation

The model and data augmentation are built based on the Medical 

Open Network for Artificial Intelligence (MONAI) library, which is a 
widely used deep learning toolkit for medical image analysis [40]. All 
the network-related scripts are implemented using Python with Pytorch 
1.12.1 plus cuda 11.3 backend. The dataset is randomly split with a ratio 
of 0.75: 0.2: 0.05 for training, validation, and testing, respectively. The 
training platform is a workstation with AMD Ryzen 9 3950X CPU, 
128 GB RAM, and Nvidia GTX 3090 graphic card.

The loss function implemented in this training is the dice loss with 
the sigmoid function for prediction [41]. A sigmoid function is used as 
the activation function combined with a threshold at 0.5 to convert the 
model prediction into binary output. Considering the different sizes of 
the frames coming from different systems, we utilized the Sli
dingWindowInferer function in the MONAI library in validation and test 
procedures, with an overlap ratio set to 0.5. To evaluate the model 
performance, we selected several metrics: dice metric, dice loss, mean 
intersection over union (IoU), accuracy, F1 score, and precision. These 
metrics are tracked during the validation and calculated on the test 
dataset after training.

During the model training phase, we have implemented various 
optimization techniques to enhance performance. The AdamW optimi
zation method is employed [41], with a learning rate set at 0.001 and a 
weight decay of 10-5. Additionally, we utilized the cosine annealing 
schedule to further optimize training dynamics [42].

Fig. 6. Phantom experiment results. (a) Side view of the tissue-mimicking phantom, pencil leads are marked by black arrow and their locations are labeled. (b) A 
photo of a combined phantom. A thin-layer skin phantom (0.1 % volume fraction ink) is stacked on the top of the tissue-mimicking phantom. (c) –(f) Photos of 
phantoms with 0.00 %, 0.02 %, 0.10 % and 0.20 % volume fraction India Ink added, respectively. (g)-(j) Original PA Maximum amplitude projection (MAP) images 
of phantoms with various volume fraction ink. (k)-(n) Skin removed PA MAP images of phantoms by the proposed SL-Net. (o)-(r) MAP images of tissue-mimicking 
phantoms (s) Comparison of SSIM and PSNR before and after processing among various volume fraction of ink. All PA images are depth-encoded. Scale bar: 10 mm.
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2.6. Adaptive weighting based on skin location

The initial photoacoustic signal can be written as: 

p0( r→) = ΓAe = ΓμaF( r→) (1) 

Where Γ denotes the Grueneisen parameter, Ae is the absorbed energy 
density, which is a product of the absorption coefficient μa and the local 
optical fluence F( r→). However, the optical energy density decreases 
over depth in tissue due to light absorption and scattering. The local 
optical fluence can be expressed as: 

F( r→) = F0

(
r→s

)
e
− μeo

(
r→s − r→

)

(2) 

Where F0( r→s) is the optical fluence of the incident light at skin layers, 
μeo is the effective optical attenuation coefficient of the tissue, which 
combines absorption and scattering [43]. Here, we assume that the 
tissue is optically homogeneous within our imaging depth for both 
breast and foot. By combining Eq. (1) and Eq. (2), the initial photo
acoustic signal can be written as: 

p0( r→) = ΓμaF0

(
r→s

)
e
− μeo

(
r→s − r→

)

(3) 

On the other hand, the acoustic signals also attenuate during prop
agation to the detector at a rate of approximately 0.6 dB/MHz/cm [44]. 
Considering that both light intensity and acoustic signals attenuate 
exponentially over depth, we can use the exponential function to derive 
a weighting factor that compensates for the attenuation.

To compensate for the attenuation, generic weighting has been 

widely implemented in multiple studies [45,46]. It is constructed based 
on Eq. (3) and can be expressed as an inverted exponential decay 
function applied to the whole area starting from an assumed flat skin 
surface [4,47]. However, since the shape of skin layers varies among 
subjects and imaging anatomical sites, the generic weighting can be 
improved by utilizing skin locations predicted by SL-Net into consider
ation. As shown in Fig. 3, we have taken a series of sequential steps to 
estimate the effective attenuation coefficient. First, as shown in Figs. 3
(a)-3(c), the skin labels predicted by the SL-Net undergo a morpholog
ical filtering process wherein the region with the largest area is selected 
as the major skin label. This process allows us to remove false labelled 
skins, which typically come from noises and imaging artifacts. Subse
quently, a skin-removed matrix presented in Fig. 3(d) is generated by 
combining the original reconstruction image with the major skin labels. 
We then initiated an iterative search along the axial direction to deter
mine the relationship between photoacoustic intensity and the axial 
(depth) distance. To extract the vessel regions in each slice, which are 
marked by green in Fig. 3(e), we first performed contrast enhancement 
with MATLAB built-in function ‘imadjust’, and then binarized the 
enhanced slice with a threshold set at 1. To account for noise, we only 
binarize regions with more than 100 pixels. They are then classified as 
vessels containing regions and their average intensity is calculated. 
Meanwhile, the distance from the regions to the skin layers, which is 
indicated by the blue arrow in Fig. 3(e), is estimated. The corresponding 
average intensity and distance are stored as data pairs. An example of 
intensity vs depth data is shown in Fig. 3(g).

As illustrated in Fig. 3(g), the distribution of mean intensity relative 
to distance adheres to an exponential decay curve. To enhance fitting 
accuracy, we removed the first 20 % and the last 10 % of distance data. 

Fig. 7. Comparison of maximum projection amplitude (MAP) images and slices between original and processed data from the same subject. (a) The original MAP 
image projected on the elevational-lateral plane. (b) The original MAP image projected on the lateral-axial plane. (c) The original MAP image on the elevational-axial 
plane. (d) An original PA image sliced in the lateral-axial plane (along green dashed line in (a)). (e) An original PA image sliced in the elevational-axial plane (along 
magenta dashed line in (a)). (f) The processed MAP image projected on the lateral-axial plane. (g) The processed MAP image projected on the elevational-lateral 
plane. (h) A processed image sliced in the lateral-axial plane (along green dashed line in (g)). (i) The processed MAP image projected on the elevational-axial 
plane. (j) A processed image sliced in the elevational-axial plane (along magenta dashed line in (a)). Deep vessels recovered by the proposed method are high
lighted by white dash rectangle while removed skin layers are marked by yellow box. All PA images are depth encoded. x, y, z axis represents elevational, lateral and 
axial direction, respectively.
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This adjustment is made to account for the relatively low signal-to-noise 
ratio and sparse distribution of vessels in the deepest region and the 
potential misclassification of skin labels in the shallow region. Subse
quently, a one-degree exponential fitting using the Nonlinear Least 
Squares method is applied to the curve. The final step involves the 
calculation of the enhanced matrix shown in Fig. 3(f) by multiplying the 
weighting obtained from the fitted curve with the skin-removed matrix.

2.7. Vessel occupancy quantification

To quantify the effect of the adaptive weighting method, we utilized 
the vessel occupancy metric proposed in [11]. Initially, the Frangi filter 
was applied to the MAP images to enhance vessel contrast [48]. Sub
sequently, contrast-limited adaptive histogram equalization (CLAHE) 
and moving average were employed to further improve image quality 
[49]. Vessel masks were segmented using the ISODATA method [50], 
while the convex hull was computed to label the region of interest (ROI). 
Vessel occupancy was then estimated as the ratio of the vessel area to the 
ROI area. The metric is calculated at both global and local levels. Fig. 3
(h) presents a schematic drawing of a cross-sectional image, where the 
skin is labeled in pink. The entire area under the skin layers is treated as 
the ‘Global’ region. We then divided the global region into two equal 
subregions: top half and bottom half, marked as tint and blue in Fig. 3
(h), respectively. On the global scale, we projected the whole volume 
beneath the skin into MAP images and quantified the vessel occupancy. 
For local quantification, we extracted the pixels belonging to the 
selected subregions from the global MAP image to form a regional MAP 
and quantified its local vessel occupancy.

2.8. Signal-to-noise ratio quantification

Given the difficulty in obtaining ground-truth vessel distribution in 
tissues, the vessel masks segmented during vessel occupancy quantifi
cation were used to identify signal regions, while non-vessel areas were 
labeled as background. To evaluate image quality, the signal-to-noise 
ratio (SNR) was calculated as the ratio of the mean signal intensity 
within the vessel regions to the standard deviation of the background 
noise, following the approach in [51].

3. Results

3.1. Model performance

The loss and the evaluation metrics are tracked during the training 
and validation processes. The training took approximately 3 hours and 
8 minutes to complete a 100-epoch session using the workstation 
described in method section. Results shown in Fig. 4 demonstrate that 
the SL-net converged during the training, and the network performed 
well in both the training and validation datasets.

To evaluate the effectiveness of the proposed model, we conducted a 
comparison of various segmentation models, including well-established 
architectures like U-Net and its variance. All models were trained using 
the same dataset and hypermeters, and the model was constructed based 
on the MONAI library [40]. Table 1 presents the evaluation metrics for 
the different models on the test dataset. Among these models, the pro
posed SL-Net demonstrated the best performance on this task.

Additionally, we evaluated the inference time of each model, 
considering that faster processing speeds are essential for enhancing 
clinical PA imaging by enabling rapid diagnosis. To assess this, we 
calculated the average inference time per frame for each model. The 

Fig. 8. Demonstration of the skin removal and depth enhancement method on a subject with dark skin color. (a) A MAP image from the original data without any 
weighting. (b) A MAP image from the skin-removed data without any weighting. (c) A MAP image from the skin-removed data with generic weighting. (d) A MAP 
image from the skin-removed data with adaptive weighting.
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evaluation was conducted using a dataset comprising 10 samples from 
foot imaging (500 frames per sample) and 10 samples from breast im
aging (950 frames per sample). The inference time of each model was 
recorded for every sample, and the average inference time per frame was 
calculated. These experiments were performed on a desktop equipped 
with an AMD Ryzen 5 5600 G processor and an NVIDIA RTX 3060 GPU, 
which is a commonly used configuration in practical scenarios.

Among the compared models, the proposed SL-Net demonstrated the 
second fastest inference speed, surpassed only by the original UNet. 
Although SwinUNetR achieved evaluation metrics comparable to those 
of SL-Net, its inference time was more than three times longer, limiting 
its potential in 3D volumetric data processing. We have conducted a 
comprehensive investigation comparing performance of these models on 
in-vivo samples from both breast and foot in Appendix A section Model 
Performance Evaluation.

3.2. Cross-section inspection for skin segmentation

As shown in Fig. 5, we randomly picked two images in the test 
dataset to examine the performance of the SL-Net. The first row presents 
the original images, which are inputs of the model. The second row is the 
ground truth, created by manual labeling. The last row demonstrates the 
predicted skin location. Comparing the two, we can see that the model 
performs as well as human labeling in both breast and foot images.

3.3. Phantom experiments

We conducted phantom experiments to validate the performance of 
the proposed SL-Net. The phantom used in this study comprises two 
components: a cubic tissue-mimicking section embedded with pencil 
leads to represent human tissue with vessels, and a series of thin-layer 
phantoms designed to simulate skin layers of varying skin tones. 
Detailed information on phantom fabrication was provided in Appendix 
A Section Methods for Phantom Experiments.

The fabricated tissue-mimicking phantom is shown in Fig. 6(a), 
where the pencil leads are highlighted by black arrows, and their di
mensions are labeled. Fig. 6(b) presents the combined phantom, con
sisting of the tissue-mimicking phantom and a thin-layer skin phantom 
with 0.10 % volume fraction ink as an example. Top-view photographs 
of the fabricated phantoms with Indian Ink volume fractions of 0.00 %, 
0.02 %, 0.10 %, and 0.20 % are displayed in Fig. 6(c)-(f), respectively. 
The corresponding original PA MAP images of these phantoms are 
presented in Fig. 6(g)-(j). All PA images are depth-encoded to illustrate 
depth information clearly. As the volume fraction of ink increased in the 
thin-layer skin phantom, the PA response from the skin phantom became 
stronger. In the MAP image acquired from the 0.10 % ink phantom 
(Fig. 6(i)), the PA intensity of the thin-layer skin phantom was compa
rable to that of the pencil leads. Moreover, in the MAP image of the 
0.20 % ink phantom (Fig. 6(j)), it became difficult to identify the pencil 
leads due to the stronger PA signal from the skin phantom. We applied 

Fig. 9. Comparison between original and enhanced PA images. (a) An original MAP image from the PACT system. (b) A MAP image from the skin-removed data 
without any weighting. (c) A PA MAP image with skin removal and generic weighting. (d) A PA MAP image with skin removal and adaptive weighting. The sus
picious region is labeled by the white dashed rectangle. The scale bar represents 20 mm.
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the SL-Net to the acquired PA images to identify the skin layer’s location, 
and the corresponding skin-removed MAP images are displayed in Fig. 6
(k)-(n). After skin removal, signals from thin-layer skin phantoms were 
effectively suppressed, and the pencil leads were recovered in the MAP 
images across all phantoms. For reference, MAP images of the tissue- 
mimicking phantom alone are shown in Fig. 6(o)-(r). By comparing 
the processed images to the reference images, it is evident that the skin- 
removed images retain a similar shape and structure to the reference 
images, demonstrating that the proposed method effectively suppresses 
signals from the skin phantoms and recovers the pencil leads. Addi
tionally, the processed images showed consistent performance across 

various ink concentrations, indicating that SL-Net can accurately locate 
skin layers with different skin tones.

To further evaluate the method, we quantified the Multi-Scale 
Structural Similarity Index (MS-SSIM) and Peak Signal-to-Noise Ratio 
(PSNR) in both the original and processed images from phantoms with 
varying ink concentrations. The quantification results are plotted in 
Fig. 6(s), with detailed values provided in Appendix A Table S9. MS- 
SSIM is represented by the blue solid line, while PSNR is shown by the 
orange dashed line. Circle markers indicate values for the original MAP 
images, and plus-shaped markers represent values for the processed 
images. Consistent with the visual observations, MS-SSIM and PSNR 

Fig. 10. Comparison of the depth-encoded MAP images before and after skin removal and adaptive weighting from different samples. Each column shows the MAP 
images from an individual sample: the top row represents MAP images of the original data, while the bottom one exhibits the results of processed data, and the skin 
tone of the sample is labeled at the top of each image pair. The white rectangle and arrows marked the location of deep vessels that were invisible in the original 
image. Scale bar:20 mm. The elevation and lateral axes indicate the scanning direction of the ultrasound transducer array.

Fig. 11. Boxplots comparing the vessel occupancy across different regions and signal-to-noise ratio (SNR) of Maximum amplitude projection (MAP) images before 
and after processing. We quantified the significance of the improvement by the two-tailed paired t-test. In the context of the statistical significance, the notation is as 
follows: * ** * denotes p < 0.0001, NS denotes not significant (p ≥ 0.05).

C. Huang et al.                                                                                                                                                                                                                                  Photoacoustics 42 (2025) 100690 

9 



values in the original images decreased as the ink concentration 
increased in original images. However, after processing with SL-Net, 
both metrics improved significantly. Notably, the MS-SSIM and PSNR 
values for the 0.20 % ink phantom closely matched those from the 0 % 
ink phantom, demonstrating the proposed method’s ability to mitigate 
the impact of skin tones in PA imaging.

In summary, the phantom experiments demonstrate that the pro
posed SL-Net effectively identifies skin layers and suppresses their sig
nals, recovering deep structures such as pencil leads. The method 
performs robustly across varying skin tone conditions, showing strong 
potential for implementation in in-vivo experiments.

3.4. Evaluation of in-vivo image enhancement based on SL-Net

3.4.1. Breast imaging
In this study, we collected 14 samples from breast imaging to eval

uate the performance of the proposed method. The samples are pro
cessed with the proposed skin removal and adaptive weighting 
algorithm. The selected subjects encompass a diverse range of skin 

tones, and we classified them into dark (6 samples) and light skin (8 
samples) for further analysis. The evaluation starts with investigations 
on comparing MAP images and slices of one sample from multiple per
spectives, following with case studies where outcomes from various 
processing methods are compared. Subsequently, we quantify the vessel 
occupancy to assess the efficiency of adaptive weighting.

To validate the performance of the proposed method, we analyzed 
original and processed PA images from the same subject. In Fig. 7, the 
original MAP images and slice views from multiple directions are pre
sented in the left orange box, while images processed with skin removal 
and adaptive weighting are shown in the right red box. All images are 
depth-encoded along the axial direction (z-axis). Fig. 7(a) displays the 
original MAP image in elevational-lateral plane (x-y plane), where deep 
vessels are barely visible. The corresponding MAP projections to the 
lateral-axial plane (y-z plane) and elevational-axial plane (x-z plane) are 
shown in Fig. 7(b) and (c), respectively. To further explore the details, 
we examined slices along the green and magenta dashed lines in Fig. 7
(a), as shown in Fig. 7(d) and (e). After processing by the proposed al
gorithm, the resulting MAP images in the y-z plane, x-y plane, x-z plane 

Fig. 12. Comparison of vessel occupancy index between light and dark skin tones. (a) The improvement of vessel occupancy in the top half and bottom half regions 
after processing with the proposed method. (b) Vessel occupancy in the bottom half region before and after processing.

Fig. 13. Comparison of depth-encoded foot MAP images before and after adaptive weighting across five distinct samples with dark skin tone. The top row displays 
the MAP derived from the original images, while the bottom row shows the MAP after skin removal and adaptive weighting. Scale bar: 20 mm.
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are presented in Fig. 7(f), (g) and (i), respectively. Similarly, slices from 
the same locations are shown in Fig. 7(h) and (j).

After processing, the MAP images in Fig. 7(g) clearly show that more 
deep vessels are recovered, while skin signals are significantly sup
pressed. The processed MAP images across cross-sectional views (Fig. 7
(f) and (i)) further demonstrate that vessels in deep regions become 
more apparent. Moreover, this observation is validated by slices in Fig. 7
(h) and(j), showing improved visibility of deep vessels compared to the 
original slices (Fig. 7(d) and (e)). For better illustration, deep vessels 
recovered by the proposed method are highlighted by white dashed 
rectangles, and the suppression of skin signals is particularly noticeable 
in the yellow box area.

Case study 1:
This case study conducts a comparative analysis between MAP im

ages enhanced by the proposed weighting method and the generic 
weighting method [5]. The image was from an individual with black 
skin color. Based on the clinical report, the suspected location of the 
tumors is at a 2 cm distance in the 4 o’clock direction from the nipple. 
The tumor region is marked by a white dashed rectangle in Fig. 8, with 
further details available in Appendix A Fig. S1.

The comparison between original and processed images by various 
weighting images is depicted in Fig. 8. Fig. 8(a) illustrates the original 
MAP image from the subject, while Fig. 8(b) shows the MAP image from 

skin-removed data before any weighting. It can be seen that, after skin 
removal, more vessels can be revealed in Fig. 8(b). However, the re
sidual skin signals still suppressed some vessel signals. After skin 
removal, generic and adaptive weighting is applied to further enhance 
the image, and results are shown in Fig. 8(c) and (d), respectively. While 
both weighting methods enabled the recovery of deep vessels, the 
adaptive weighting method performs better. For instance, Fig. 8(d) 
shows the most detailed contour of Vessel 1 among all processed images, 
and Vessel 2 and Vessel 3 are hard to distinguish in Fig. 8(c) while 
recovered in Fig. 8(d).

Moreover, the adaptive weighting approach revealed the suspected 
tumor region (white dashed rectangle, shown as a cluster of vessel sig
nals) within the MAP image, demonstrating its potential for tumor 
localization. Consequently, the proposed adaptive weighting method 
based on the SL-Net exhibits distinct advantages in recovering deep 
vessels in PA images.

Case study 2:
We evaluated the efficacy of both generic weighting and adaptive 

weighting methods on another subject with black/brown skin tone. 
According to the clinical report, linear and branching fine pleomorphic 
microcalcifications spanning about 4 cm were observed in the subject’s 
right breast at the 12 o′clock position from the nipple (the suspicious 
region is highlighted by a white dashed rectangle in Fig. 9). The imaging 

Fig. 14. Comparison of foot vessel occupancy under various conditions. (a) The quantified vessel occupancy before and after processing across three regions in five 
samples. (b) The quantified signal-to-noise ratio (SNR) in MAP images before and after processing (c)-(e) The vessel occupancy before and after processing in global, 
top half, and bottom half regions, respectively. The statistical significance is estimated with the two-tailed paired t-test and denoted as: * for p < 0.05, * * for 
p < 0.01, and NS for not significant (p ≥ 0.05).
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window is set directly above the nipple, excluding the nipple itself, to 
align with the microcalcification region.

The original MAP image from PACT is illustrated in Fig. 9(a). We 
employed SL-Net to segment the skin layers and generate skin-removed 
MAP images shown in Fig. 9(b). Although signals from skin layers have 
been suppressed after processing, deep vessels close to the micro
calcification region are not obvious Therefore, both generic weighting 
and adaptive weighting techniques were applied to enhance the visi
bility of deep vessels after skin removal, and the results are presented in 
Fig. 9(c) and (d), respectively. Upon comparing Figs. 9(c) and 9(d), it is 
evident that adaptive weighting successfully recovers more deep vessels. 
Notably, these retrieved vessels are located proximal to the suspicious 
region, indicating they are potentially related to the health condition of 
this region and this information might benefit further analysis. There
fore, the adaptive weighting outperforms generic weighting in deep 
vessel recovery in this case.

Following validation in two case studies with dark skin, we imple
mented the adaptive weighting to multiple samples with different skin 
colors. Fig. 10 shows depth-encoded MAP images of several subjects, 
with the top row displaying original MAP images and the bottom row 
depicting MAP images with skin removal and adaptive weighting, the 
skin tone of the sample is marked at the top of each image pair. Within 
these images, the white arrows highlight the restored deep regions that 
were invisible in the original image. Comparing the original and pro
cessed images, we can see that the skin layers are mostly removed, and 
vessels are restored, especially vessels in deep regions (colored in red). 
We also noticed that there are some residual skin signals (marked by a 
white dashed rectangle), however, the intensity of these signals is 
significantly suppressed, making little impact on further analysis. De
tails regarding the samples utilized in this study can be found in Ap
pendix A Table S1.

To evaluate the efficiency of the enhancement, we quantified the 
vessel occupancy across various regions: global, top half, and bottom 
half. In addition, we employed the paired t-test to assess the significance 
level. Quantification results are attached as Table S2 and S3 in Appendix 
A. Fig. 11 illustrates boxplots comparing vessel occupancy between 
original and processed images, with the gray line tracking individual 
sample changes in Fig. 11(a)-(c). Fig. 11(a) presents a considerable in
crease in vessel occupancy at the global level after processing. Fig. 11(b) 
exhibits a noteworthy increase in vessel occupancy within deep regions, 
demonstrating the method’s efficacy in recovering deep vessels. 
Conversely, Fig. 11(c) indicates marginal changes in vessel occupancy in 
the top half region, which is expected due to the minimal impact of 
attenuation on shallow vessels. The signal-to-noise ratio (SNR) of MAP 
image was also calculated to quantify the performance of the proposed 
method. After skin-removal and adaptive weighting, the SNR was 
improved by 55.20 % on average compared to original images, as shown 
in Fig. 11(d). Consequently, the proposed method effectively restores 
vessels in deep regions while preserving vessel features in shallower 
areas.

We further classified the sample into two categories (dark and light 
skin tones) to investigate the performance of the proposed method. 
Considering that dark skin absorbs more optical energy, the PA signal 
from skin layers is higher, while signals from deep vessels are weaker 
due to less transmitted optical intensity. Therefore, we compared the 
improvement of vessel occupancy quantified in the top and bottom half 
of tissue regions across various skin tones. The results are shown in 
Fig. 12 (a). Regardless of skin tones, increased vessel occupancy is 
observed across both shallow and deep regions after processing, espe
cially in the bottom half regions, demonstrating the method’s ability to 
recover deep vessels. In terms of skin tone, adaptive weighting demon
strates more significant improvement on dark skin samples, as the strong 
skin signals are removed after processing. In addition, we investigated 
the vessel occupancy index in the bottom half region, and the results are 
shown in Fig. 12(b). It can be seen that, after processing, the vessel 
occupancy index in dark skin is comparable to that of light skin. These 

results further confirm that the proposed method can effectively recover 
vessels from the deep region.

3.4.2. Foot imaging
In addition to breast imaging, we also implemented adaptive 

weighting to foot imaging to recover deep vessels. The PA signals from 
deep regions were attenuated and might be blocked by the dark skin, 
which impedes further feature extraction and analysis. Furthermore, the 
shape of the dorsal side of the foot is more complex than that of the 
breast, making it challenging to segment skin layers with manual 
operation, according to our earlier investigation [11]. In this study, we 
evaluate the performance of the proposed method on five samples 
collected from patients. The MAP images from subjects are demon
strated in Fig. 13. The top row shows the depth-encoded MAP from the 
original images, where the strong skin signals suppress the vessel signals 
underneath. The MAP images after skin removal and adaptive weighting 
are presented in the bottom row, where most of the skin signals are 
suppressed, and the deep vessels are recovered. The comparison of the 
performance between the generic weighting and proposed adaptive 
weighting is presented in Appendix A Fig. S2.

The quantitative evaluation involved extracting vessel occupancy 
from MAP images using the same method as breast imaging. Fig. 14(a) 
provides a comparative analysis of vessel occupancy improvement with 
adaptive weighting across five samples in diverse regions: global, top 
half, and bottom half. The outcomes indicate that there is a significant 
enhancement in revealing more vessels in deep regions, thereby facili
tating quantitative vessel feature extraction and analysis. Meanwhile, 
we implemented SNR to quantify the improvement. As shown in Fig. 14
(b), SNR increases 92.42 % on average. Additionally, the paired t-test’s 
p-values shown in Fig. 14(c)-(e) confirm the method’s efficacy in 
uncovering more vessels. In addition to deep vessel recovery, we also 
noticed a significant improvement in shallow regions as shown in Fig. 14
(e). Considering vessels on the foot are closer to skin layers compared to 
the breast, the proposed method might be more significant in recovering 
vessels in foot imaging.

4. Discussion

In this study, we proposed a new approach to improve vascular 
features under the skin. Our method starts with building and training a 
deep learning model named SL-Net to locate skin layers in cross-section, 
and then an adaptive weighting method was implemented based on skin 
locations predicted by SL-Net. The efficacy of the workflow was vali
dated on the human image results from the breast and foot. We quan
tified the enhancement by vessel occupancy metrics, and the results 
showed that the algorithm significantly recovers deep vessels across 
various body positions and skin tones.

Since there is no widely adopted open-source clinical PA imaging 
dataset [23], we constructed a customized in-vivo dataset with over 
5000 frames featuring pixel-level skin labels obtained through manual 
labeling for training purposes. All data used in this research originated 
from human imaging experiments from breast and foot imaging. The 
dataset was acquired using a 2.25 MHz linear-array transducer, offering 
enhanced penetration depth and a wider field of view. Utilizing clinical 
PA images circumvents potential discrepancies between simulation data 
and in-vivo clinical system data, thus enhancing the efficiency of model 
training. A 2D residual UNet [39] was then trained and tested for skin 
segmentation. The model uses 2D frames as input, making it lightweight 
and easy to train. The residual UNet combines the strengths of ResNet 
and UNet, leveraging the feature learning capabilities of ResNet and the 
excellent localization abilities of UNet [39]. This architecture is 
well-suited for skin segmentation tasks where both local features and 
global context information are essential. In addition, the residual con
nections in the model can help in addressing class imbalance issues by 
allowing gradients to bypass problematic layers during back
propagation. In addition, the skip connections assist in gradient flow, 
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making the training more stable, especially when dealing with limited 
annotated data, which is common in medical imaging. The developed 
adaptive weighting mechanism in this study incorporates optical and 
acoustic attenuations, and both can be approximated as exponential 
delays over imaging depth. An automatic algorithm is developed to es
timate the weighting, eliminating human intervention. Compared to 
generic weighting, the adaptive weighting factor is only applied to tis
sues underneath the skin. This is particularly useful for cases with dark 
and curved skin layers as demonstrated in Fig. 8 and Fig. 13.

For evaluation, the proposed weighting was tested on breast and foot 
imaging data. Images presented in the results section demonstrate sub
stantial enhancement of deep vessels. We selected vessel occupancy as a 
quantifiable feature to assess the impact of weighting, representing the 
ratio of vessel area to the regions of interest. Significant enhancements 
were observed across all samples and deep regions, notably in subjects 
with darker skin tones. Results from the t-test prove the adaptive 
weighting’s efficacy in retrieving deep vessels. In addition, the recovery 
of deep vessels by adaptive weighting facilitates a more precise quan
tification of vessels, since these features are heavily dependent on the 
precise presentation of vessels.

However, there are some limitations to the proposed methodology. 
For training the SL-Net, the quantity and quality of ground truth datasets 
are limited by the time-consuming nature of manual labeling. For 
instance, despite striving for high-quality pixel-level annotations, limi
tations in resolution and inherent imaging system noise impede precise 
labeling. Consequently, the model’s predicted labels might not encom
pass the entire skin region, leading to residual skin signals in MAP im
ages, as shown in Fig. 10. The datasets can be enlarged with PA images 
from multiple body origins and cross-annotated by multiple readers in 
the future work. In addition, the adaptive weighting method relies on 
two assumptions: uniform optical fluence at the skin surface and expo
nential light attenuation in tissue. While these assumptions facilitate 
attenuation modeling, their clinical applicability may vary. For instance, 
complex tissue structures might lead to non-exponential light attenua
tion [52], which might explain why the performance of the weighting 
method is less effective in breast images. In the future, more accurate 
acoustic and optical models can be developed to accommodate such 
variations.

5. Conclusion

In this study, we trained a deep learning network SL-Net for skin 
localization and used the predicted labels to guide an adaptive weight
ing method to enhance the deep vessels. The improvement of the pro
posed framework has been tested and evaluated on both human breast 
and foot imaging results. We also quantitatively assessed the method’s 
performance by calculating the vessel occupancy indexes before and 
after processing. The result demonstrated that adaptive weighting can 
significantly recover the deep vessels, indicating great potential in 
clinical and preclinical studies.
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