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Abstract—Parkinson’s disease (PD) can gradually affect
people’s lives thus attracting tremendous attention. Early
PD detection and treatment can help control the disease
progress, relief from the symptoms and improve the pa-
tients’ life quality. However, the current practice of PD di-
agnosis is conducted in a clinical setup and administrated
by a PD specialist due to the early signs of PD are not
noticeable in daily life. According to the report of CDC/NIH,
the diagnosed time of PD ranges from 2-10 years after on-
set. Therefore, a more accessible PD diagnosis approach is
urgently demanded. In recent years, mobile health (for short
mHealth) technology has been intensively investigated for
preventive medicine, particularly in chronic disease man-
agement. Notably, many types of research have explored
the possibility of using mobile and wearable personal de-
vices to detect the symptom of PD and shown promis-
ing results. It provides opportunities for transforming early
PD detection from clinical to daily life. This survey paper
attempts to conduct a comprehensive review of mHealth
technologies for PD detection from 2000 to 2019, and com-
pares their pros and cons in practical applications and pro-
vides insights to close the performance gap between state-
of-the-art clinical approaches and mHealth technologies.

Index Terms—Mobile computing, public healthcare, body
sensor networks.

I. INTRODUCTION

PARKINSON’S disease (PD) is a disorder of the central
nervous system which broadly affects 6.9 million people

in 2015 and estimates to influence 14.2 million people by 2040
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in the world [1]. Although PD cannot be completely cured, PD
patients benefit from early detection and treatment. They not
only help relieve symptoms [2] but extend their lifespans [3].
However, early detection of PD is usually difficult. The reason
is that PD is a progressive disease where the symptoms grow
gradually but are not obvious at the early stage. One solution is
to get an entire evaluation with the help of a neurologist or a PD
specialist periodically. Unfortunately, even in a wealthy country
like the US and Europe, more than 40% of individuals older
than 65 have no chances to meet a neurologist or PD specialist,
not to mention people living in other developing country [1].
Consequently, an accessible approach for early PD detection is
required but still under-explored.

Fortunately, the pervasiveness of mobile devices (e.g., smart-
phone, and smartwatch) and the emergence of mobile health (for
short mHealth) technologies are addressing this problem. The
characteristics brought by mHealth technologies are three folds.
First, mHealth brings innovative sensing modality. Traditionally,
PD detection is conducted in a clinical or lab-based environment
supervised by neuroscientists and specialists. Although these
approaches work well, the cost of enormous human labor and
large devices makes them inaccessible in daily life. Instead, a
mobile solution is more feasible for daily use as a smartphone
nowadays is no longer a communication tool but a smart device
embedded with multiple sensors. These built-in sensors (e.g.,
camera, microphone, and accelerometer) can provide access to
predict the risk of PD even in a non-clinical environment.

Second, advanced computer-assisted techniques assist exist-
ing approaches to provide accurate PD detection. Although a set
of clinical approaches can provide accurate PD detection, most
of them are inaccessible in daily life. Without specialized train-
ing, humans can misdiagnose PD. For example, Ali, as one of the
most famous examples of PD, took four years to diagnose [4],
thus miss the best time for treatment. The emergence of machine
learning and data mining is compensating for this defect. Rather
than only relying on human experience, these computer-assisted
approaches utilize multiple features simultaneously, thereby
making an accurate PD risk prediction promising.

Third, mHealth brings an opportunity for continuous mon-
itoring. As a chronic disease, PD progresses slowly, and its
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symptoms are not visible in the early stage. To detect PD
biomarkers in the early time, it requires an approach to monitor
the health condition continuously and remind a user of the occur-
rence of PD biomarkers. Traditional clinical approaches cannot
achieve this goal. However, mHealth provides it the opportunity
that mobile devices (e.g., smartphone) can provide continuous
interaction and monitoring to detect PD biomarkers in daily life.
All these advantages make early PD detection promising.

In this paper, we give an overview of PD detection using
mHealth technologies and their current challenges. We discuss a
series of cutting-edge work that emerged in the past twenty years.
For each work, we first pay attention to its sensing modality and
symptom genre. Then, we explore their performance and im-
plications. Finally, we discuss the challenges and opportunities
they have ever met.

The goal of this review is first to bring the novice not working
in this field quickly up to date with where things stand. Second,
we will help either experienced or non-experienced researchers
to understand the existing challenges and opportunities. Last but
not least, we hope our work to be not only an updated collection
of the most relevant existing work but stimulates research in this
area.

The rest of this paper is organized as follows: we discuss
the existing work and our paper selection criteria in Section II.
We introduce the background, including PD rationale and PD
detection with mobile devices in Section III. Then, we study
detection of motor symptoms and non-motor symptoms in Sec-
tion IV and Section V, respectively. Afterward, we investigate
multi-domain PD detection in Section VI. On this basis, we
identify the research issues and challenges in Section VII, and
propose the research opportunities in Section VIII. Finally, the
work is summarized in Section IX.

II. EXISTING WORK AND PAPER SELECTION CRITERIA

There is no present paper comprehensively survey the em-
ployment of mHealth on PD detection. Some researchers only
focused on motor symptoms detection. For example, Lieber
et al. [5] studied how can accelerometer helps PD detection
in both the clinical setting and daily life. Pasluosta et al. [6]
surveyed the effect of wearable computing on PD detection.
Printy et al. [7] mainly explored the feasibility of using the
smartphone-based application to detect the motor symptoms.
These researchers did not pay attention to the significance of
non-motor symptoms. Instead, our objective is to provide a
comprehensive review of both motor and non-motor symptoms
in PD. Some scholars [8] studied the mobile phone application
in PD. Instead, our study will focus on technology in both
smartphones and wearable sensors.

Some scholars pay attention to the impact of the machine
learning technique on PD detection. For example, Pan et al. [9]
compared two techniques in terms of accuracy in classifying
tremors for PD. Bind et al. [10] [11] studied the performance
of different machine learning techniques on PD detection and
concluded the best one based on best accuracy values. Belic
et al. [12] reviewed applications of artificial intelligence in PD
detection. Instead, our objective is to provide a comprehensive

Fig. 1. The death of cells in the substantia nigra era destroys the
dopamine pathway thereby results in insufficient dopamine in these
areas.

review to understand how mHealth helps early detection of PD
in daily life. The focus will be the symptoms genre and sensing
modality, as well as the classification model and performance.
More importantly, we care about the limitations and challenges
and discuss potential solutions.

We survey papers published in the last twenty years, within an
online digital library, including IEEE, PubMed, Science Direct,
and ACM, with a focus on PD detection and mHealth. The search
encompassed papers dealing with PD symptoms genre, sensing
modality, and classification model design. We select 10 papers
dealing with gait and balance impairment, 14 papers dealing
with tremor and finger-related movement, 7 papers dealing with
vocal impairment, and 12 papers dealing with other symptoms.
We also include 4 system papers that investigate the multi-view
PD detection, PD severity estimation, and PD medication ad-
herence management. For each topic, papers are arranged in
chronological order. First, we briefly introduce the background.
Afterward, we discuss the first work in the area and explore its
extension. We finally conclude and express our views.

III. BACKGROUND

A. PD Rationale and Impact

As a progressive central nervous disorder, the progress of
Parkinson’s disease (PD) can be described as follows. To begin
with, the deaths of cells happen in the substantia nigra due to
unclear factors. Then, it destroys the dopamine pathway and
results in insufficient dopamine in these areas (Fig. 1). PD mainly
affects motor ability. In the early stage, the most apparent motor
symptoms can include but not limit to bradykinesia (slowness
of movement), tremor, and postural instability. These symptoms
can progressively make patients lose their mobility over time.
PD can also induce some non-motor symptoms. For example,
mood disorders, such as anxiety and depression, are primary
symptoms, and more than a third of PD patients experience with
mood disorders in their early stages. Organs disorders, including
vocal impairment, stomachic dysfunction, and diminished smell,
can as well occur in a very early stage.
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Although recent advances of technology such as neuroimag-
ing and gene detection have allowed for precise pinpointing of
own tissue and genes associated with the tremors and freezes of
body parts and extremities, they suffer from the limitation of time
and resource cost. Nowadays, only hospitals or specific research
labs can provide a precise diagnosis. Due to such inaccessibility,
people usually will not pursue an overall examination until the
symptoms are obvious, by which more than 70% nerve cells are
permanently impaired. Accordingly, early PD detection is still
challenging.

B. PD Detection With Mobile Devices

The emergence of mHealth technologies is helping early
PD detection. The usage of mobile devices has been rapidly
increasing worldwide. At the end of 2018, 77% [13] of the
population in the U.S. own a smartphone, and this number is
projected to increase by about 4 percent every year. Since the
smartphone holds advantages such as affordability, portability,
and reliability, it was recently considered as an excellent choice
to help early PD detection in daily life.

The benefits of mHealth technologies are two folds. First,
mHealth brings a novel sensing modality for detecting PD
biomarkers. Different from some traditional clinical-based or
lab-based methods where people are required to wear types of
sensors to perform types of experiments in a controlled envi-
ronment, a smartphone with multiple embedded sensors (e.g.,
accelerometer, gyroscope, camera, and microphone) enables PD
detection in daily life. Even more, a smartphone can provide the
ability of long-term monitoring, whereas the clinical method is
helpless. For example, the built-in gyroscope and accelerometer
can continuously track the motor fluctuation of a user during his
housework. The built-in microphone can continuously monitor
a user’s sleep condition.

Second, mHealth brings computer-assisted techniques for
helping analyze PD symptoms. Traditional diagnosis relies on
the longitude experience from a physician and the self-reporting
table (e.g., UPDRS). Physicians, without specialized training,
easily misdiagnose PD as other diseases. On the contrary,
computer-assisted approaches, for example, machine learning,
nowadays can well assist PD detection through learning suffi-
cient existing cases.

IV. DETECTION OF MOTOR SYMPTOMS

In the past twenty years, PD motor symptoms are most rec-
ognizable and attract tremendous attention from researchers. To
better follow the research progress, understand the challenges
researchers have met, and, more importantly, acquire insights
from their work, we classify existing works into two major
categories, active sensing, and passive sensing. In particular,
an active-sensing system still requires a user to carry out some
experiments for detecting PD biomarkers. In contrast, a passive-
sensing system allows detecting PD biomarkers from a user’s
daily-life activities without performing any specific test (e.g.,
balance test, speech test, and handwriting test).

In this section, we mainly focus on active sensing. More
specifically, we are going to cover four types of motor symptoms.

They are freezing of gait (FOG), slowed movement, affected
handwriting, and impaired balance. For each PD symptom, we
first provide its background and then unfold its related works.
These works are all highly relevant to mHealth. We arrange these
works in a timeline so that readers can clearly understand the
research progress in recent years.

A. Impaired Gait and Balance

Approaches with Wearable Sensors: PD is responsible for
affecting cognitive control of the body, which includes, but
not limits to, kinematic impairment. Based on this background,
motor learning becomes a benchmark in the domain of PD
detection. Of all the studies, FOG is one of the most disabling
symptoms, which is widely studied, and the detection of FOG is
widely adopted in a clinical assessment. Traditional assessment
of FOG relies on a subjective measurement from the physicians
or the self-reporting from patients. These clinical approaches
usually relied on the experience in the past, resulting in insuffi-
cient accuracy. To address this problem, a series of works were
proposed to coordinate with the clinical approaches by utilizing
some inertial sensors. Moore and his group adopted wearable
sensors to perform FOG detection in 2008 [14]. Afterward,
a series of incremental work was proposed to increase the
accuracy, reduce the size of the sensors, and minimize power
consumption.

Mazilu et al. [15] studied the FOG detection with a
smartphone-based system. Rather than utilizing the built-in in-
ertial sensors, the smartphone was adopted as a computing unit,
and the external sensors performed FOG measurement. Wang
et al. [16] published an extension in which the smartphone was
also viewed as the computing unit, and FOG measurement was
achieved by an accelerometer, which was placed on the back of
every patient. To track the daily-life variation of the symptoms,
the authors also developed an application on the smartphone.
Through this way, patients can understand physical conditions
with smartphones.

One rising question is why those mentioned works viewed
a smartphone as a computing unit rather than a sensor. People
might no more need any external hardware if the built-in sensors
of a smartphone can also achieve data collection. This is because
the researchers believed the accuracy of FOG detection is sensi-
tive to the placement of sensors. They usually put the sensors in
the ankle or at the back where they thought that they can reveal
the motor impairment better. It is hard and inconvenient to put
a smartphone in the ankle.

Other scholars challenged its correctness. Pepa et al. [17]
studied employing the built-in sensors of a smartphone to de-
tect FOG by placing the smartphone at the subjects’ hip. Kim
et al. [18] published a significant extension which performed
the comparative analysis to understand the impact of different
positions of sensors on detection accuracy. In their experiments,
the authors separately placed a smartphone on the chest, waist,
pocket, and ankle of a subject to collect gait information. They
achieved a sensitivity of 86% when putting the smartphone at
the waist, and they can still achieve a sensitivity of 84% when
putting a smartphone in the trouser pocket. The results showed
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Fig. 2. An overview of the PD symptoms including the motor symptoms and non-motor symptoms.

that putting a smartphone in the pocket for FOG detection is also
feasible. More importantly, their results indicated that users can
replace wearable inertial sensors with smartphones to achieve
more user-compliance PD detection.

Gait analysis via wearable sensors is one of the most promis-
ing ways to achieve passive PD detection. Din et al. [19] tried to
analyze gait activities in a free-living condition. 47 PD patients
and 50 healthy people participated in this 7-day long study.
Each subject was asked to wear an accelerometer-based sensor
on the low back. To facilitate a study on control group, the
measurements were acquired under the clinical environment
by the same group of people. The results showed that some
gait features presented very similar in a clinical environment
for both PD patients and healthy people, but were significantly
different when measurement took place in free-living conditions.
This conclusion indicated that measurement in free-living con-
ditions can more accurately reflect mobility performance than
measurement in a clinic. This encouraging result also showed the
potential of passive sensing to track and detect the PD symptoms
in daily life.

On this basis, Cheng et al. [20] published an extension, which
explored the possibility of gait analysis using a smartphone in a
free-living condition. The authors enrolled 44 PD patients and 35
healthy people and took a 24 week-long experiment. More than
30,000 hours of data were collected passively. Results showed
that PD patients and healthy people can present a significant
difference in movements, such as turning angle, turning speed,
step frequency, and per-step power. Compared with the wearable
sensor, the authors also claimed that smartphone achieved a
higher acceptance and adherence rate in daily-life usage.

Approaches with Computer Vision: The development of ar-
tificial intelligence and information engineering is helping CV
technologies become flexible nowadays. A sensor-free system
was developed by Takac et al. [21] to achieve ubiquitous mon-
itoring for gait analysis. Compared with previous work, the
subjects were not required to wear a mark, and there were no

strict requirements for the placement of the camera. Besides,
the authors combined both sensor-based with image-based tech-
nologies in their work, which can be described as follows. In
a smartphone, the embedded sensors such as gyroscope and
3-axial accelerometer achieved FOG detection, and the image-
based system provided spatial information such as position,
orientation, and pose of the subject.

Afterward, a smartphone-based FOG State Interpreter (FSI)
module computes a high-level probabilistic integration of the
gait detection model and spatial context to provide a concluding
estimation. One disadvantage of their work is the restriction in
hardware. In order to accurately obtain the skeleton information
for pose estimation, they employed the Kinect, a type of cam-
era, to obtain depth information. The depth camera restricted
the generalizability of their system and should be taken into
consideration in further study.

Fortunately, up-to-date technologies can achieve skeleton
extraction with a 2-D camera. OpenPose [22] implemented a
real-time system which obtains the skeleton information through
only a single image indicating that an ordinary camera is enough
for data collection. Based on this basis, Ajay et al. [23] de-
veloped a sensor-free system to perform PD detection with
these skeleton information. Data came from youtube, which was
either recorded by webcam and smartphone, and they achieved a
predicting accuracy of 93.75%. This work further decreases the
dependence on hardware and proves that it is available to come
up with a test-free and sensor-free solution to achieve pervasive
PD detection. Their work also indicates that publicly available
videos will have the potential to provide the ability of disease
screening in the future.

B. Impaired Movement

Impaired movement is an essential branch when evaluating
the motor-related symptoms. Dhamala et al. [26] studied the
correlation between PD and rhythmic finger motion with the
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help of magnetic resonance imaging (MRI). Based on this ba-
sis, Wurster et al. [27] further studied the neural correlates of
frequency-related finger movements. They designed and imple-
mented a finger-tapping test on a smartphone. The tapping test
contains three different kinds of frequencies (i.e. 1Hz, 2Hz, and
4Hz), and it monitored the brain-behavior of patients according
to different tapping speed. There are two conclusions. First, PD
patients can only achieve the same tapping response rates as
well as healthy people when the frequency of the task is set
to 1Hz. Second, the MRI result showed that the correlation
between inverse neural activity and frequency response is strong
in healthy subjects, from which the authors can observe a very
high Blood-oxygen-level-dependent (BOLD) signal. However,
the authors observed that this correlation was not obvious in PD
patients this theoretical basis provided by this paper promoted
further study.

To better understand the correlation between leap motion and
PD, researchers study sensor technology as well as the classifica-
tion model to improve the performance of PD detection in recent
years. For example, Butt et al. [28] employed the Microsoft
Kinect sensor to capture motion information of patients. Eskofier
et al. [29] developed a wearable sensor system to collect postural
movements. The authors also studied different classification
models to analyze the collected data, and they found out that
CNN can achieve the best accuracy of 90.9%.

Smartphones today offer a range of capabilities, such as
communication and processing, facilitating them to become
personalized and even ubiquitous gateways to health information
anytime, anywhere. In this context, smartphones are adopted
in motion evaluation recently. Bermeo et al. [30] developed a
smartphone-based system to monitor tremors. The authors used
a wearable sensor to collect data. Afterward, data is transmitted
to a smartphone through a wireless signal. The smartphone
is then responsible for data analysis and management. Printy
et al. [7] implemented a finger-tapping test in a smartphone. They
developed a smartphone APP called Bradyapp, which contains
four kinematic tasks, such as repetitive tapping and alternating
tapping. Experiments with 26 subjects were conducted to study
the performance, and the authors achieved the best accuracy of
94.5% with an SVM classifier. An extension was published by
Figueras et al. [31], who implemented the finger-tapping test in
an Android platform. One contribution is that they utilized the
built-in sensors rather than the external hardware to achieve PD
detection with high user adherence.

C. Affected Handwriting

In recent years, researchers have started to evaluate types of
motor activities to understand how behaviors will be affected due
to PD. However, one common disadvantage of these tasks is that
they are too complicated to be generalized for daily-life usage.
For example, both tapping test and balance test require users to
follow specific instructions. Although these tests achieve high
detecting accuracy, they achieve low user adherence. Conse-
quently, rather than designing some complicated tasks to predict
the PD severity, researchers try to find out an efficient solution
that can reveal PD risk from daily-life behaviors. Under this

background, evaluation of handwriting changes comes forth as
a diagnostic tool.

Teulings and the team [32] published the study of affected
handwriting. They discovered and surveyed several parameters
correlating handwriting impairment with PD, which can con-
clude as follows. 1). PD patients may have smaller handwriting
size or fail to keep their stroke size constant as handwriting
progresses. 2). The force amplitude required to produce and
maintain large keystroke sizes may not be present in individuals
with PD. 3). PD individuals will need relatively more time than
average for producing writing strokes. 4). PD individuals are
highly reliant on visual feedback. Teulings identified features
based on the points above and the time since other studies
have researched using computational prowess to enhance PD
diagnostics within society.

Alongside Teulings’ work, newer and better features are
identified, appropriate to PD detection. For example, Nogueras
et al. [33] concluded that biometric potentials between on-
surface writing movements and in-air hand trajectory move-
ments are different. Accordingly, measuring two of the compo-
nents are non-redundant. Based on this, Drotar et al. [34] took
handwriting analysis from both a perspective of surface writing
and a perspective that examines hand movements when writing
happens in the air. They adopted SVM as the classification
model and achieved an accuracy of 80%. An extended work [35]
was followed to identify critical markers of handwriting and
achieved an accuracy of 88% with almost equal sensitivity and
specificity.

Deep learning as a new-generation machine learning tech-
nique is helping PD detection achieve high accuracy. One of
the most recent works was published by Periera et al. [24], who
first proposed a system that utilized CNN as a classification
model into PD detection with handwriting data. The insight
behind is that the performance of traditional machine learning
relies on features selection, and improper features can undermine
the performance. Consequently, the authors replaced traditional
classifiers with CNN, in which the convolutional layers can
automatically learn the features, and fully-connection layers can
achieve PD detection. Another novelty is the authors developed
a smartpen, which contains a microphone, an accelerometer,
a grip pressure sensor, and a refill pressure sensor in order to
collect handwriting data from multiple views. 224 PD patients
and 84 healthy people participated in this study, during which
each testee was required to finish a writing exam with the smart-
pen. The authors achieved the best accuracy of 92.2%, which
indicated that handwriting data can provide useful information
to reveal PD symptoms in daily life.

The development of a multi-touch screen enables a smart-
phone to sense some finger activities, such as writing, flicking,
and drawing. Under this background, Aghanavesi et al. [25]
implemented a handwriting task on the smartphone. They de-
veloped an Android application containing a spiral drawing
test, which asked every testee to trace a pre-drawn Archimedes
spiral as fast and accurately as possible. Aghanavesi et al. [36]
published an extension, in which they added a tapping test
and employed data from both two tests to jointly evaluate PD
severity.
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TABLE I
OVERVIEW OF THE SELECTED PAPERS WORKING ON MOTOR SYMPTOMS DETECTION VIA SMARTPHONES. THE CLASSIFICATION PROBLEM

IS PD/HEALTH CLASSIFICATION

Naseer et al. [37] published an extension, in which they
adopted deep transfer learning to achieve higher accuracy of
PD detection. They first adopted the pre-training model from
ImageNet and PaHaW dataset. They then used the fine-tuning-
based approach to retrain the existing model on their hand-
writing dataset. They achieved an accuracy of 98.3%, which
revealed that their transfer learning-based approach achieves
better accuracy of PD detection when compared with existing
state-of-the-art work.

D. Summary

We highlight the cutting-edge works (see Table I). We observe
that there exists a clear storyline, during which researchers
employ mobile devices to achieve early detection of PD. On
the one hand, researchers have tried to simplify the procedure
of PD detection. They employ wearable sensors to assist the
PD detection, which usually relied on human experience in
the past. In the process, wearable inertial sensors are adopted,
but smartphones progressively replace them due to the stronger
computing ability, convenience, and pervasiveness. Also, the
incremental understanding of PD and the evolution of the classi-
fication model are making PD detection promising. On the other
hand, researchers have noticed the importance of user adherence
in PD detection. In order to achieve high user adherence, they
study protocols of passive sensing by merging the progress of PD
detection into users’ daily routine. To understand the difference
between active sensing and passive sensing, researchers measure
the performance gap, and the encouraging results suggest that
the mobile system shows the potential to facilitate PD detection
in daily life.

V. DETECTION OF NON-MOTOR SYMPTOMS

With the developing understanding of PD, the detection and
treatment of non-motor symptoms, which are considered as
the early signs, are increasingly emphasized. However, little
attention is focused on this domain. One of the most important
reasons is that the sensors are usually hard to directly measure
the conditions of these non-motor symptoms, such as apathy,
pain, depression, and anxiety.

In this section, we will first study the detection of vocal
impairment, which is considered as a pre-motor symptom of PD.
Afterward, we present some cutting-edge researches in which
the authors successfully recognize non-motor vital signs through
a mobile device.

A. Vocal Impairment

Since vocal impairment has been proved one of the pre-
motor symptoms which emerge at the very early stages [42],
researchers have laid great emphasis on vocal impairment de-
tection to facilitate PD detection.

Considering the cost and inconvenience of the regular phys-
ical visit, Little et al. [38] proposed a cutting-edge solution to
study the suitability of vocal impairment analysis via a tele-
monitoring system. Different from the traditional clinical-based
analysis where environmental factors are strictly controlled, the
telemonitoring system needs to deal with the dynamic environ-
ment which has highly variable acoustic sources. To achieve
this, the authors particularly explored the pitch period entropy
(PPE), which is a robust feature sensitive to observed changes
corresponding to PD. 31 subjects participated in this research
and contributed 195 samples in total. They employed SVM as
a classification model and achieved an accuracy of 91.4%. In
general, this work is the very first one that proves the feasibility
of detecting PD in daily-life scenarios.

As a preliminary work, Little et al. [38] only verified the
possibility of PD detection via one type of voice (i.e., the
sustained vowels). On this basis, Sakar et al. [39] studied how
PD can influence the generation of different types of voice.
They collected four types of audio data, i.e., words, number,
short sentence, and the sustained vowels, from 20 PD patients
and 20 healthy people. For each category of audio data, the
authors extracted 26 features and utilized KNN and SVM as
the classification model, respectively. The results showed that
sustained vowels are the most significant PD-discriminative
signatures when compared to the other types of voice. Also,
sustained vowel “o” presents better performance than other types
of sustained vowels.

Later, Jeancolas et al. [40] published extensive work to contin-
ually evaluate the audio data with four tasks, which are sustained
vowel pronunciations, fast syllable repetitions, free speech, and
reading. Different from previous works that achieved PD detec-
tion through acoustic analysis with global features, the authors
employed Mel-Frequency Cepstral Coefficients (MFCC) as a
type of short-term features combined with Gaussian Mixture
Models (GMM) as the classification model. They collected 1110
samples from 74 subjects and the reading task achieved the best
performance with an accuracy of 91.4%.

With the incremental development of machine learning, deep
learning-based solution is progressively employed in the mobile
health system to achieve high performance. DeepVoice [41]
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first adopted Convolutional Neural Network (CNN) into PD
detection with audio data. The authors designed and imple-
mented a smartphone-based application that contained three
parts, audio data collection, spectrogram representation, and
PD prediction. At the smartphone end, the users were asked
to perform a 10-second long sustained vowel test. At the server
end, the spectrogram was adopted to represent the audio data
into both the time and frequency domain, and AlexNet was
selected as the classification model. Besides performance, the
authors studied the relationship between the length of audio data
and the performance of PD detection. Results showed that the
accuracy of PD detection increases obviously when the data
length increases from 1 second to 5 seconds but progressively
gets saturated if data is longer than 5 seconds.

On this basis, Alavijeh et al. published an extention [43],
who proposed a new approach to identify the segments of the
audio data which violate the test protocol with high accuracy.
The audio data is first to split into variable duration segments to
fit an infinite hidden Markov model (iHMM). They adopted a
multinomial naive Bayes classifier and achieved an accuracy of
96%.

B. Other Non-Motor Symptoms

The pervasiveness of IoT devices enables continuous access to
vital human signs in daily life. As a result, vital signs monitoring
through a mobile system has attracted great attention. The ap-
plications include but not limit to following items: a) heartbeat
rate detection [44]; b) breathing rate detection [45]; c) blood
pressure detection [46]; d) blood oxygen level detection [47];
e) blood glucose level detection [48]. These add-on sensors for
measurement are usually connected to a smartphone through
physical wiring or via wireless connections (e.g., Bluetooth,
and WiFi). The vital signs, collected by these sensors, are either
analyzed at the smartphone end or transmitted to a remote server
for further data analysis.

We will discuss a series of work exploring non-motor symp-
toms monitoring. Even though they are not proposed for PD
detection, they still provide thoughts towards PD detection in
daily life.

Sleep Disorder: Due to the growing problem of insomnia,
sleep conditions monitoring attract the attention recently. In the
past several years, researchers showed that built-in sensors of a
smartphone, such as a gyroscope, magnetometer, and accelerom-
eter, can help achieve sleeping conditions monitoring [49]–[51].
The gyroscope and accelerometer help detect the movement
and gestures during sleeping. The magnetometer achieves sleep
orientation detection. The microphone can record different voice
activities in the sleep, which can reflect different sleeping stages.
Some researchers also propose to utilize wireless signal into the
detection of different sleeping stages, which works by monitor-
ing the changed waveform caused by the altered breathing and
altered sleeping posture [52].

Mood Disorder: Mood detection through model devices at-
tracts much attention for its enormous potential in the psy-
chology domain. The existing approaches can conclude into
three folds. First, the built-in accelerometer of a smartphone

can detect happiness or sadness by detecting the movement
variation of a person [53]. Second, a built-in microphone can
help detect the emotion by measuring the audio features [54].
The features will include but not limit to loudness, timbre, pitch,
and tone. They can well reflect the users’ emotions and possibly
reveal the symptoms of depression or anxiety. Facial expression
recognition is another common way to detect mood [55]. When
people look at videos, the built-in camera can record their facial
activity. Then, state-of-the-art CV technology can analyze the
facial expression and gaze direction to understand their mood
level.

C. Summary

We highlight some significant work about vocal impairment
detection in Table II. At the very beginning, vocal impairment
detection was achieved in an experimental environment where
the noise level was strictly controlled. Along with the increase of
knowledge about the voice, researchers proposed to use mHealth
systems to facilitate daily-life PD detection. Meanwhile, ad-
vanced technologies, such as deep learning, were proposed to
achieve high accuracy of PD detection.

Compared with vocal impairment, other non-symptoms (e.g.,
pain, sleep disorder, and depression) did not receive enough
attention yet. This is mainly due to the restriction of existing
mobile devices to access those types of data. We highlight some
preliminary work, including sleep stages tracking and mood
disorder detection, and we hope that they can stimulate the
research of early detection of PD in the future.

VI. MULTIDOMAIN DETECTION

Because parkinsonism is a clinical syndrome characterized by
multiple symptoms, focusing on multiple symptoms than using a
single sensing modality is considered to achieve higher accuracy
of PD detection.

Sharma et al. [56] and Arora et al. [57] achieved multiple
symptoms monitoring using a smartphone. They used the built-
in microphone to record voice for vocal impairment detection
and used the built-in accelerometer and gyroscope to collect the
gait information for movement impairment detection.

Specifically, Sharma et al. designed a protocol named
SPARK, which takes advantage of a synergistic combination
of a smartphone and a smartwatch to monitor dysfunctional
speech, gait abnormalities, limb dyskinesia, and voice disorder.
Besides PD detection, SPARK also supports Telemanagement
for patients with PD. Through the information provided by the
smartphone, physicians can adjust their therapeutic schedule.
However, one limitation reported by the authors is compati-
bility. Since all the participants are elders, they felt strange
about emerging mobile devices such as smartwatches and smart-
phones. In their experiment, the misplacement of sensors, data
log errors, and device malfunction happened during the experi-
ments.

Arora and his group presented a pilot study of detecting and
monitoring multiple symptoms of PD using a smartphone appli-
cation (APP). To comprehensively understand the conditions of
a subject with PD, the authors monitored multiple symptoms,
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TABLE II
OVERVIEW OF THE SELECTED PUBLICATIONS STUDYING VOCAL IMPAIRMENT. THE CLASSIFICATION PROBLEM IS PD/HEALTHY CLASSIFICATION

TABLE III
OVERVIEW OF THE PD DETECTION APPLYING MULTIDOMAIN SYMPTOMS

TABLE IV
A COMPARISON OF DIFFERENT APPROACHES FOR PD DETECTION/MONITORING

such as voice disorder, posture unbalance, gait, tremor, and
cognitive performance, by implementing five separate tasks
in their smartphone APP. Considering the low user adherence
reported by previous work, all the tests in their APP are short and
cost less than 5 minutes in total. In order to evaluate their method,
they enrolled 20 participants (10 PD and 10 controls) in total and
collected 1772 samples. Their Random Forest model achieved
an average sensitivity of 96.2±2% and an average specificity of
96.9±1.9%.

Zhan et al. [58] published an extended work to understand
whether the smartphone-based measurement can be a solution
to the remote monitoring of medication response. Instead of
collecting data by enrolling people locally, they used an en-
tirely remote method to recruit 226 individuals (121 PD and
105 controls) online and collected 8000 samples in total. They
also proposed a method for passive monitoring by continuously
collecting data from the accelerometer, gyroscope, GPS loca-
tion, and phone usage to measure the PD severity. The authors
published an extension [59] in 2018, where they proposed an
objective measurement of PD severity and tested construct va-
lidity. Typically, they evaluated the ability to capture intraday
symptom fluctuations, correlating with current standard PD
outcome measures, and responding to dopaminergic therapy.

So far, we comprehensively review the mHealth technolo-
gies used towards PD detection. Table IV summarizes the
mHealth technologies in terms of sensors/sensing modality, user

adherence, detection/monitoring classification, and privacy con-
cerns. In the following sections, we will identify the research
challenges and potential opportunities.

VII. RESEARCH ISSUES AND CHALLENGES

In this section, we summarize the common issues and chal-
lenges in existing researches.

A. Users Adherence

Continuous user monitoring is essential to identify the minor
variance caused by PD in the early stages. Although existing
work can achieve such a kind of longitude and continuous mon-
itoring in a nonclinical environment, many studies report that
users show low engagement in their experiments. For example,
Lima [60] presented a detailed study of the user’s compliance.
The authors performed a 13-week-long experiment in both the
Netherlands and North America. They adopted smartphones
and smartwatches to collect tremors and activity at night. Their
results show that the median compliance rate in the Netherlands
is 68%, and this number is 62% in North America. The rate of
accelerometer data declined 23% after 13 weeks, and this num-
ber became 27% after a six-week experiment in North America.
38% of the testers reported their reasons for low compliance
is “Personal Circumstances,” and 34% reported that “System
is too complex to use.” The mPower study [61] performed a
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6-month-long experiment in the United States. They adopted
smartphones to collect FOUR activities (i.e., voice, gait, finger
tapping, memory). Their study reveals that more than 50% of
people give up data collection thoroughly after five days.

B. Active and Passive Sensing

Most existing works, as we mentioned, adopt an active
sensing-based solution, and user adherence is not high. Pas-
sive sensing becomes a possible solution to achieve high user
adherence. However, the gap in performance between passive
and active sensing is still not clear yet. Although a few au-
thors [19], [20], [23] explored the passive sensing protocols
for PD detection. Few experiments showed if performance in
the passive sensing-based methods can reach the same level as
those in active sensing.

C. Non-Motor Symptoms Detection

The development of mHealth systems provides opportunities
for more and more researchers to examine the impact of PD
on motor symptoms (e.g., tremor, postural instability, rigidity,
bradykinesia). Although the performance (e.g., accuracy, sensi-
tivity, and specificity) of PD detection is improved progressively,
they provide little help in the early detection of PD. Because
motor symptoms usually appear in the mid-stage of PD when
70% neurons are permanently dead. On the contrary, few types of
research focus on the studies of non-motor symptoms (e.g., de-
pression, anxiety, sleep disorder, apathy, stomachic dysfunction,
and hyposmia), which are considered to emerge in early stages.
The reason is that those non-motor symptoms are usually hard to
be directly measured by wearable sensors. For example, explor-
ing the stomachic dysfunction usually requires laboratory-based
instruments, and there exist no available solutions for a smart-
phone to achieve this task nowadays. Accordingly, there exists
an urgent need to design an accessible solution, including new
sensors and methodology, for daily-life non-motor symptoms
detection.

D. Collect More Data

The unbalanced dataset is another big issue. We observe that
the same classification model can present an entirely different
performance on two different datasets. Considering the example
of vocal impairment, Little et al. [38] and Sakar et al. [39]
claimed that sustained vowel achieves a better performance
than any other types of voice. However, Jeancolas et al. [40]
received a different result, where the reading task achieves the
best performance. The reason comes from the biased dataset in
two experiments. A possible solution is to collect as much data
as possible, but the large-scale data collection is still an unsolved
problem.

E. Generalized Classifier

The performance of the classification model is also biased
nowadays. Although Tsanas et al. [62] and Jafari et al. [63]
claimed that they achieved an accuracy of 99% and 97.5%
separately when employing sustained vowel into PD detection,

Jeancolas et al. [40] pointed out that the proposed validation
approach is speaker-dependent. Although the samples in training
and testing set a contrast with each other, they can correspond
to the same person. This validation method can lead to an over-
optimistic result. In the experiments of Jeancolas, the authors
claimed this accuracy can even decrease to 60% if the validation
process is speaker-independent.

F. Privacy-Preserving Protocol

Last but not least, privacy-preserving is a big concern when we
discuss daily-life PD detection. To achieve high user adherence,
one efficient way, as we mentioned, is to collect some PD-related
data from users passively. For example, we can wake up the GPS
and accelerometer all the while to monitor the movement dis-
order, and we can continuously turn on the built-in microphone
monitor the voice. However, there is much more than that. On
the one hand, these methods massively intervene in the lives of
people due to privacy disclosure. On the other hand, it is hard to
extract data which is privacy-irrelevant but still reveals the PD
symptoms. In the paper [58] we mentioned above, the authors
passively collected 46,000 hours of data from 226 individuals,
however, how to make use of these data is still not clear.

VIII. OPPORTUNITIES

In this section, we discuss the opportunities for early PD
detection in daily life. We first discuss the possible privacy-
preserving protocol for passive sensing. Then, we discuss the
solutions for non-motor symptoms detection.

A. Passive Sensing Protocol

Although passive sensing can increase user adherence, it
brings a serious privacy-related problem. In an end-to-end sys-
tem, we propose two protocols to address this problem.

Privacy-isolation Zone: In an end-to-end system, sensors such
as GPS, accelerometer, and microphone can not only acquire
data that reveal the symptoms of PD but leak the privacy simulta-
neously. One solution is to isolate the privacy content in the user
end. For example, since speech is considered as an early indicator
of PD, it is possible to isolate the privacy-sensitive content in
the user end [64]. Techniques, such as encryption, content filter,
and compressed sensing, can well isolate the privacy-sensitive
content meanwhile reserving the content which reveals the PD
risk.

Embedded AI: Embedded AI can be another solution. In
order to achieve a better performance in PD detection, deep
learning is considered as a better tool. However, due to the
limitation of the computation ability and battery, the model for
PD detection is usually implemented in the server end, while the
mobile end is only responsible for collecting data. In this case,
privacy-sensitive data can leak, and users’ privacy cannot be
protected. Fortunately, the development of AI techniques, such
as MobileNets [65], make PD detection in the user end possible.
Without transmitting data to a cloud server, the mobile end can
be responsible for both data collection and PD detection in the
future.
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B. Innovate Sensing Modalities for Non-Motor
Symptoms Detection

Detection of Sleep Disorders: Monitoring the sleep disorder
with mHealth technologies becomes an available solution to
achieve early detection of PD. Hao et al. [66] proposed an
unobtrusive approach by adopting the built-in microphone to
monitor the sleeping condition, and they claim to achieve an
accuracy of 90% to track various events during a night. Zhao
et al. [52] proposed a new approach utilizing wireless signal
instead of an acoustic signal to monitor the sleep stages, and
they achieve the best accuracy of 79.8% to classify different
sleep stages.

Detection of Mood Disorders: Anxiety and depression are
considered as one of the earliest symptoms of PD. Although
directly measuring these symptoms is hard, it is possible to infer
the conditions of mental health by monitoring smartphone usage.
Given an example, we can monitor the time of smartphone usage
during a day to predict the risk of depression and monitor the
movement of a user during and before the calling to predict the
risk of anxiety [67].

IX. CONCLUSION

This review carries the current state-of-the-art work utilizing
mHealth technologies into PD detection. In this paper, a range
of approaches for detecting motor and non-motor symptoms are
described. Further, the present challenges and opportunities have
been discussed, providing insights for further research.
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