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Abstract: Linear-array-based photoacoustic computed tomography (PACT) has been widely used
in vascular imaging due to its low cost and high compatibility with current ultrasound systems.
However, linear-array transducers have inherent limitations for three-dimensional imaging due to
the poor elevation resolution. In this study, we introduced a deep learning-assisted data process
algorithm to enhance the image quality in linear-array-based PACT. Compared to our earlier study
where training was performed on 2D reconstructed data, here, we utilized 2D and 3D reconstructed
data to train the two networks separately. We then fused the image data from both 2D and 3D
training to get features from both algorithms. The numerical and in vivo validations indicate that
our approach can improve elevation resolution, recover the true size of the object, and enhance deep
vessels. Our deep learning-assisted approach can be applied to translational imaging applications
that require detailed visualization of vascular features.

Keywords: photoacoustic tomography; deep learning; vascular imaging; resolution improvement;
3D reconstruction

1. Introduction

Over the past two decades, photoacoustic computed tomography (PACT), a hybrid
imaging modality, has gained increasing interest within the field of biomedical imaging.
PACT combines the rich contrast from optical absorption with the high resolution and
deep imaging depth of ultrasound [1]. PACT relies on the photoacoustic effect, in which
short-pulsed light beams induce local thermoelastic expansion that generates ultrasonic
acoustic waves [2]. In PA, biomolecules such as melanin, lipids, and hemoglobin are
used as endogenous contrasts due to their high optical absorption coefficients at specific
wavelengths. Acoustic signals are detected via ultrasound transducer arrays, where they
are then digitized to be used in image reconstruction [2]. Based on optical absorption of
hemoglobin, PACT can visualize deep underlying vascular structures [3]. Various types
of transducer arrays have been used in PACT systems. Linear-array transducers remain
as one of the most popular choices due to easy integration with different light sources
and compatibility with existing ultrasound systems [4]. Recently, linear transducer arrays
have been used in breast imaging [5], biometrics [6], neural imaging [7], and oncology [8].
Linear arrays provide nearly isotropic resolution in the axial and lateral directions to
form a B-mode image. However, these arrays have an inherently poor elevation direction
resolution, which is determined by the fixed cylindrical focus of the transducer element.
To maintain good sectioning capability, most linear arrays have a long elevation focus,
rendering an elevation resolution that is typically a few times worse than that of their lateral
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and axial counterparts. This limitation directly impacts the three-dimensional performance
of a PACT system [9].

Many studies have attempted to improve the elevation resolution in linear-array-
based PACT through either hardware-based or software-based solutions [9]. For hardware-
based methods, modifications are made to either the scanning trajectory or the detection
configuration [10–12]. However, complicated scanning geometries lead to a longer scanning
time and more data generation when compared to traditional configurations. Software-
based approaches optimized the image quality through advanced image reconstruction
algorithms. One example is our earlier research based on coherent weighting and focal-line
3D image reconstruction (CWFL) [13]. It computes the coherence of PA signals in 3D space
and assigns the back-projected signals with a weighting factor. However, the intensity of
each voxel was altered by the weighting factor, affecting the quantitative accuracy of the
reconstruction. Recently, deep learning has been widely used in photoacoustic imaging
studies to improve image quality and/or reduce electric noise in the raw data [14–16].
However, very few have attempted to improve the elevation resolution of linear-array-
based PACT, due to the complexity of 3D simulation and training. Our group recently
introduced Deep-E, a UNet-based method for improving the elevation resolution [17]. In
that study, we converted the 3D problem into 2D space by training data only on the axial-
elevation plane. Experimental validation indicated that Deep-E improved the elevation
resolution by over four times. However, the input for Deep-E is still 2D reconstructed
images (in the axial–lateral plane) that are stacked into 3D. As the 2D reconstruction does
not consider signal divergence along the elevation direction, the quality of reconstructed
images is inherently limited.

To overcome this issue, we propose a revised Deep-E network that utilizes 3D recon-
structed data as input. 3D image reconstruction is achieved by the 3D focal-line reconstruc-
tion algorithm, which considers the elevation aperture and precisely back-projects the PA
signals into the 3D space [13]. As deeper signals can be seen at more scanning locations,
3D focal-line reconstruction allows better visualization of deeper structures. However,
3D focal-line reconstruction is subject to motion artifacts as it assumes that the object
remains stationary during the scanning, which may last 1–2 min. Slight movements in the
object might degrade the image quality. Two-dimensional reconstruction is less sensitive
to motion artifacts as reconstruction is done at each imaging plane. Therefore, integrating
results from both reconstruction algorithms could achieve better image quality. In the
following sections, we lay out the steps to obtaining high-resolution data from both 3D and
2D reconstructions and combining them effectively. Our results indicated that, in addition
to the elevation resolution improvement, the combined image contained more vascular
structures and the deeper vessels were more visible.

2. Methods
2.1. System Setup

Our network was designed for the dual-scan mammoscope (DSM) photoacoustic
imaging system, which was used for human breast imaging [5,18]. The transducer used
in DSM was a customized 128-element linear-array transducer (IMASONIC SAS) with
2.25 MHz central frequency and >65% bandwidth. Each element in the array is arc-shaped
with a 15 mm elevation length and focus at 40 mm. Light illumination is provided by
a 10 Hz Nd: YAG laser (Continuum Inc., Blvd Austin, TX, USA) with 1064 nm wavelength
and <10 ns pulse width. PA signals are acquired by a 256-channel data acquisition unit
from Verasonics and are transmitted to the host computer for further processing. The light
delivery and signal receiving are synchronized with the Q-switch output of the laser.

2.2. Simulation of PA Signal

We utilized the MATLAB-based photoacoustic simulation toolbox (K-wave) to gener-
ate the photoacoustic sinograms [19]. To improve the efficiency of dataset generation, we
only simulated the acoustic wave propagation in the 2D space along the axial and elevation
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directions. This simplification is valid when the lateral resolution is much higher than
the elevation resolution. We first generated the 3D vasculature matrix using the Insight
Segmentation and Registration Toolkit (ITK) [20]. The toolkit generates vessels in 3D space
with different diameters. We then cut the 3D vasculature matrix into 2D images. The cross-
sectional images were considered as the input source for PA simulation and the ground
truth for the neural network training. Figure 1 shows the workflow of 2D simulation along
the axial-elevation plane. PA source matrices were resized into 50 × 50 mm with 0.1 mm
pixel size and placed 30 mm away from the transducer element to mimic the experimental
setup. The arc-shape transducer moved along the elevation direction at 0.1 mm step size
for 500 steps to acquire acoustic signals originating from predefined PA sources. The
received A-line signals at different transducer locations were stacked into one image, which
preserved the primary features along the elevation direction in the raw data.
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Figure 1. Workflow of PA simulation. Step 1: Resized PA source matrices were placed 30 mm
away from the transducer element. Step 2: The transducer moved along the elevation direction to
acquire acoustic signals. Step 3: Received signals at different transducer locations were stacked into
one image.

The simulated raw data were then combined with electromagnetic interference (EMI)
noise acquired from the experimental system. The EMI noises are caused by electromag-
netic waves emitted from external sources (e.g., laser, stepper motor) and are shown as
strips along the lateral direction. Five hundred frames of EMI noise were acquired in our
experimental setup and were then randomly combined with the simulated data.

2.3. Image Reconstruction Algorithms

The experimental data can be reconstructed using either the 2D stack or the 3D focal-
line algorithms. For the 2D stack, we first reconstructed each PA B-mode image individually
and then stacked them along the elevation direction based on their scanning positions. In
3D focal-line reconstruction, the data is reconstructed in 3D by considering the elevation
aperture [21]. To properly back project the data in 3D, we used the focal line (a line at the
linear array focus) as an auxiliary line to find out the receiving path of the photoacoustic
signal. As the acoustic wavefront originating from the focal line hits the transducer surface
simultaneously, for each point in 3D, we find the shortest path that goes past the focal line
before reaching the transducer. The signals from each element were back-projected to a 3D
space based on this principle [21].

Image reconstruction for the simulation data is a little bit different. Because we only
simulated data along the axial-elevation plane, we do not need to consider reconstruction
along the lateral direction. In the Deep-E study, we simply stacked envelop-detected
A-line signals along the elevation direction to mimic 2D stack-reconstructed images in the
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axial-elevation plane [17]. This approach cannot mimic 3D focal-line reconstruction. As
we only simulate the raw data in the axial-elevation plane, the focal line turns into a focal
point. Therefore, we can use the virtual point concept to reconstruct the axial-elevation raw
data [22]. More specifically, for every reconstruction point in the cross-section, we found
the shortest path that goes across the focal point before reaching the transducer and used
this path for the time-of-flight calculation. Figure 2 compares the axial-elevation images
obtained from the 2D stack and virtual-point reconstruction algorithms. It can be seen that
the virtual-point reconstruction recovers features better along the elevation direction.
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2.4. Input Dataset and Neural Network Parameters

As mentioned above, we used the images generated by the Insight Segmentation
and Registration Toolkit as the ground truth. For training, we generated six 3D vascular
matrices, and each was cut into 250 images, totaling 1500. We then added four different
levels of white noise to the data (signal-to-noise ratios at 6 dB, 9 dB, 12 dB, and noise-free),
generating 6000 (6 × 250 × 4) images in total. We did not apply rotation to the data as
we wanted to preserve the depth-dependent elevation resolution. These cross-sectional
vascular data were simulated into PA raw data and reconstructed using either the 2D stack
or focal-point (line) algorithms mentioned in the section above. The 2D stack data was
trained using the Deep-E network mentioned in reference [17]. The focal-point data was
trained using a similar fully-dense UNet (FD-UNet).

Details of the FD-UNet were mentioned in [17]. Briefly speaking, the FD-UNet is based
on a CNN-based residual architecture by adding a skip connection between the input and
the output [23]. First, the spatial dimensions of the feature maps are repeatedly decreased
to learn local and global features related to artifact removal. Then, the learned feature maps
are spatially upsampled and combined to generate an output image of the same size as the
input image.

Specifically, the input image size is 256 × 256. It first passes through a 3 × 3 convolu-
tion layer to obtain 16 feature maps. Then, it undergoes the following blocks:

• Dense block: It consists of a sequence of a 1 × 1 and 3 × 3 convolution with batch
normalization and ReLU activation function. The outputs from earlier convolutional
layers are concatenated together as the input to the subsequent layer.

• Down block: It is a learned downsampling operation that consists of a 1 × 1 convo-
lution block with a stride of 1, and a 3 × 3 convolution block with a stride of 2. It
gradually reduces the feature map size and increases the channel number. In the last
layer of the downsampling path, we can obtain 512 feature maps with the size of 8 × 8.

• Up block: It consists of a 3 × 3 transposed convolution block with a stride of 2 followed
by ReLU activation function and batch normalization to expand the feature map size.

Finally, the feature map goes through a 1 × 1 convolution layer to obtain a residual
image with a size of 256 × 256. By adding the residual image with the input image, we
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obtain the targeted artifact-free image. To differentiate the FD-UNet used in 2D stack data
training and focal-point data training, we named the first as 2D Deep-E and the latter as
3D Deep-E.

2.5. Image Co-Registration

After training, both the 2D Deep-E and 3D Deep-E networks can be used to improve
the experimental data. However, due to the different time-of-flight calculation between
3D focal-line and 2D stack reconstruction, the two enhanced matrices cannot be perfectly
overlaid and need to be co-registered to eliminate the mismatch. A MATLAB built-in
function, imregdemons, is utilized to estimate the 3D displacement field and align the
2D Deep-E matrix with respect to the 3D Deep-E matrix [24,25]. After that, the aligned
2D Deep-E matrix and 3D Deep-E matrix are sliced and fused (using MATLAB function
imfuse) along the axial-elevation plane to preserve features from both outputs. The fused
2D images are then stacked along the lateral direction to form the final 3D output.

2.6. Summary

In summary, we first simulated raw photoacoustic data in 2D space along the axial and
elevation directions and combined them with the EMI noise (Step 1 in Figure 3). Second,
we used envelop detection and virtual point reconstruction algorithms to reconstruct the
raw data for 2D Deep-E and 3D Deep-E training, respectively. Subsequently, different levels
of Gaussian noise were applied to the reconstructed data to increase the training size. We
then input the images to the FD-UNet and trained the two networks separately (Step 2 in
Figure 3). The total training time for each network is approximately 2 h in a workstation
with AMD Ryzen 9 3950X CPU and NVIDIA GeForce RTX 2080 Ti GPU. After obtaining
two trained networks, we used 2D stack and 3D focal-line algorithms to reconstruct the
in vivo experimental data. The two reconstructed matrices were cut into 2D images and
fed into the trained 2D deep-E and 3D deep-E networks, respectively. The output matrices
from both networks were co-registered to combine the features from each algorithm (Step 3
in Figure 3).
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3. Results

We evaluated our approach using simulation and human imaging results. First, we
used simulated data with different noise levels to validate the networks’ performance in
noise removal, object size recovery, and elevation resolution improvement. Then, we used
the in vivo experimental data acquired from our DSM system to validate the improved
imaging depth and elevation resolution.

3.1. Validation with Simulated Vasculature

As mentioned above, the proposed algorithm aims to improve the elevation resolution
and reduce noise in the image. These can be validated through simulation data, where the
ground truth is available. Figure 4a shows the max amplitude projected (MAP) ground
truth, where the image is color encoded by depth ranging from blue to red (representing
shallow to deep). The red lines shown in Figure 4a indicate the locations of the cross-section
images in Figure 4b. Figure 4c shows the input at different white noise levels. Here, the
noise level was quantified based on the Gaussian white noise only.

Output from the network is shown in Figure 4d. It can be seen that most vessels can
be clearly recovered when the SNR ratio is 12 dB or higher. When the SNR is reduced
to 9 dB, some vessels with small diameters cannot be extracted. However, in most of
our experimental data, the SNR is much higher than 9 dB. Figure 4e,f represent the cross-
sectional images extracted from the red line in Figure 4c,d, respectively. The features shown
in Figure 4e exhibited poor axial and elevation resolution. By contrast, the images shown
in Figure 4f possessed high resolution in both directions. Table 1 denotes the comparison
of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index of input
and output at different Gaussian noise levels. Our proposed method improves the PSNR
in all cases. The SSIM is also significantly improved, indicating high similarity to the
ground truth. To validate whether our method can recover the true size of the object, we
compared the axial and elevation lengths of objects 1 and 2 in Figure 4b. Table 2 shows the
comparison results. The object sizes quantified from the output images are very close to
the ground truth.
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red line marked in (d).

Table 1. PSNR and SSIM of input and output in 9dB, 12dB, and EMI only.

Gaussian
Noise Level

Input
PSNR (dB)

Output
PSNR (dB)

Input Cross-Section
PSNR (dB)

Output Cross-Section
PSNR (dB)

Input
SSIM

Output
SSIM

Input Cross-
Section SSIM

Output Cross-
Section SSIM

9 dB 5.54 17.61 10.78 29.93 0.014 0.756 0.001 0.994

12 dB 6.74 17.96 12.16 29.31 0.023 0.814 0.001 0.994

EMI only 11.85 20.13 19.49 38.78 0.051 0.859 0.009 0.995
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Table 2. Diameter quantification along axial and elevation directions of simulated vasculature.

Object 1 Diameter (mm) Object 2 Diameter (mm)

Axial Elevation Average Axial Elevation Average

Input 0.63 0.98 0.81 0.76 1.53 1.15

Output 0.26 0.27 0.27 0.32 0.43 0.38

Ground truth 0.27 0.29 0.28 0.32 0.51 0.41

3.2. Validation with Phantom Data

To further validate whether our algorithm can recover the true object size in an ex-
perimental environment, we imaged two phantoms to evaluate the performance. The
first phantom was inserted with 0.5 mm pencil leads at 8 mm depth increments. The pencil
leads were located 30 to 60 mm away from the transducer surface, mimicking the imaging
distance of an in vivo experiment. Figure 5a,b show the depth-encoded MAP images for the
input and output combined with 2D and 3D Deep-E, respectively. Here, the depth indicates
the distance to the surface of the phantom. Figure 5c,d denote the cross-sections indicated
by the red line in Figure 5a,b, respectively. Compared to the input (Figure 5a,c), the object
in the output (Figure 5b,d) exhibited a much finer structure in both axial and elevation
directions. It can also be seen that our approach performs well on objects at different
depths, which is essential for deep tissue imaging. Table 3 lists the average diameter of
all pencil leads quantified based on the full width at half maximum (FWHM). The error
bar was quantified based on the diameters at different locations. The diameters obtained
from the output image are very close to the ground truth in both directions. For the second
phantom, three pencil leads with different diameters of 0.5, 0.9, and 2 mm were inserted
at the same depth, which is 40 mm away from the transducer. Figure 6a,b show the MAP
images for the input and output combined with 2D and 3D Deep-E, respectively. The red
line in Figure 6a,b indicates the location of cross-sectional images shown in Figure 6c,d.
Table 4 lists the quantified diameters of pencil leads along the elevation direction. While
there are some variations, overall, the recovered diameters are closer to the ground truths
(in comparison to the input). As will be mentioned later in the discussion, the accuracy
can be further improved by training a larger dataset with a broader range of diameters. In
addition, we also observed higher contrast-to-noise ratio due to reduced background noise
in the output images.

Table 3. Diameter quantification along axial and elevation directions, and the contrast-to-noise ratio
of pencil leads.

Averaged Pencil Lead Diameter (mm) Contrast-to-Noise
RatioAxial Elevation

Input 0.85 ± 0.08 1.82 ± 0.13 7.32

Output 0.56 ± 0.07 0.54 ± 0.04 12.53

Ground truth 0.50 0.50

Table 4. Pencil lead diameter quantification along the transducer’s elevation direction.

Pencil Lead Diameter along the Trasnducer’s Elevation Direction (mm)

Input 0.91 ± 0.09 1.92 ± 0.19 2.81 ± 0.42

Output 0.71 ± 0.07 0.93 ± 0.16 1.55 ± 0.11

Ground truth 0.50 0.90 2.00
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3.3. Validation with In Vivo Data

Subsequently, we evaluated the performance of our approach using in vivo data
obtained from human breast imaging experiments. Images from three subjects were
selected. Similar to the simulation data, all the images are depth-encoded from blue to red.
Figure 7a,c,e denote the 2D-stack reconstructed images from three subjects, respectively.
In all cases, vessels from deep regions cannot be clearly revealed. Figure 7b,d,f denote
the images reconstructed using the 3D focal-line algorithm. As expected, more vessels
can be visualized from deep regions (colored in red). However, some vessels near the
skin surface were not clearly visible. Figure 7g,i,k denote the outputs from the 2D Deep-E,
and Figure 7h,j,l represent the outputs from 3D Deep-E. The elevation resolution has been
significantly improved in all images. However, similar to data from the input, some vessels
(arrows 1 and 2) are more visible in the 2D stack reconstructed result, while some (arrows
3 and 4) are more visible in 3D reconstructed images. The final co-registered images are
shown in Figure 7m,n,o. It can be seen that these three images maintain the high elevation
resolution from 2D/3D Deep E processing, and vessels extracted from both networks are
clearly visible.
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tively. (g,i,k) Output images from 2D Deep-E. (h,j,l) Output images from 3D Deep-E. (m,n,o) Final
output after image co-registration. The color bar represents depth ranges from 0 to 30 mm.
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4. Discussion

Following the success of 2D Deep-E, we further developed 3D Deep-E and combined
outputs from both 2D Deep-E and 3D Deep-E images to get the best from both algorithms.
In 2D Deep-E, features reconstructed from 2D stack reconstruction are limited as it does not
consider the receiving angle along the elevation direction. This inherent limitation leads to
poor visualization of vessels extended along the lateral direction as well as features from
deep regions. To address this issue, we combined reconstruction from both 2D stack and
3D focal-line reconstruction algorithms. In theory, applying 3D focal-line reconstruction
alone would be sufficient to recover all the features [21]. However, 3D reconstruction is
sensitive to the motion artifact induced by body movement and breathing. As a result,
some vessels cannot be correctly reconstructed due to motion. By comparison, a 2D stack
only reconstructs one frame at a time, mitigating the influence of motion. While 2D stack
reconstruction is less sensitive to motion artifacts, it only reconstructs data in the axial
and lateral plane, degrading image quality in deeper regions. Our approach effectively
combines the benefits of both 2D and 3D reconstruction. Experimental results indicate
that our method improves elevation resolution, recovers deeper vessels, and maintains
the detailed vasculature from both reconstruction results. In addition, as we accounted
for both Gaussian noise and EMI noise in training, the signal-to-noise ratio of the output
image was significantly enhanced.

A detailed comparison between the two approaches can be seen in Figure 8. Compared
to Figure 8a,c, Figure 8b,d possess more vessels from deep regions, such as regions marked
by dashed boxes 1, 2, and 3 (more red-colored vessels). In the meanwhile, vessels extended
along the lateral direction are displayed in a more continuous manner (such as the region
marked by dashed box 4). Figure 8e,f show the cross-sectional MAP images of Figure 8a,b,
respectively. It can be seen that Figure 8f clearly contains more vessels in the deep region.
Similar outcomes can be seen in Figure 8g,h.
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(e) Cross-section MAP image of (a). (f) Cross-section MAP image of (b). (g) Cross-section MAP image
of (c). (h) Cross-section MAP image of (d).
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Despite the encouraging results, future studies are still needed to optimize our method.
First, we did not quantify whether the quantitative information is preserved, especially after
image co-registration. This issue could be addressed by studying how the co-registration
process changes the image intensity and whether proper weighting can be applied to
preserve the original signal distribution. Second, 3D focal-line reconstruction is more
sensitive to motion artifacts, which cannot be avoided in the current setup. We can resolve
this issue by using a higher pulse repetition frequency laser to shorten the scanning time
and minimize the motion artifact. Third, vessels with large diameters in the input image
might not be accurately recovered to the true size. This is due to the limited training dataset,
which does not contain sufficient samples of large-diameter vessels. In the future, vessel
samples with a broader diameter range could be utilized to address this issue. Finally,
the vessel continuity can be further improved. As our approach optimized the image
quality based on the cross-sectional image from the reconstructed matrix, connections with
adjacent frames were not considered. The extracted features from each cross-section might
have slight misalignment, degrading the continuity in the final 3D image. In the future, we
can develop an algorithm to consider the connection between frames to improve continuity.

It should be noted that, similar to other software-based approaches, our algorithm
cannot achieve real super-resolution imaging as the hardware remains the same as in the
conventional imaging [26]. However, compared to other approaches, such as deconvolution,
our method has the following advantages. First, the processing speed is fast. After training,
it takes less than 10 s to process reconstructed data. Second, it can recover the true diameter
of the object, as shown in Figure 5b,d. In comparison, deconvolution based on a single
point spread (PSF) function cannot recover the true size of objects at different depths as the
PSF would change. Third, the system noise is built into the training. Therefore, our method
is less affected by noise than deconvolution.

5. Conclusions

In this study, we developed a combined 2D Deep-E and 3D Deep-E approach to
improve linear-array-based PACT. For 3D Deep-E training, we applied the virtual-point
detector concept to generate the input data, mimicking images reconstructed from the
3D focal-line reconstruction algorithm. After obtaining output from 2D Deep-E and 3D
Deep-E, we co-registered the two matrices to remove mismatches caused by the two
reconstruction algorithms. The numerical validation demonstrated the method’s capability
in elevation resolution enhancement, true feature size recovery, and noise reduction. In vivo
validation further proved that our method can better recover deep vascular features and
maintain detailed vasculature from both reconstruction algorithms. In summary, we
further enhanced the performance of the Deep-E network by combining it with 3D focal-
line reconstruction. Our results demonstrated improved image resolution and deeper
vessel recovery.
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