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Abstract: Millimeter-wave (mmWave) sensing has emerged as a promising technology for
non-contact health monitoring, offering high spatial resolution, material sensitivity, and
integration potential with wireless platforms. While prior work has focused on specific
applications or signal processing methods, a unified understanding of how mmWave
signals map to clinically relevant biomarkers remains lacking. This survey presents a full-
stack review of mmWave-based medical sensing systems, encompassing signal acquisition,
physical feature extraction, modeling strategies, and potential medical and healthcare uses.
We introduce a taxonomy that decouples low-level mmWave signal features—such as mo-
tion, material property, and structure—from high-level biomedical biomarkers, including
respiration pattern, heart rate, tissue hydration, and gait. We then classify and contrast
the modeling approaches—ranging from physics-driven analytical models to machine
learning techniques—that enable this mapping. Furthermore, we analyze representative
studies across vital signs monitoring, cardiovascular assessment, wound evaluation, and
neuro-motor disorders. By bridging wireless sensing and medical interpretation, this work
offers a structured reference for designing next-generation mmWave health monitoring
systems. We conclude by discussing open challenges, including model interpretability,
clinical validation, and multimodal integration.

Keywords: mmWave technology; medical application

1. Introduction
Millimeter-wave (mmWave) technology has emerged as a transformative solution for

addressing modern healthcare challenges. mmWave-based medical applications span a
wide range of fields, including diagnostics, treatment, and monitoring. These technologies
have garnered attention for their potential to improve patient outcomes while offering
numerous advantages. (1) Non-Contact Measurements: mmWave sensor systems have been
utilized to monitor vital signs such as sleep patterns [1–4] without the need for wearable
sensors, enhancing user comfort and ease of use. (2) High Precision and Sensitivity:
mmWave sensor systems have shown promise in providing high-resolution sensing for
detecting conditions such as skin cancer [5–7] and wounds [8], offering a detailed view
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that enhances diagnostic accuracy. (3) Miniaturization and Portability: mmWave sensors
are miniature and easy to integrate into portable devices for real-time and off-the-go
measurements, such as monitoring blood pressure [9–12] and body temperature [13,14].
(4) Cost-Effectiveness: The low-cost nature of mmWave sensors makes them an attractive
option for at-home healthcare solutions, such as blood glucose monitoring systems that
empower patients to manage their health affordably [15–17].

The use of mmWave sensors in medical applications typically follows a multi-stage
process. First, the mmWave signal interacts with the target, capturing electromagnetic
properties such as phase shifts, amplitude variations, and frequency changes. Second,
common mechanisms such as Frequency-Modulated Continuous Wave (FMCW) and Syn-
thetic Aperture Radar (SAR) are employed to acquire high-resolution information. Third,
physical parameters—such as structure, motion, or material properties—are extracted via
signal processing techniques. Fourth, these physical parameters are further mapped to
biomedical biomarkers (e.g., heart rate variability (HRV), skin moisture) using theoretical
models or data-driven algorithms. Finally, the derived biomarkers are applied in medical
diagnostics or monitoring.

Despite rapid progress, a critical gap remains in understanding how mmWave signal
features relate to medical biomarkers. Existing surveys [18–20] primarily focus on the
sensing hardware, signal processing methods, or general applications. However, they
often overlook the fundamental distinction between mmWave physical parameters—which
describe signal behavior—and biomedical biomarkers—which represent physiological or
pathological conditions. More importantly, the methods used to link these two types of
features remain fragmented across the literature.

Figure 1 illustrates the full-stack pipeline of mmWave-based medical systems, from
raw signal acquisition to medical application. Unlike prior reviews that focus on either
hardware components or specific medical tasks, this survey provides a unified framework
that bridges physical signal parameters (e.g., motion, dielectric constant) and medical
biomarkers (e.g., respiration rate, heart rate, tissue hydration). We systematically review
the mapping strategies—including theoretical models and machine learning approaches—
that enable this transformation.

Figure 1. Overview of the mmWave medical sensing pipeline.

To the best of our knowledge, this is the first survey that (i) categorizes mmWave
sensing features based on their physical signal origin, and (ii) links them to medical
biomarkers and medical use cases through both analytical and data-driven models. By
connecting low-level signal physics with high-level medical interpretation, this work serves
as a reusable foundation for the design, evaluation, and translation of mmWave-enabled
healthcare technologies.

2. Paper Search Strategy
To construct a focused and high-quality survey of mmWave-based medical applica-

tions, we adopted a multi-stage literature screening strategy. First, we performed a broad
keyword search on Google Scholar using the query “mmWave for medical application”,
which yielded a total of 17,900 articles published between 2010 and 2025. Second, to ensure
publication quality, we filtered the results by retaining only papers published in journals
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with an impact factor (IF) ≥ 1.0 and conferences with a Google Scholar h5-index ≥ 30,
resulting in a refined set of 2200 high-quality papers.

Next, we screened these 2200 papers based on content relevance by examining their
titles and abstracts. We retained papers that explicitly mentioned application-specific key-
words such as “mmWave”, “human body”, “health”, “vital sign”, “biomarker”, “wound”,
“tissue”, “diabetes”, or “rehabilitation”, indicating a focus on human physiological or
pathological sensing. This step resulted in a set of 523 articles with clear relevance to
mmWave-based biomedical sensing.

Finally, from this pool, we manually selected 66 representative papers for in-depth
analysis in the survey. Given that the primary focus of this work is to review and ana-
lyze complete mmWave-based medical application systems, we prioritized studies that
demonstrated comprehensive end-to-end system designs with clearly defined technical
components. The manual selection was guided by two key criteria: (1) Completeness
of technical implementation: the study must present a full sensing system comprising
all three essential modules—a hardware configuration module, a signal processing mod-
ule, and a medical functionality module that connects the extracted mmWave features
to clinically relevant biomarkers or outcomes; (2) Experimental validation: the system
must be supported by a well-defined evaluation process involving human subjects, tissue
phantoms, or clinically relevant samples, demonstrating the feasibility, robustness, and
potential applicability of the proposed solution in real-world medical contexts.

By applying these criteria, the 66 selected papers reflect a representative subset of
the field, covering diverse biomarker types, clinical objectives, and sensing strategies.
These works, together, form a comprehensive foundation for understanding how mmWave
systems are developed and deployed for real-world biomedical applications.

3. Overview of mmWave-Based Medical System
mmWave technology provides high-resolution, non-invasive methods for monitoring

and diagnosing physiological conditions. As shown in Figure 2, a typical mmWave-
based medical system includes system hardware, signal preprocessing, physical parameter
extraction, parameter–biomarker mapping, and validation processes.

Figure 2. The framework of using mmWave technology for medical applications.
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3.1. System Hardware Mechanism

mmWave systems leverage various hardware configurations to optimize sensing per-
formance. Common modulation techniques include Continuous Wave (CW) and Frequency-
Modulated Continuous Wave (FMCW), with FMCW enabling simultaneous range and
velocity estimation. Antenna strategies such as Multiple-Input Multiple-Output (MIMO)
and Synthetic Aperture Radar (SAR) enhance spatial resolution and imaging capability.
Transceiver configurations can involve co-located or separated transmit and receive anten-
nas, providing flexibility for diverse sensing scenarios.

3.2. Preprocessing

Signal preprocessing enhances the quality of mmWave data before analysis. Typical
techniques include noise reduction (e.g., matched filtering), signal enhancement (e.g., low-
noise amplification), and data compression to manage the large data volumes generated.
These steps collectively improve the signal-to-noise ratio and facilitate efficient downstream
processing [21,22].

3.3. Physical Parameter Extraction

mmWave sensing enables extraction of key physical parameters such as structural
attributes (shape, size, texture), motion parameters (velocity, displacement), and material
properties (dielectric constant, impedance). These parameters form the basis for mapping
to medical relevant biomarkers. Details of parameter extraction methods are described in
Section 4.

3.4. Parameter–Biomarker Connection

Mapping physical parameters to medical biomarkers can be achieved via theoret-
ical models grounded in electromagnetic principles or data-driven machine learning
approaches. This connection enables the estimation of health-related indicators from
non-invasive mmWave measurements. Details of connection methods are described in
Section 5.

3.5. Medical Biomarker Applications

Extracted biomarkers support a wide range of medical applications, including non-
contact monitoring of physiological signals and assessment of tissue conditions. Detailed
applications are discussed in Section 6.

3.6. Validation and Evaluation

Validation of mmWave-based medical systems involves phantom experiments [23],
ex vivo testing [24], and in vivo studies [5], ensuring accuracy, reliability, and clinical
relevance. These stages progressively bridge laboratory validation with real-world health-
care deployment.

4. Physical Parameters and Processing Strategies
In the context of mmWave technology, physical parameters refer to the measurable

characteristics that influence how mmWave signals interact with materials and biological
tissues. These parameters are crucial for designing and optimizing sensing systems and
for enabling non-invasive medical applications. They can be broadly categorized into
structural parameters, motion parameters, and material properties.

4.1. Structural Parameters

Structural parameters describe the geometric and surface characteristics of objects
and tissues, including shape, size, roughness, and porosity. These parameters affect how
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mmWave signals are reflected and scattered, providing valuable information for tissue
characterization and imaging. Techniques such as Synthetic Aperture Radar (SAR) and
active mmWave imaging have been employed to extract these features from various mate-
rials [24,25].

4.2. Motion Parameters

Motion parameters characterize the dynamic behavior of biological tissues and body
parts, encompassing both macro- and micro-scale movements. At the macro level, Doppler-
based mmWave sensing enables the estimation of velocity, facilitating applications such as
monitoring gross body movements and blood flow dynamics [26,27]. At the micro level,
mmWave sensors are highly sensitive to minute displacements, enabling the analysis of
physiological micro-vibrations. This capability supports the non-contact monitoring of
vital signs, such as respiration and heart rate, through the detection of subtle chest wall
movements associated with breathing cycles and cardiac activity [28,29].

4.3. Material Properties

Material properties, such as dielectric permittivity and absorption characteristics,
directly influence mmWave signal propagation through biological tissues. These param-
eters can be used to differentiate tissue types and assess pathological changes. Recent
studies have demonstrated the utility of mmWave-based measurements in evaluating
tissue dielectric responses and absorption rates, providing insights into tissue health and
composition [30,31].

5. Parameter–Biomarker Models
Parameter–biomarker models are essential tools in the field of medical diagnostics,

research, and healthcare applications. These models aim to establish relationships be-
tween extracted mmWave physical parameters and medical biomarkers, which are indica-
tive of specific physiological or pathological conditions. By quantifying these relation-
ships, parameter–biomarker models enable the identification, tracking, and prediction of
health conditions or disease progression. Generally, these models can be classified into
two categories: Theoretical Models and Machine Learning Models. To better distinguish
when and why a theoretical model or machine learning approach is preferable, Table 1
provides a structured comparison between these two categories. The details of these models
are described in the following chapters.

Table 1. Comparison between Theoretical Model and Machine Learning in mmWave medical systems.

Aspect Theoretical Model Machine Learning (ML)

Modeling Principle Physics-driven (e.g., wave propagation,
reflectance equations)

Data-driven, learns feature–biomarker
mappings

Interpretability High—explicit and clinically traceable Low to medium—requires explainability
tools

Data Requirement Low—relies on priors and assumptions High—needs large labeled datasets

Adaptability Limited—rigid to noise and variation Flexible—handles subject and
environmental variability

Accuracy Stable in idealized settings, sensitive to
real-world complexity

Higher potential in diverse conditions if
well trained

Computational Demand Low—suitable for embedded systems Moderate to high—may require
edge/cloud support
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Table 1. Cont.

Aspect Theoretical Model Machine Learning (ML)

Medical Acceptance High—transparent and regulator-friendly Medium—needs explainability and
validation

Use Case Preference Simple vital signs under controlled setups Complex tasks like gait, wound, or disease
classification

5.1. Theoretical Model

A theoretical model connecting mmWave physical parameters to medical biomarkers
involves understanding how mmWave signals interact with biological tissues and how
these interactions can be quantitatively linked to specific physiological or pathological
indicators. For example, Gabriel et al. [32] provide foundational data on tissue permittivity
and conductivity across frequencies (including mmWave bands), which is essential for
modeling the correlation between tissue material properties (e.g., absorption and reflec-
tivity) and tissue biomarkers, such as tissue moisture and composition, which serve as
indicators of tissue condition. Alekseev et al. [33] model mmWave absorption in blood
vessels and correlate it with blood flow biomarkers (e.g., glucose, hemoglobin). Zhadobov
et al. [34] review absorption mechanisms and thermal effects, linking power density to
biomarker-related physiological changes. In mmWave sensing, the theoretical model is
typically a valuable tool for bridging the gap between physical parameters and clinical
biomarkers by enhancing the understanding of electromagnetic physics, thereby ensuring
the system’s reliability and stability in medical applications.

5.2. Machine Learning

In addition to theoretical models, machine learning (ML) has emerged as a powerful
tool for establishing connections between mmWave signal physical parameters and medical
biomarkers. Unlike theoretical models, which are often based on predefined physical
principles, machine learning methods can learn complex, non-linear relationships directly
from data. For example, Iyer et al. [35] leverage mmWave sensor technology to monitor
vital signs and detect arrhythmias in real time, employing machine learning techniques for
precise analysis. Additionally, Bauder et al. [36] propose the use of end-to-end deep learning
models to separate individual mmWave signals and directly map them to respiration
patterns, enabling continuous respiration monitoring for patients with respiratory diseases,
sleep apnea, or cardiovascular conditions.

6. Biomarkers and Their Medical Applications
In mmWave-based medical systems, biomarkers are key physiological indicators ex-

tracted from the body through signal interactions. These include features such as respiration
patterns, heart rate, blood pressure, and tissue properties. By linking physical features—like
motion, material property, or structure—to these biomarkers, mmWave sensing enables
various medical applications such as vital signs monitoring, cardiovascular assessment,
gait analysis, and wound evaluation. Figure 3 summarizes the frequency of key biomarkers
and the proportion of mapping methods adopted in 27 representative studies reviewed in
this work. The most frequently targeted biomarkers are heart rate, respiration, and human
gait. In terms of modeling strategy, machine learning and theoretical models are adopted
in nearly equal proportions. This section introduces the commonly used biomarkers in
mmWave sensing and their related clinical use cases, as summarized in Table 2.



Sensors 2025, 25, 3706 7 of 17

Table 2. Summary of representative mmWave medical studies by feature type and biomarker.

Reference Extracted mmWave Feature Mapping Method Target Biomarker Medical Use Case

A. Motion Features

Yang et al., 2017 [2] Chest Micro-Variation Theoretical Respiration, Heart Rate Sleep Monitoring
Iyer et al., 2022 [35] Heart Micro-Vibration ML Respiration, Heart Rate Arrhythmia Monitoring
Singh et al., 2023 [37] Arterial Pulse Transit ML PWV, Blood Pressure BP Monitoring
Hao et al., 2024 [29] Chest Vibration ML Respiration Vital Signs Monitoring
Geng et al., 2024 [38] Artery Wall Vibration Theoretical PWV Cardiovascular Monitoring
Wang et al., 2024 [39] Chest Wall Movement ML Respiration Sleep Apnea Detection
Chen et al., 2024 [40] Chest Micro-Vibration Theoretical Heart Rate Vital Signs Monitoring
Zhao et al., 2024 [41] Chest Micro-Vibration ML Heart Rate Arrhythmia Detection
Hao et al., 2025 [42] Heart Vibration Theoretical Heart Rate Vital Signs Monitoring
Mercuri et al., 2022 [43] Chest Micro-Vibration Theoretical Respiration, Heart Rate Vital Signs Monitoring

Jiang et al., 2020 [44] Radar Point-Cloud +
Micro-Doppler ML Human Gait Gait Monitoring

Zeng et al., 2022 [45] Step Timing (Micro-Doppler) Theoretical Human Gait Gait Monitoring
Alanazi et al., 2022 [46] Gait Micro-Movement ML Human Gait Rehabilitation Monitoring
Feng et al., 2023 [47] Limb Movement ML Human Gait Elderly Fall Detection
Zhang et al., 2024 [48] Stride/Gait Velocity ML Human Gait Parkinson’s Assessment
Hu et al., 2024 [49] Joint Kinematics ML Human Gait Fall Risk Assessment
Gillani et al., 2023 [50] Limb Tremor Vibration Theoretical Involuntary Motion Parkinson’s Detection
Smulders et al., 2013 [51] Skin Water Content Theoretical Involuntary Motion Tremor Monitoring

B. Structure and Material Features

Bevacqua et al., 2021 [52] Dielectric + Geometry Theoretical Tissue Property Breast Cancer Imaging
Di Meo et al., 2021 [23] Dielectric + Geometry Theoretical Tissue Property Breast Cancer Imaging
Mirbeik et al., 2022 [5] Dielectric Constant ML Tissue Property Skin Cancer Diagnosis
Owda et al., 2019 [53] Emissivity Theoretical Tissue Property Burn Wound Assessment
Bagheri et al., 2024 [54] Dielectric Constant Theoretical Respiration Vital Signs Monitoring

Chen et al., 2020 [13] Thermal Scattering (Polymer
Film) ML Body Temperature Fever Screening

He et al., 2023 [55] Thermal Emission (Body) Theoretical Body Temperature Fever Screening
Liang et al., 2023 [10] Blood Volume Change ML Blood Pressure BP Monitoring
Hu et al., 2024 [12] Chest Micro-Vibration ML Blood Pressure BP Monitoring

Note: ML = Machine Learning; PWV = Pulse Wave Velocity.

Figure 3. Summary statistics of 27 representative mmWave medical studies. (Left) Frequency of
targeted biomedical biomarkers. (Right) Proportion of studies using theoretical vs. machine learning
(ML)-based mapping models.

6.1. Respiration Pattern

A significant body of work has explored mmWave sensing for extracting respira-
tion patterns in a contactless manner. Most approaches leverage the chest wall’s micro-
movements, which modulate the phase or amplitude of reflected mmWave signals. Early
systems, such as Yang et al. [2] utilized 60 GHz signals and theoretical models to derive
both respiration and heart rates from received signal strength variations. Subsequent works
employed Doppler or FMCW radar to improve resolution and robustness. For instance,
Iyer et al. [35] combined Fourier analysis and neural networks for arrhythmia detection
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using phase signals. More recent studies focus on classifying respiratory patterns using
machine learning. Hao et al. [29] proposed mmWave-RM, which uses 77 GHz FMCW radar
and image-based classifiers (e.g., SVM, CNN) to identify normal, quick, deep, and patho-
logical (e.g., meningitic) breathing patterns. Beltrão et al. [56] further demonstrated reliable
respiration monitoring for premature infants in neonatal intensive care units, addressing
motion artifacts via harmonic-based signal decomposition. These systems showcase the
capability of mmWave radar to accurately extract and classify respiration patterns across
various clinical contexts, including sleep monitoring, apnea detection, and early screening
of respiratory dysfunction.

6.2. Heart Rate

Recent advancements in mmWave radars have enabled accurate and contactless heart
rate (HR) monitoring by detecting micro-movements of the chest wall induced by cardiac
activity. Early systems typically relied on theoretical signal processing methods to extract
phase or Doppler-based motion features. For instance, Chen et al. [40] proposed a DR-
MUSIC algorithm to suppress respiratory harmonics and improve spectral resolution
for precise HR estimation. Similarly, Hao et al. [42] designed an adaptive variational
mode decomposition (A-VMD) method for isolating heartbeat signals, achieving stable
performance even under motion interference. In parallel, deep learning-based models
have emerged to enhance robustness and reduce latency, such as the mmArrhythmia
system proposed by Zhao et al. [41], leverage encoder–decoder architectures and ensemble
classifiers to estimate heart rate and classify arrhythmias, including atrial fibrillation and
premature contractions. Together, these works demonstrate the potential of mmWave radar
as a powerful tool for continuous, unobtrusive cardiac monitoring across both general
health tracking and disease screening contexts.

6.3. Body Temperature

Recent studies have demonstrated that mmWave sensing can be effectively used
for non-contact body temperature estimation by capturing thermal responses linked to
dielectric or emission properties of materials. Chen et al. [13] introduced ThermoWave,
a passive wireless sensing system that utilizes material property features—specifically
the temperature-dependent thermal scattering of cholesteryl materials. This system maps
scattering features to temperature using both a theoretical model (ThermoDot) and machine
learning (GAN-based ThermoNet) for dot-wise estimation and thermal imaging, respec-
tively. Separately, He et al. [55] developed a compact analog correlator-based mmWave
radiometer that directly measures thermal emission power in the Ka band (32–36 GHz),
using a theoretical correlation model to linearly infer body temperature from radiometric
signals. These systems show strong potential for fever screening, skin temperature imaging,
and contactless health monitoring, offering advantages over infrared sensors in terms of
occlusion tolerance and environmental robustness.

6.4. Pulse Wave Velocity

Pulse Wave Velocity (PWV) is a critical biomarker reflecting arterial stiffness and is
strongly correlated with blood pressure. Recent mmWave-based approaches enable non-
contact estimation of PWV by capturing the transit delay of pulse waves across multiple
body locations. Singh et al. [37] used a pair of FMCW radars placed at the chest and
wrist to measure pulse transit time (PTT), which was converted to PWV for estimating
systolic and diastolic blood pressure via polynomial regression and neural networks. Their
method achieved root mean square errors below 3.7 mmHg and also explored waveform
morphology (AUC) as a complementary blood pressure predictor. In a related study,
Geng et al. [38] developed a stable mmWave pulse measurement system using a large
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MIMO radar array combined with range–angle focusing and phase unwrapping. By
tracking arterial pulse waves at the neck, chest, and abdomen, the system demonstrated
high temporal consistency and spatial resolution in waveform morphology, providing a
reliable foundation for long-term cardiovascular monitoring based on PWV and pulse
shape stability. Together, these studies highlight the feasibility of mmWave radar for
continuous, contactless vascular assessment using PWV as a physiological bridge to blood
pressure estimation.

6.5. Blood Pressure

Recent studies have demonstrated the feasibility of using mmWave radar for contact-
less blood pressure (BP) monitoring by extracting fine-grained arterial pulse information.
Liang et al. [10] design the airBP to estimate both systolic and diastolic BP directly from the
pulse waveform using a customized deep neural network with transformer-based attention,
achieving FDA-compliant accuracy at up to 26 cm distance. In parallel, Hu et al. [12]
introduced WaveBP, the first system to continuously reconstruct arterial blood pressure
waveforms (ABPW) non-invasively from chest reflections. It combines mmWave signal
modeling with a hemodynamics-informed hybrid transformer (mmFormer), multi-view
beamforming augmentation, and cross-modal supervision from ECG/PPG data. WaveBP
achieves high correlation (0.903) with true ABPW and supports detailed cardiac health as-
sessment beyond static BP values. These works establish mmWave as a promising modality
for unobtrusive, long-term cardiovascular monitoring in both home and clinical settings.

6.6. Tissue Property

mmWave systems have shown strong potential in non-invasive medical imaging by
leveraging the dielectric property differences between normal and pathological tissues.
These systems primarily extract material property features, such as dielectric constant or
emissivity, to reconstruct tissue structure or quantify tissue damage. For instance, Bevacqua
et al. [52] and Di Meo et al. [23] proposed mmWave-based breast imaging systems that
use inverse scattering models and delay-and-sum radar algorithms to map tissue dielectric
profiles, enabling the detection and characterization of malignant tumors in early-stage
breast cancer. In skin cancer diagnostics, Mirbeik et al. [5] developed a high-resolution
mmWave imaging (HR-MMWI) platform to classify malignant and benign skin lesions
based on dielectric contrast, achieving up to 97% sensitivity in real-time, in vivo tests.
Beyond oncology, Owda et al. [53] utilized mmWave radiometry to assess burn wounds
by measuring changes in emissivity through bandages, revealing mmWave’s ability to
monitor tissue healing and injury depth without dressing removal. Collectively, these
studies demonstrate that mmWave sensing, through precise tissue property mapping,
enables a range of diagnostic applications from cancer detection to wound evaluation,
offering non-contact and high-resolution alternatives to traditional methods.

6.7. Human Gait

The mmWave radar has emerged as a powerful tool for non-contact gait analysis, of-
fering high-resolution tracking of body motion while preserving privacy. Most approaches
extract motion-related features, such as micro-Doppler signatures, step timing, stride length,
or joint trajectories, to quantify gait characteristics. For instance, Alanazi et al. [46] devel-
oped a low-cost mmWave system with CNN-based classification to distinguish between
five gait types, including abnormal walking patterns, achieving up to 98.8% accuracy.
Jiang et al. [44] proposed a multi-channel 3D CNN model that utilizes point cloud motion
trajectories from mmWave array radar to classify gait types in real time. Zeng et al. [45]
focused on step time variability measurement in real-life environments, a key marker for
early detection of cognitive decline and fall risk. Hu et al. [49] designed a mmWave-based
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system that reconstructs sit-to-stand movements using inverse kinematics and radar skele-
ton tracking to support fall risk assessment. Meanwhile, Zhang et al. [48] introduced
mP-Gait, a fine-grained system for Parkinson’s disease monitoring that maps radar features
to UPDRS-III gait scores using machine learning. These works demonstrate that mmWave
sensing enables robust and scalable gait monitoring across use cases including elderly
fall prevention, rehabilitation, and neurodegenerative disease assessment, outperforming
traditional wearables in usability and privacy.

6.8. Involuntary Motion

The mmWave radar has shown strong potential in detecting and quantifying involun-
tary motions, such as tremors caused by neurological disorders. Gillani et al. [50] proposed
a system that uses 77 GHz FMCW radar to extract motion features—specifically, the micro-
vibrations of distal limbs—and quantifies tremor frequency and amplitude through a
customized signal processing chain. The system maps radar phase and displacement
signals to clinically meaningful biomarkers using a mathematical vibration model, enabling
the accurate differentiation of essential tremor and Parkinsonian tremor across action,
posture, and rest conditions. Experimental results showed high correlation (R2 > 0.97)
with reference sensors, with low mean errors (−0.14 Hz in frequency and −0.03 cm in
amplitude), demonstrating strong feasibility for remote, unobtrusive tremor assessment.
Complementing this, Smulders et al. [51] investigated millimeter-wave reflectometry to an-
alyze tissue dielectric variation caused by hydration differences, indirectly linked to muscle
or skin rigidity changes associated with involuntary motion. Their study confirmed that
material property features—specifically, reflectivity magnitude in the 40–60 GHz band—can
differentiate skin types and support applications like wound assessment or early-stage skin
anomaly detection, even through bandages. Together, these studies highlight the potential
of mmWave technologies serving as contactless tools for neurological monitoring and early
detection tools of motor impairments.

7. Potential Applications
Beyond their established role in medical sensing, mmWave also shows considerable

promise as a therapeutic modality for interacting directly with biological tissues. These
interactions are governed by both thermal and non-thermal mechanisms, each with distinct
biomedical implications. Thermal effects arise from the rapid absorption of mmWave
energy by tissues, leading to highly localized heating and potential surface ablation [57].
In contrast, non-thermal effects—though less well understood—are garnering increasing
scientific interest. Emerging evidence indicates that low-intensity mmWave exposure can
influence cellular behavior without significant temperature elevation, affecting ion channel
activity, membrane permeability, and even gene expression [34].

Building upon these underlying mechanisms, several therapeutic applications of
mmWave radiation are under active investigation. For example, microwave ablation is
a well-established clinical technique typically using sub-3 GHz frequencies to achieve
deep tissue heating and tumor destruction [58]. However, the direct use of mmWave
frequencies (30–300 GHz) for ablation remains largely experimental. Owing to their shallow
tissue penetration, mmWaves are particularly well-suited for extremely localized and
superficial ablation, making them promising for treating skin lesions, including potential
applications in skin cancer [5,57]. Pilot studies have demonstrated cytotoxic effects on
melanoma cells using 58–60 GHz exposures, although large-scale clinical validation is still
pending. In addition to ablation, the localized thermal effects of mmWave energy have
been explored for enhancing transdermal drug delivery, facilitating controlled diffusion
across the skin barrier [59]. Meanwhile, non-thermal mechanisms have been implicated
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in the observed antimicrobial properties of mmWave exposure, with specific frequencies
shown to inactivate bacteria and modulate antibiotic resistance profiles—offering a rapid,
contact-free alternative to conventional surface sterilization methods [60].

Beyond these experimental applications, several mmWave-based therapeutic devices
have also been commercialized. For instance, GradyVet MilliWave (Grady Medical, Murri-
eta, CA, USA) system is marketed for pain relief and inflammation reduction in soft tissue
conditions through low-power mmWave exposure aimed at modulating inflammatory
pathways [61]. In addition, wearable mmWave-emitting devices for neuromodulation in
fibromyalgia patients have shown promising clinical results, including statistically signifi-
cant improvements in patient-reported outcomes from multicenter randomized trials [62].
These developments highlight growing interest in applying mmWave technologies for
therapeutic purposes such as pain management, inflammation reduction, immune system
modulation, and wound healing.

8. Challenges and Future Directions
Despite rapid progress in mmWave-based medical sensing, several critical challenges

remain open and present opportunities for future exploration:

8.1. Multimodal Fusion and Alignment

mmWave sensing can be combined with other modalities (e.g., visible, infrared, or
depth sensors) to leverage complementary information, but this requires careful data
alignment. For example, fusing mmWave radar with camera or thermal imagery can
improve robustness and accuracy—as demonstrated by sensor-fusion systems in related
domains—yet, aligning their data streams poses significant challenges. Accurate spatial
calibration is needed to project radar-derived spatial information (e.g., range-angle points
or point clouds) onto the image coordinate system. Temporal synchronization must also
account for differing frame rates and sensor latencies. Moreover, heterogeneous spatial
resolutions and non-overlapping fields of view further complicate fusion. Misalignment or
clock drift can degrade performance, particularly in dynamic environments such as patient
movement. Open problems include developing automatic calibration techniques—ideally
self-calibrating or targetless—and learning-based alignment strategies that can generalize
to new settings without manual intervention. Another key direction is ensuring robust
fusion in the presence of degraded or missing data from one or more channels (e.g., camera
occlusion or radar interference).

8.2. Model Generalization Across Subjects and Settings

Generalization to new patients and environments is a fundamental challenge. Models
trained on one group of individuals or a specific room layout often suffer from “domain
shift” when applied to others [63]. Variability in human anatomy (e.g., body size, posture),
movement patterns, and clothing can alter the radar signatures of physiological signals or
activities. Environmental factors such as multipath reflections and clutter further diversify
data distributions. The medical machine learning literature highlights that without counter-
measures, performance can degrade significantly under such distribution changes. Recent
work has begun to address this via data-efficient learning; for instance, few-shot or meta-
learning techniques enable a model to adapt quickly to a new user with only a few labeled
examples. However, true robustness requires broader solutions such as domain-invariant
feature learning or unsupervised domain adaptation, which remain largely unexplored for
mmWave health sensing. Collecting larger, diverse datasets of patient radar data under
varied conditions is critical. Future research should focus on developing models that
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explicitly account for inter-subject differences and environment variability, possibly by
integrating synthetic augmentation or physics-based modeling with data-driven methods.

8.3. Interpretability and Explainability

As in many areas of medical AI, the “black-box” nature of deep learning models in
radar-based sensing raises important concerns. Clinicians and regulators require trans-
parency to ensure that medical decisions are understandable and justifiable. This is rein-
forced by policies such as the General Data Protection Regulation (GDPR), which mandates
explainability for automated decisions that impact individuals [64]. mmWave radar data—
such as Doppler spectrograms or range-angle maps—is not inherently interpretable by
humans, which adds complexity. There is thus a need for explainable AI (XAI) techniques
designed for radar inputs. Methods like attention mapping or feature attribution can
highlight which signal components most influence a decision. Alternatively, using simpler
models built on handcrafted features may improve interpretability, though often at a cost
to accuracy. A key challenge is to balance performance with transparency, and to ensure
that explanations remain faithful to the underlying physical principles of mmWave sensing
(e.g., wave reflection, Doppler shift, and attenuation patterns).

8.4. On-Device and Real-Time Processing

Medical sensing often requires continuous, low-latency operation on embedded plat-
forms (e.g., bedside monitors or wearables). While modern mmWave radar chips are
extremely power-efficient, the computational load of signal processing and inference can be
heavy. Real-time vital sign extraction and activity recognition typically involve multichan-
nel FFTs, clustering, and neural-network inference, which may demand GPUs or FPGAs. Fu-
ture directions include designing lightweight models (e.g., quantized or pruned networks)
and specialized inference accelerators for radar data. Algorithmic optimizations—such as
streaming signal processing, partial update schemes, or spiking neural networks—could
further reduce latency. Ultimately, closing the gap between low-power radar hardware and
the computing-intensive analytics remains a key challenge for practical medical devices.

8.5. Privacy and Federated Learning

Protecting patient privacy is essential in any medical sensing system. One advan-
tage of the mmWave radar over traditional cameras is its ability to capture motion and
physiological patterns without recording identifiable images. This makes mmWave espe-
cially suitable for use in environments like hospital rooms or homes, where preserving
dignity and privacy is critical. Unlike video, radar signals reveal movement, posture,
and breathing without showing the patient’s face or surroundings, which greatly reduces
the risk of visual identity exposure. However, even without images, radar data can still
carry sensitive health information. If collected and stored improperly, these signals could
be used to infer medical conditions or personal habits. This creates challenges for data
sharing and model training, especially when patient data is transmitted to central servers.
Federated learning (FL) has emerged as a promising solution to this problem [65]. It allows
devices or hospitals to collaboratively train models without exchanging raw data, reducing
privacy risks. Still, care must be taken to ensure that the model itself does not leak sensitive
information through its updates. Future work should continue to improve secure model
training techniques, promote on-device inference, and explore methods such as encryption
or differential privacy to ensure mmWave health systems remain safe and trustworthy.

8.6. Comparison with Vision-Based Modalities

Compared to conventional cameras, mmWave sensing presents distinct trade-offs for
medical monitoring. Vision-based approaches such as RGB and thermal imaging offer high
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spatial resolution and rich contextual cues (e.g., facial expressions or skin appearance),
making them useful for tasks like gesture recognition or skin condition analysis. However,
these systems are highly sensitive to lighting conditions and introduce significant privacy
concerns, particularly in long-term monitoring scenarios [64]. In contrast, mmWave radar
operates reliably in the dark, through clothing, or in cluttered environments, and inherently
preserves anonymity since it captures only range and motion data. Islam et al. [66] report
that radar is often preferred over cameras in vital-sign monitoring tasks due to its non-
invasive and privacy-preserving nature. The key limitation of mmWave sensing lies in
its lower spatial resolution—the radar returns encode distance and motion but lacks fine-
grained shape or texture details. While vision excels at capturing detailed appearance
features, mmWave is more robust under occlusion and in dynamic lighting. As summarized
in Table 3, each modality exhibits strengths and weaknesses across penetration capability,
lighting robustness, spatial resolution, privacy, and hardware cost. Rather than viewing
these as competing technologies, future systems should explore how to leverage them
jointly—for example, combining mmWave’s robustness with visual detail from RGB or
infrared sensors. Benchmarking studies that compare accuracy, real-time robustness, and
patient experience across these modalities will be essential to guide their optimal use
in healthcare.

Table 3. Comparison of mmWave, infrared, and optical imaging in medical sensing.

Aspect mmWave Sensing Infrared Imaging Optical Imaging

Penetration Capability High—penetrates
clothing, gauze

None—blocked
by barriers None—surface only

Lighting Sensitivity Not affected by
ambient lighting

Low—robust
to illumination

High—requires
consistent lighting

Privacy High—non-visual,
anonymous

Medium—thermal
silhouettes possible

Low—captures
identifiable appearance

Spatial Resolution 3–10 mm 1–4 mm <0.1 mm

Hardware Cost $100–500 $200–800 $10–50
Note: Resolution and cost are approximate, based on typical hardware used in non-contact sensing at 0.3–1 m distance.

8.7. Commercialization Outlook and Clinical Translation

Despite rapid progress in academic research, most mmWave-based medical technolo-
gies remain at the proof-of-concept or laboratory prototype stage, with limited industrial
adoption to date. Key challenges include hardware integration, safety validation, regula-
tory approval, and cost-effectiveness compared to established clinical modalities such as
ultrasound and infrared thermography.

Some sensing applications—such as body temperature estimation, blood pressure
monitoring, and wound healing assessment—remain in the early stages of development and
translation toward clinical use. While their clinical viability has yet to be fully established,
several academic studies have demonstrated promising results in controlled experiments.
For example, mmWave-based skin temperature estimation has been explored using surface
reflectivity models, blood pressure prediction has leveraged chest wall motion and pulse
wave velocity features, and wound healing progress has been assessed via changes in
water content and tissue reflectivity. We view these directions as technically feasible
and scientifically promising, though requiring further interdisciplinary effort and clinical
validation to reach practical deployment.
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9. Conclusions
In summary, this survey presents a comprehensive and structured view of mmWave-

based medical sensing systems, spanning from signal acquisition and physical feature
extraction to biomarker modeling and clinical deployment. By distinguishing low-level
physical parameters (e.g., motion, material property, structure) from high-level biomedical
biomarkers, and analyzing their mapping via both theoretical and ML-based approaches,
we bridge the gap between wireless signal modeling and medical interpretation.

We envision this work serving as a foundational reference for future research in the
following: (i) developing interpretable and adaptive modeling strategies; (ii) validating
mmWave systems in clinically relevant and real-world environments; (iii) integrating
mmWave with multimodal sensing technologies (e.g., thermal, optical, biosignals) for
comprehensive health assessment.

The framework and taxonomy proposed in this work provide a reusable blueprint for
researchers designing next-generation non-contact, real-time medical sensing solutions.
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