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A B S T R A C T

The risk of overexertion injury caused by patient handling and movement activities causes
chronic pain and other physical and social impairments among the nursing force. The accurate
recognition of patient handling activities (PHA) is the first step to reduce injury risk for
caregivers. The current practice on workplace activity recognition is neither accurate nor
convenient to perform. In this paper, we propose a novel solution comprising a smart footwear
device and an action manifold learning framework to address the challenge. The wearable device,
called Smart Insole, is equipped with a rich set of sensors and can provide an unobtrusive
approach to obtain and characterize the action information of patient handling activities. Our
proposed action manifold learning (AML) framework extracts the intrinsic signature structure by
projecting raw pressure data from a high-dimensional input space to a low-dimensional manifold
space. This framework not only performs dimension reduction but also reduces motion artifacts,
which is robust against the noise and inter-class/intra-class variation in PHA recognition. To
validate the effectiveness of the proposed framework, we perform a pilot study with eight
subjects including eight common activities in a nursing room. The intrinsic dimensionality of the
manifold is estimated by comparing the residual variances of different dimensionality settings.
The experimental results show the overall classification accuracy achieves 86.6%. Meanwhile,
the qualitative profile and load level can also be classified with accuracies of 98.9% and 88.3%,
respectively.

1. Introduction

All healthcare workers, especially nurses and hospital aids, face a wide range of hazards on the job, such as musculoskeletal
disorders related to ergonomic hazards (Public Health Service, 2000). These disorders are associated with excessive back and
shoulder loading due to manual patient handling, applying excessive force during pushing and/or pulling of objects, required use of
awkward postures during patient care, and working long hours and shiftwork (Waters, Collins, Galinsky, & Caruso, 2006). In 2012
and annually thereafter, overexertion injuries, such as musculoskeletal disorders, low back pain and shoulder pain, accounted for
nearly 70 million physician office visits in the United States (Work-related musculoskeletal). The high risk of occupational injuries
contributes to severe nurse shortages. The demand for nurses is projected to grow by 22% by 2008, and unless market corrections are
made, the nursing shortage may reach 800,000 vacant positions by 2020 (Projected supply, 2002).

The high injury rate of nurses is in part because there is no effective way to monitor the development of chronic injury and detect
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acute overexertion. As a result, preventive measures and response to injury is limited to physical therapy (Waters & Rockefeller,
2010) and workload rescheduling (Caruso &Waters, 2008). Currently, assessment of workplace exposure through observation is a
common practice in ergonomics (Mathiassen, Liv, & Wahlström, 2013). However, visual assessments are subjective and may fail to
accurately quantify physical exposure, integrate multi-faceted traits (Cavuoto &Nussbaum, 2014; Gallagher &Heberger, 2013;
Garg & Kapellusch, 2009), and the observation duration and number of workers being observed may be limited (Paquet,
Punnett, & Buchholz, 2001). As a result, automatic patient handling and movement activity recognition is important as a first step
to reduce risk and prevent caregiver injury.

The development of advanced technology brings the possibility of more complete assessment and monitoring in the nursing
workspace. One widely used approach is the computer vision system for monitoring user activity and behavior in nursing rooms
(Garg, Owen, & Carlson, 1992). However, computer vision systems require costly installation and maintenance effort. The post-
processing of data involves complex video and image algorithms, making the system costly. Furthermore, immobility, occlusion, and
varying illuminations raise technical challenges in recognizing objects in video (Chen, Yang, &Wactlar, 2004; Hauptmann et al.,
2004). Privacy in video monitoring is also a concern. A wearable sensing system, such as a miniaturized inertial motion unit (IMU), is
a promising approach to caregiver monitoring due to the nature of the handling and movement tasks performed. To monitor complex
patient handling activities, multiple IMU sensors attached on different body locations are often needed (Zhang, Wong, &Wu 2011;
Zhang, Wu, Chen, &Wu, 2009); however, this is a hassle for long-term use and normal patient handling work (Naya, Ohmura,
Takayanagi, Noma, & Kogure, 2006).

Compared to daily life activity (DLA) recognition (Alshurafa et al., 2014), patient handling activity (PHA) recognition is a
challenging and substantially unexplored topic. PHA is a complex process and usually involves an interactive procedure between
healthcare workers and loads (e.g., patients, medical instruments). Moreover, the characterization of PHA includes not only body
postures but loads. Safe patient handling activities follow standardized procedures to prevent injury to both patients and caregivers,
which are constrained by regulated operation, physical body kinematics, and the temporal constrains posed by the activities being
performed. Given these constraints, PHA primitive, also called “action signature,” can be extracted and represented in a low-
dimensional manifold space embedded in a high-dimensional input space. Furthermore, these manifolds capture the intrinsic
geometry of activities and act as trajectories to characterize different PHAs. Action signatures are usually nonlinear and even twisted,
so dimension reduction by linear model such as principal component analysis (PCA) fail to discover the underlying geometric
structures.

We propose a novel solution to overcome the aforementioned obstacles in PHA recognition, which comprise a Smart Insole and an
action manifold learning (AML) framework. Smart Insole is a novel footwear device that uses an advanced electronic textile (eTextile)
fabric sensor technique providing accurate plantar pressure measurement in both ambulatory and static status. Smart Insole looks and
feels like a normal insole without any extra cable, antenna, or adhesive equipment. It is also thin, light weight and easy to use,
enabling unobtrusive monitoring of human activities.

Action manifold learning is able to project high-dimensional data into a low-dimensional manifold space. By capturing the
fundamental signature of action, only the intrinsic primitive structure is preserved in this transform, whereas unrelated motion
artifacts and noise are neglected. Therefore, AML not only performs dimension reduction but also suppresses motion artifacts and
noise, which efficiently solves the variation problem in both inter-class and intra-class activities. In this proposed framework, raw
pressure data are used rather than extracted statistical features, which are more robust because raw data utterly capture the direct
pressure variation imposed by the activities.

We conduct a quantitative evaluation in a controlled environment and a real-life longitudinal study for the AML framework. The
experimental results show our method succeeds in qualitative profile recognition, PHA recognition, and load estimation with the
overall classification accuracy of 98.9%, 86.6%, and 88.3%, respectively.

The organization of the remaining paper is as follows. Section 2 introduces the background and preliminaries, including related
work and Smart Insole design. Section 3 elaborates the action manifold learning framework on underfoot pressure maps. Section 4
provides the evaluation results for the proposed AML framework. Section 5 discusses the impact of the number of nearest neighbors,
distance metrics, and generalization in the AML framework. Finally, the conclusion and future work are discussed in Section 6.1

2. Background and preliminaries

2.1. Related work

2.1.1. Wearable sensors in nursing activity recognition
Wearable sensors have been used to monitor human actions in the nursing environment. Kuwahara et al. (2003) proposed a

wearable auto-event-recording system of medical nursing to capture significant events necessary for analyzing medical accidents.
Momen and Fernie (2010) used a wireless Sony game controller to identify six nursing activities happening around a patient. They
also identified the start and stop times of six simple nursing activities by attaching a single accelerometer sensor to the backs of eight
nurses (Momen & Fernie, 2010). Recognizing the importance of awkward postures in the causation of work-related injuries among
nurses, recent research efforts have focused on tracking specific postures adopted by nurses (Freitag, Ellegast, Dulon, & Nienhaus,

1 An early version (Lin, Song, Xu, Cavuoto, & Xu, 2016) was presented at the first IEEE Conference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE 2016).
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2007). Extent, frequency and duration of specific extreme or awkward body positions were measured in three planes and assessed on
the basis of several standards. However, these approaches are obtrusive in use which require sensors attached on the human body. In
addition, these approach an important characterization of PHA. Recently, we have proposed a spatio-temporal warping (STW)
pattern recognition framework to recognize PHAs (Lin, Xu, Wang, Cavuoto, & Xu, 2016; Lin, Wang, Cavuoto, & Xu), which
characterizes the spatio-temporal nature of the plantar pressure distribution.

2.1.2. Manifold learning in activity recognition
Manifold learning has been widely applied in activity recognition by virtue of the capability of capturing the low-dimensional

nonlinear manifolds embedded in the high-dimensional input space. Huang et al. (2014) used a dense pressure sensitive bedsheet to
produce pressure maps, and the pressure images are processed by locally linear embedding (LLE) and ISOMAP for on bed
rehabilitation exercises. Huang et al. (2014) employed manifold learning for Electrocardiograph (ECG) signals dimension reduction
and purification. Its applications to human action recognition can be classified into two categories. The first is video-based. For
example, Wang, Xu, and Ai (2003) learned the intrinsic object structure for robust visual tracking by using the ISOMAP algorithm.
Schwarz, Mateus, Castañeda and Navab (2010) built a low-dimensional prior motion model for simultaneous human full-body pose
tracking and activity recognition from time-of-flight (ToF) camera images. Elgammal and Lee (2004) applied LLE to construct human
gait manifolds from silhouettes. Blackburn and Ribeiro (2007) recognized human motion by using ISOMAP and dynamic time
warping. Li, Chellappa, and Zhou (2009) proposed a discriminative temporal interaction manifold (DTIM) framework as a data-
driven strategy to characterize the group motion pattern without employing specific domain knowledge. A maximum a posteriori
(MAP) classifier on the manifold is then applied. Jaeggli, Koller-Meier, and Van Gool (2009) presented a method to simultaneously
estimate 3D body poses, which are modeled on a low-dimensional manifold, and action categories from monocular video sequences.
The approach learns a generative model of the relationship of body pose and image appearance using a sparse kernel regressor.
Morariu and Camps (2006) proposed an approach for matching correspondences based on the use of nonlinear manifold learning. The
proposed approach does not require similar views, calibration nor geometric assumptions of the 3D environment, and is robust to
noise and occlusion. The second is inertial motion unit (IMU) based. For example, Zhang et al. (2011) used LLE to capture the
intrinsic structure of IMU data and build nonlinear manifolds for daily life activities. Valtazanos, Arvind, & Ramamoorthy (2013)
applied translation manifold to inertial senor data for posture and position tracking.

2.2. Smart insole

In preliminary work, our team has developed the Smart Insole system (Wu et al., 2015; Xu et al., 2012) it enables wide
applications such as gait monitoring in daily life (Lin, Wang, Zhuang, Tomita, & Xu, 2016), step counting (Lin et al., 2015), and a
timed-up-and-go system for complex ecological environments (Yang, Song, Lin, Langan, & Xu, 2017). In the following, we will briefly
introduce the system design and functions in this section.

2.2.1. Hardware design
Smart Insole is a novel wearable device for activity monitoring, which is able to accurately characterize the plantar pressure

variation caused by the ongoing activity. It consists of three important subsystems. The first subsystem is the low-cost sensor array
including 48 pressure sensors, a 3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The second is the data
acquisition and transmission subsystem including a micro control unit (MCU) and a Bluetooth Low Energy (BLE) module. The third is
the visualization and graphic user interface (GUI) subsystem.

The low-cost pressure sensor array is based on an advanced conductive eTextile fabric sensor technique (Rofouei,
Xu, & Sarrafzadeh, 2010; Xu, Li, Huang, Amini, & Sarrafzadeh, 2011). The eTextile pressure sensor array is used to obtain the
high-solution pressure map from feet, which can be efficiently integrated in Smart Insole. The sensor array is coated with a
piezoelectric polymer, and the initial resistance between the top-bottom surfaces is large. When extra force is applied on the surface
of the polymer, inner fibers will be squeezed together and the resistance becomes smaller. As a result, the output voltage level will be
high. Each pressure sensor is 15 mm×15 mm. With 48 sensors in total, more than 80% of the plantar area is covered.

We designed a printed circuit board (PCB) to integrate the MCU and Bluetooth module, the inertial motion unit (IMU) module, the
micro-USB connector, the power switch, and the battery conditioning circuits together. The MCU and Bluetooth are implemented by a
single device CC2541 from Texas Instruments. CC2541 also contains an 8-channel, 12-bit, and 0–3.3 volt analogue-to-digital
converter (ADC) module, which can provide up to 100 samples per second (Hz). The integrated IMU chip contains a 12-bit
accelerometer, a 16-bit gyroscope, and a magnetometer, which is able to capture precise motion information with 9 degrees of
freedom motion sensing. The human ergonomic prototype of Smart Insole is shown in Fig. 1 with front view, back view, and lateral
view. The Smart Insole is well packaged to avoid the damage from water and moisture.

2.2.2. Smartphone application design
We developed a graphical user interface (GUI) tool on smartphone, as illustrated in Fig. 2. Users can choose on the smartphone

GUI tool to collect pressure data, or movement data, or both data when Smart Insole is in use. The pressure distribution map obtained
from the eTextile sensor array and insoles orientation can be visualized on the smartphone screen simultaneously. Specifically, the
pressure distribution map is obtained when the user puts his weight on the left foot and metatarsal area of the right foot. Fig. 3 shows
the plantar pressure distribution maps in a walking event, where center of the pressure is shifting between the toe and heel area in
different stages of walking. In addition, vibrations, changes in center of gravity, balance shits, and even hand motions can propagate
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throughout the entire body to influence the pressure distribution of the feet on the ground. For example, the pressure distribution of
the feet when a nurse is walking while pushing a wheelchair forward is different from when she/he is lifting one leg of a heavy
patient.

3. Action Manifold Learning (AML) framework on underfoot pressure maps

In this section, we will present the AML framework on underfoot pressure maps for patient handling activity (PHA) recognition.
The diagram of the overall system design, including Smart Insole and the AML framework for PHA recognition, is shown in Fig. 4.
Caregiver activities and recognition results are the input and output of the system.

3.1. Action manifold learning framework

The processing flow of the action manifold learning framework-based PHA recognition is shown in Fig. 5. The AML framework
consists of a training stage and testing stage. In the training stage, the high-dimensional pressure data after pre-processing are
mapped into a low-dimensional manifold space by constructing the action manifold to find the action signature for each PHA. Patient
handling and movement activities (Freitag et al., 2007; Nelson and Baptiste, 2004) are the tasks involving transfer of a load or
patient. Safe PHAs follow standardized procedures to prevent risk to the caregivers’ lumbar spine and injury to the patient, so the low-
dimensional action signature in pressure distribution can be extracted in the manifold space. In the testing stage, the unlabeled
actions are mapped into the low-dimensional manifold space by the input-to-manifold projection mapping function and matched to
the closest training action manifold.

Fig. 1. The human ergonomic prototype of Smart Insole: (a) Front view; (b) Back view; (c) Lateral view.

Fig. 2. GUI tool on smartphone for Smart Insole.
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3.2. Pre-processing

The pre-processing of raw pressure maps is required so that the pressure maps can be standardized in such a way to enable
successful recognition. First, only the useful primitive action is contained in each set of data samples; unrelated actions or vibrations
are eliminated. Second, we obtain the differential of the raw pressure data. The differential of pressure x t( )i is calculated as:

t t
t

i Dp ( ) = dx ( )
d

, 1 ≤ ≤ ,i
i

(1)

where i is the index of pressure sensor, and D is the number of pressure sensor as well as the dimension of the pressure data in input
space (in this case D=48). The reason we adopt differential is because it is robust against the spurious signals, different offset of the
insoles, and different weights of subjects.

3.3. Action manifold learning

In action manifold learning, we adopt the LLE framework (Saul & Roweis, 2003) to capture the intrinsic low-dimensional
structures of the PHA. The reason LLE is a good candidate for action manifold learning is that LLE makes few assumptions about the
activities (Saul, Weinberger, Ham, Sha, & Lee, 2006) and runs fast by avoiding the need to solve large dynamic programming
problems (Saul & Roweis). After the computation, similar pressure distribution will be clustered within the low dimensional manifold.

Let R i NP p= { ∈ , = 1,…, }i
D be the differential of raw pressure data from the PHA signal with sample length of N, where pi

represents the ith sample of input data and acts as a single point in RD. Action manifold learning maps D-dimensional P into d-
dimensional manifold space d D( ⪡ ). The steps of the LLE procedure are described in the following.

3.3.1. K-nearest neighborhood searching
The first step is to find the K nearest neighbors (kNN) for each point i Np , = 1, …,i in the input space. In the search process, we

use Euclidean distance to measure the similarity between pressure distributions of each sample. The value of K is determined
empirically.

Fig. 3. Plantar pressure distribution maps of right foot in a walking event.

Fig. 4. The diagram of the overall system design, including Smart Insole and the AML framework for PHA recognition.
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3.3.2. Weighted reconstruction with nearest neighbors
The second step is to reconstruct a sample pressure distribution using its nearest neighbors assuming that each point and its

nearest neighbors lie on a locally linear patch of the underlying manifold. In practice, an exact reconstruction may not be found, so
the reconstruction weights are determined by minimizing the global reconstruction error. The reconstruction error e for a single point
can be formulated as:

∑e wp p= − ,i i
j

K

ij ij
=1

2

(2)

The global error E can be represented by accumulating N errors together:

∑ ∑E wp p= − ,
i

N

i
j

K

ij ij
=1 =1

2

(3)

where wij denotes the reconstruction weight for the point pi and its neighbors pij. Two constraints are imposed to the cost function (3)

to ensure the solution is feasible: (1) w = 0ij , if pij is not in the nearest neighbors list of pi; (2) w∑ = 1j
K

ij=1 , if pij is among pi 's K nearest
neighbors. The solution to Eq. (3) can be found by solving a least square problem (Saul & Roweis, 2003).

3.3.3. Construct low-dimensional embedding
The third step is to construct the corresponding embedding in a low-dimensional space. Based on the calculation results from the

second step, the intrinsic geometrical structure of each local cluster is characterized by wij. We assume that the neighborhood relation
in high dimensional space should be preserved in low dimensional manifold space. Based on this assumption, the manifold
coordinates yi can be computed by minimizing the embedding cost function as:

∑ ∑ wY y ymin Φ( ) = − ,
i

N

i
j

N

ij ijY =1 =1

2

(4)

where yi and yij are the corresponding points of pi and pij in manifold space, respectively. The cost function can also be written as:

∑ ∑Y M y yΦ( ) = ( · ),
i

N

j

N

ij i j
=1 =1 (5)

involving inner products of the embedding vectors and the N N× matrix M:

∑δ w w w wM = − − + ,ij ij ij ji
k

K

ki kj
=1 (6)

where δij is 1 if i=j, otherwise 0.
All the manifold points yi will be computed globally and simultaneously, and no local optima will affect the construction result.

Note that the coordinate yi can be translated by a constant displacement without affecting the cost YΦ( ). We require the coordinates
to be centered on the origin as:

Fig. 5. Processing flow of the action manifold learning-based PHA recognition.
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∑ y = 0,
i

N

i
=1 (7)

and the embedding points to have unit covariance as:

∑
N

yy I1 = ,
i

N

i i
T

=1 (8)

where I is the d d× identity matrix. These two constraints make the problem well-posed, thus, the optimal embedding is found by
computing the bottom d + 1 eigenvectors of the matrix M and discarding the most bottom eigenvector to get the desired d manifold
coordinates (Saul & Roweis).

3.4. Manifold matching for PHA recognition

3.4.1. Learning input-to-manifold mapping
Once the training data have been mapped to its corresponding low dimensional space, we can evaluate the process using new test

data against the training data. Since running AML for the entire dataset with training and testing data is computationally expensive,
we only execute a portion of the AML algorithm by adopting a non-parametric mapping function (Saul & Roweis, 2003). Given a new
test pressure distribution p, we wish to find its low-dimensional representation y. First, the weights wj are computed from the K
nearest neighbors of p in the training set pi by solving the least square problem:

 ∑ wp pmin − ,
w j

K

j j
=1 (9)

with the constraint w∑ = 1j
K

j=1 . Since the corresponding low-dimensional coordinates of pi are known during the training phase, we
can reconstruct the embedded coordinates for y using the same weights wj as:

 ∑ wy y= ,
j

K

j j
=1 (10)

where yj are the corresponding embedded coordinates of pj.

3.4.2. Action manifold recognition
The action manifold recognition is performed by comparing the trajectories of manifolds in the low-dimensional space. We

observe that the data lengths of each action usually are disparate and different subjects require different times to perform each
activity; therefore, an appropriate distance metric that can handle data length misalignment is needed. In this work, we adopt the
Hausdorff distance (Wang & Suter, 2006) for a similarity measurement metric. The Hausdorff distance of a point to a manifold is
equal to the shortest Euclidean distance to any point in the manifold, that is, the mean value of the minimum, expressed as:

∑s M M
T

M i M j( , ) = 1 min ( ) − ( ) ,
M i

T

j T
1 2

=1 1≤ ≤
1 2

M

M1

1

2 (11)

where M1 and M2 are two manifolds under comparison, TM1 and TM2 are the number of points in each manifold. Since the Hausdorff
distance is directional, we take the summation to ensure the symmetry of the distance metric as:

dist M M s M M s M M( , ) = ( , ) + ( , ).1 2 1 2 2 1 (12)

Based on this distance metric, we can measure the similarity between unlabeled activities and known activities, and the testing
activity is classified as the activity class which has the most similar manifold with the testing activity. The dimensionality estimation
is shown in Fig. 6.

4. Evaluation

4.1. Experimental setup

We ran a series of experiments in a laboratory environment to evaluate the performance of our proposed action manifold learning
framework for PHA recognition. The dataset was collected by our Smart Insole from eight subjects including seven male subjects and
one female subject. Our team holds an active IRB protocol in the State University of New York at Buffalo (#: 695026-2), which allows
for recording motion through wearable sensors while performing patient handling activities. The weights of all participants are from
58 − 85 kg and heights from 160–185 cm. Each subject performed seven different PHAs including: (a) bend leg to lift an item from floor
level; (b) stand while lifting patients leg; (c) stand while lifting patient from wheelchair; (d) stand while rolling patient; (e) walk normally; (f)
walk while pushing wheelchair forward; (g) walk with both hands carrying a chair. To be specific, in (b), the subject lifted a patient's leg
for three seconds then slowly puts down the leg. Likewise, in (d), the subject rolled a patient over and also kept the patient there for
three seconds then rolled the patient back to the original position. In (g), the subject first lifted the wheelchair up then walked
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forward with two hands carrying the wheelchair. We also performed a sitting activity in this evaluation though it is not directly
related to patient handling or movement. In addition, sitting is static such that it is infeasible to use the AML framework to extract a
consistent trajectory. However, successfully recognizing sitting activity can help to estimate the workload in a nursing environment
by knowing how long a caregiver takes a break as sitting. To distinguish sitting from other activities, simply applying a threshold to pi
before AML is enough because sitting is static leading to pi to be close to 0. For simplicity of description in this paper, we include
sitting as one of the PHAs. The real experimental scenes are shown in Fig. 7.

4.2. Action signature extraction

We visualize the 3-D raw pressure data from each PHA in Fig. 8. Since we observed that the data with all 48 channels from Smart

Fig. 6. Intrinsic dimensionality estimation based on residual variance.
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Insole in one figure makes the pressure variation pattern too dense to be seen clearly, we pick up six out of 48 pressure points and
show their waveforms for a better visualization. In Fig. 8, (a) bend leg to lift an item from floor level and (c) stand while lifting patient from
wheelchair are “single action” based activities. (b) stand while lifting patient's leg and (d) stand while rolling patient are “action-still-
action” based activities, as can be observed from Fig. 8 (b) and (d) that a flat area indicating keeping still exists between two waves
indicating actions. (e) walk normally, (f) walk while pushing wheelchair forward, and (g) walk with both hands carrying a chair are all
walking related which show either periodic or pseudo-periodic pattern. The corresponding low-dimensional trajectories are shown in
Fig. 9. Two “single action” activities (a) and (c) are represented as the crossing lines in two direction. Two “action-still-action”
activities (b) and (d) are represented as the crossing lines in three directions. Because the pressure variation in keeping still status is
small, the projected trajectory in manifold space as a consequence also has a small deviation, which results in a shorter length
compared to the lines in the other two directions. The walking activities in (e), (f), and (g) evolve along a triangle shape in the

Fig. 7. Eight different PHAs performed in experiments including: (a) Bend leg to lift an item from floor level; (b) Stand while lifting patients leg; (c) Stand while lifting
patient from wheelchair; (d) Stand while rolling patient; (e) Walk normally; (f) Walk while pushing wheelchair forward; (g) Walk with both hands carrying a chair; (h)
Sitting normally.

Fig. 8. The 3-D visualization of pressure data from Smart Insole 2.0: (a) Bend leg to lift an item from floor level; (b) Stand while lifting patients leg; (c) Stand while
lifting patient from wheelchair; (d) Stand while rolling patient; (e) Walk forward; (f) Walk while pushing wheelchair forward; (g) Walk with both hands carrying a
chair.
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manifold space. This is because these three activities are either periodic or pseudo-periodic causing the trajectories of different cycles
to overlap with each other. Note that besides walking, (g) also contains a lifting chair “single action,” which results in the trajectory
exhibiting a two crossing lines pattern.

4.3. Intrinsic dimensionality estimation

To accurately reconstruct the pressure distribution of various activities in the manifold space, it is important to know the intrinsic
dimensionality of the manifold. In this work, we adopted residual variance (Tenenbaum, De Silva, & Langford, 2000) for the intrinsic
dimensionality estimation. The residual variance is defined as

Residual variance R D D= ( , ),I M
2 (13)

where DI, and DM are the Euclidean distance matrices in the input space and low-dimensional embedding space, respectively. R is the
standard linear correlation coefficient of DI and DM. We expect a low residual variance between input space and low-dimensional
embedding space, and we try to find the intrinsic dimensionality of the manifold d. Fig. 6 illustrates the residual variance change
versus manifold's dimension d for different activities. To avoid overfitting, d is found by looking for the “elbow” point at which the
residual variance ceases to decrease significantly (Tenenbaum et al., 2000). As seen from Fig. 6, for activities bend leg to lift an item
from floor level and Stand while lifting patient from wheelchair, the estimated intrinsic dimensionality is 2. For activities stand while lifting
patients leg, stand while rolling patient, and walk with both hands carrying a chair, the estimated intrinsic dimensionality is 3. For
activities walk forward and walk while pushing wheelchair forward, the estimated intrinsic dimensionality is 4. We noted that comparing
with one time interaction with patient or a single activity, walking related activities have most complicated structures since walking
is a continuous motion activity. In the following, AML based PHAs are constructed in their own intrinsic dimensionality spaces
respectively.

4.4. Quantitative evaluation in a controlled study

For this part, we evaluate the classification performance of our proposed framework by kNN. A leave-one-out cross-validation
(LOOCV) is adopted to quantify the accuracy. In this quantitative evaluation, each subject is required to perform 10 trials on each
activity. Therefore, a total of 640 trials is performed in our experiments.

4.4.1. Accuracy evaluation
The quantitative evaluation performance is measured by classification accuracy. Given the large number of testing inquiries, the

framework should offer the correct responses with high probability. The accuracy (ACC) is defined as:

ACC TP TN
P N

(%) = +
+

× 100%,
(14)

where TP represents the true positive, TN represents the true negative, P represents the positive, and N represents the negative. In
injury risk estimation, qualitative profile recognition, PHA recognition, and load estimation are three key parameters (Krause,
Rugulies, Ragland, & Syme, 2004). PHA recognition is used for estimating injury probability for each PHA. Qualitative profile

Fig. 9. Visualization of PHA in manifold space: (a) Bend leg to lift an item from floor level; (b) Stand while lifting patients leg; (c) Stand while lifting patient from
wheelchair; (d) Stand while rolling patient; (e) Walk forward; (f) Walk while pushing wheelchair forward; (g) Walk with both hands carrying a chair.
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recognition and load estimation are used in estimating workload and load in performing PHA, respectively.

4.4.2. Qualitative profile recognition
Qualitative profile recognition is used to estimate the workload in a nursing environment. Research data show that most nurses

suffer from chronic occupation-related diseases. Based on the percentages of all-body activities (i.e., walk related), upper-body
activities (i.e., standing related), and break (i.e., sitting) in a working period, we can infer the intensity level of the workload and the
long-term fatigue level, so that the nurse can pay more attention in PHA to prevent potential injuries. Here, all the aforementioned
eight PHAs are categorized into three qualitative profiles as described in Table 1, which facilitates the workload estimation. Both
recall and precision achieve more than 97.9% as shown in Table 1, which shows high performance of qualitative profile recognition.
Note that the performance from qualitative profile recognition is better than the one with PHA recognition described in the following,
which is because several confusing activities actually belong to the same qualitative profile such as stand or walk. In such case, these
PHAs are treated as no difference in terms of qualitative profile. The ACC can reach 98.9%.

4.4.3. PHA recognition
The goal of PHA recognition is to accurately classify each PHA defined in Fig. 7. Table 2 shows the confusion table with respect to

PHA classification using 48 pressure sensors. We notice the activity walk with both hands carrying a chair has the lowest recall rate
80.0%, which is often confused with walk normally and walk while pushing wheelchair forward. The reason for confusion is that all the
three activities are performed in walking status, in which the pressure obtained all show a similar pseudo-periodic nature. Among
them, sit reaches 100% recall and 100% precision because of the minimal fluctuation it exposed that differentiates it from other
activities. In terms of precision, walk with both hands carrying a chair also shows the lowest rate of 79.0% because the data from other
activities show similarity to the data of walk with both hands carrying a chair, which results in misclassification. Overall, the ACC can
reach 86.6%. This accuracy can be further improved by analyzing IMU data together with pressure data.

4.4.4. Load estimation
The load estimation is to estimate the load imposed on caregivers when they perform certain PHA in order to prevent

overexertion. The grouping criterion depends on the specific ongoing activity and how normal people feel when performing it. Note
that we classify bend leg to lift an item from floor level as light load because for that item the subject picked up indicates the specific
weight of the object in our experiment. The load level category is summarized in Table 3. Likewise, the confusion table with respect to
load levels is shown in Table 4. Light load has the lowest recall of 87.1%, and heavy load has a similar recall of 87.9%. Since these two
load levels both involve forceful exertion, they are easily confused with each other. The ACC can reach 88.3%.

4.5. Evaluation of a longitudinal pilot study

To evaluate the proposed approach in an end-to-end test scenario, we carried out a pilot study in a real nursing room. The subject
wearing Smart Insole performed a set of patient handling activities in a continuous manner. The activities include all actions in Fig. 7
in a random sequence. For the sake of repetition, each activity was performed more than once. We also videotaped the entire process

Table 1
Confusion table of recognition on three categorized activities.

Stand (a, b, c, d) Walk (e, f, g) Sit (h) Total Recall

Stand (a, b, c, d) 315 5 0 320 98.4%
Walk (e, f, g) 2 238 0 240 99.2%
Sit (h) 0 0 80 80 100.0%
Total 317 243 80
Precision 99.4% 97.9% 100.0%

Table 2
Confusion table of recognition on 8 PHAs using AML.

a b c d e f g h Total Recall (Sensitivity)

a 69 2 7 0 0 0 2 0 80 86.3%
b 2 70 4 4 0 0 0 0 80 87.5%
c 7 2 67 1 0 0 3 0 80 83.8%
d 1 4 2 73 0 0 0 0 80 91.3%
e 0 0 0 0 65 9 6 0 80 81.3%
f 0 0 0 0 8 66 6 0 80 82.5%
g 1 0 1 0 7 7 64 0 80 80.0%
h 0 0 0 0 0 0 0 80 80 100.0%
Total 80 78 81 78 80 82 81 80
Precision 86.3% 89.7% 82.7% 93.6% 81.3% 80.5% 79.0% 100%
Specificity 98.0% 98.6% 97.5% 99.1% 97.3% 97.1% 97.0% 100%
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as the label of ground truth. Fig. 10 shows the evaluation results, where the red dash line indicates the ground truth and the blue line
indicates the actual classification outcome. We observed that only one out of 24 activities is misclassified, which validates the
effectiveness of the proposed AML framework in the real-life setup.

4.6. Comparison with PCA-based dimension reduction

Dimension reduction techniques are usually applied on a large scale dataset to transform data into another domain to either make
it more manageable or easy to analyze. PCA is a linear dimension reduction method that has widespread use. Fig. 11 illustrates the
visualization trajectories of PCA and AML when performing the stand while lifting patient from wheelchair activity. We compare the
performance of AML and PCA-based dimension reduction method (Jolliffe, 2002) for PHA recognition in terms of accuracy, as shown
in Table 5. PCA has the accuracies of 84.3%, 71.5%, and 72.1% in the qualitative profile recognition, PHA recognition, and load
estimation, respectively. Compared with PCA, AML is better suited to identify the underlying topological structure that is nonlinear in
the high-dimensional space. Overall, AML outperforms PCA-based dimension reduction.

5. Discussion

5.1. Impact of K in AML

The proper selection of K, the number of nearest neighbors defined in AML, has a big impact on the performance of AML. If K is
too small, a continuous manifold may be divided into disjointed sub-manifolds. Actually, the LLE algorithm can only recover
embeddings where intrinsic dimensionality is less than K (Saul & Roweis, 2003). In contrast, a large K may violate the assumption of
local linearity. Thus, we need to determine the optimal selection of K. We ran an experiment changing K from 2 to 14 steps by 2 to
find the optimal K in terms of lowest misclassification error. The performance measured by the misclassification rate is shown in
Fig. 12, where the error bars represent the standard deviation. As seen from the figure, the lowest misclassification rate is achieved at
K=6, and the performance of K=8 is slightly worse. We conclude that using 6 nearest neighbors is optimal to construct the activity
manifolds.

5.2. Distance metrics

In the AML framework, choosing an appropriate distance metric is a critical step for similarity measurement, such as Euclidean
distance (ED) (Joh, Arentz, & Timmermans, 2001), Hausdorff distance (Wang & Suter, 2006), and earth mover's distance (EMD) (Xu
et al., 2016; Xu et al., 2015). Among them, Euclidean distance provides 1-to-1 matching; both Hausdorff distance and EMD can

Table 3
Categorization of PHA into load levels.

Table 4
Confusion table of recognition on three categorized load levels.

Heavy (c, d, g) Light (a, b,f) No (e, h) Total Recall

Heavy (c, d, g) 211 22 7 240 87.9%
Light (a, b,f) 23 209 8 240 87.1%
No (e, h) 6 9 145 160 90.6%
Total 240 240 160
Precision 87.9% 87.1% 90.6%
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provide matching under a misalignment situation where Hausdorff distance can solve m-to-1 matching (Ding & Xu, 2013) and EMD
can solve m-to-n matching. Compared with ED and EMD, Hausdorff distance is more suitable in our problem and is adopted in our
proposed framework. First, ED is unable to handle the misalignment problem caused by the disparate data length of each activity.
Second, the computation complexity of EMD is O n logn( )3 while Hausdorff distance is only O n( ), the computation speed of Hausdorff
distance is much faster than that of EMD, especially when the dataset is in large scale. Another potential distance metric is Kullback-
Leibler divergence, which is a type of probability distance that measures the difference between two probability distributions. It is
widely accepted to model ambiguity sets (Hu and Hong, 2012). We will pursue using Kullback-Leibler divergence as the distance
metric in our future work.

Fig. 10. A set of eight PHAs performed randomly against ground truth. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 11. Visualization of two types of dimension reduction methods.
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5.3. Connection to caregivers’ injuries reduction

Our proposed Smart Insole and AML framework can contribute to caregiver injury reduction in multifaceted aspects. The current
design of our system mainly focuses on chronic occupational disease prevention. Studies show that most nurses suffer from chronic
musculoskeletal disorders due to awkward body postures, overexertion and fatigue caused by working long hours and shiftwork
(Waters et al., 2006). Monitoring nurses’ work routine and assessing the injury risk possibility is a promising approach to prevent
injury. Our system can serve as a cost-effective practical exposure assessment tool for healthcare workers by providing a set of
qualitative profiles, patient handling activities, and load recognition, where qualitative profiles with work duration contributes to
long-term fatigue; patient handling activities contributes to awkward body posture; and load estimation contributes to overexertion,
respectively. Our results can help nurses to monitor their working action in the long-term and support decision making regarding
work rescheduling to avoid potentially harmful actions and working fatigue. Our system also holds the potential to recognize acute
injuries by incorporating other sensing modalities, such as inertial motion information, with pressure data into the system. Incline
degree, instantaneous motion speech, and body orientation can be measured by the inertial motion sensor. A warning signal can be
delivered to the nurse to alert the hazardous situation before the nurse gets hurt or feels uncomfortable.

5.4. Generalization of AML

There are tunable parameters in the proposed AML framework (e.g. d, K); the choice of these parameters will make the AML
framework achieve good performance in practice. Safe patient handling activities follow standardized procedures to prevent injury,
so the intrinsic dimension of PHA primitive d in the low-dimensional manifold space has a small range of variation, which is usually
between 2 and 4. The intrinsic dimension can be found by the training process of PHA and used in the classification phase of PHA.
From the results presented in Section 5.1, the optimal choice of K is 6.

6. Conclusion and future work

Recognizing patient handling activities is the first step to estimate the physical injury risk for caregivers. We propose a solution
comprising Smart Insole and an action manifold learning framework for accurately recognizing PHA. Smart Insole is capable of
capturing the plantar pressure change information caused by the PHA. The AML framework can find the intrinsic signature structure
by performing nonlinear dimension reduction on raw pressure data from a high-dimensional input space to a low-dimensional
manifold space. The experimental results showed that our framework can achieve 86.6% overall accuracy with eight different PHAs.
Meanwhile, the qualitative profile and load level can also be classified with accuracies of 98.9% and 88.3%, respectively. Moreover,
we also investigated the influence of the number of nearest neighbors (K) to the performance. In AML framework, K=6 is the optimal

Table 5
Accuracy comparison between AML and PCA.

Fig. 12. Performance impact of different K value for action manifold learning.
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selection to get the lowest misclassification rate.
Future work involves improvement in three aspects. First, more PHA will be included in the activity set, and the recognition

performance using AML framework will be evaluated accordingly. Second, we will improve the PHA recognition accuracy by
combining other techniques or other sensing modality. we plan to incorporate IMU data, which are obtained from the IMU sensor
embedded in Smart Insole, into the AML framework to better characterize the motion information in another domain. Third,
statistical features extracted from the data can also be used to help build the activity manifold model so as to reach a better
recognition rate.
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