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A B S T R A C T

Accurately predicting users’ perceived stress is beneficial to aid early intervention and prevent
both mental illness and physical disease during the COVID-19 pandemic. However, the existing
perceived stress predicting system needs to collect a large amount of previous data for training
but has a limited prediction range (i.e., next 1–2 days). Therefore, we propose a perceived stress
prediction system based on the history data of micro-EMA for identifying risks 7 days earlier.
Specifically, we first select and deliver an optimal set of micro-EMA questions to users every
Monday, Wednesday, and Friday for reducing the burden. Then, we extract time-series features
from the past micro-EMA responses and apply an Elastic net regularization model to discard
redundant features. After that, selected features are fed to an ensemble prediction model for
forecasting fine-grained perceived stress in the next 7 days. Experiment results show that our
proposed prediction system can achieve around 4.26 (10.65% of the scale) mean absolute error
for predicting the next 7 day’s PSS scores, and higher than 81% accuracy for predicting the
next 7 day’s stress labels.

1. Introduction

During the COVID-19 pandemic, college students may experience increased anxiety and stress levels due to social isolation and
uncertainty regarding academic achievement brought by online education (Cao et al., 2020; Hwang, Rabheru, Peisah, Reichman, &
Ikeda, 2020). The prediction of perceived stress is essential to aid early intervention and prevent potential harmful effects during
the pandemic. Consequently, there is a critical need to investigate stress prediction.

Most prior works have focused on detecting the current stress state, rather than true prediction (Ferdous, Osmani, & Mayora,
2015; Jiang et al., 2019). Recent works started to explore a predictive model to forecast users’ future mental health states based
on individual histories. Jaques, Taylor, Sano, Picard, et al. (2017) leveraged personalized multitask learning to predict the next
day’s stress level from physiological signals, smartphone usage, location, behavioral survey data, and weather data in the past 15
days. Umematsu, Sano, Taylor, and Picard (2019) showed that using the previous 7 days of multi-modal data with an LSTM model
can give acceptable results in the next day’s stress label prediction. Yu, Klerman, Picard, and Sano (2019) compared the machine
learning models to forecast the stress labels for the next few days, and found that the prediction accuracy for the next 3–7 days is
significantly lower than the prediction for the next day. To summarize, these existing works mainly have two limitations: 1) limited
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Fig. 1. The prediction system for forecasting the next 7 days’ perceived stress includes optimal micro-EMA questions selection and delivery, time series features
extraction and Elastic Net-based feature selection, and an ensemble prediction model.

prediction range, i.e., most predictive models cannot be used to forecast more than two days in advance; 2) great efforts for training
model, i.e., most works need to continuously (24-hour-a-day) collect multi-modal data from physiological sensors, smartphone apps,
and behavioral surveys for 7–15 days. Therefore, how to extend the prediction time span with small efforts is still an ongoing issue
in stress prediction.

To this end, we develop a prediction system based on the history data of microinstruction ecological momentary assessment
(micro-EMA) to forecast an individual’s perceived stress for the next 7 days. micro-EMA repeatedly prompts users to answer a small
number of questions to capture an individual’s mental health states in close proximity to the time that symptoms and behaviors
happen, so it can mitigate recall bias and track users’ stress with fine-grained resolution and less burden (King et al., 2019). To realize
the prediction system, we first identify an optimal set of micro-EMA questions that yields strong correlations with the Perceived
Stress Scale (PSS) (Cohen, Kamarck, Mermelstein, et al., 1994). These candidate micro-EMA questions are delivered to users every
Monday, Wednesday, and Friday to enable high efficiency with less burden. Then, time-series features (e.g., mean and slope) are
extracted from the previous 14 days of micro-EMA responses. To avoid overfitting issues, we adopt the Elastic net regularization
model to automatically select more relevant features and discard redundant features. Finally, these selected features are fed to a
no-bias ensemble prediction model that consists of Elastic Net regression, super vector regression, and gradient boosted regression
for forecasting the next 7 days’ perceived stress at a granular level.

Our contributions are summarized as three-fold:

• We develop a micro-EMA-based prediction system that consists of optimal micro-EMA selection and a machine learning-based
prediction model to forecast users’ perceived stress for the next 7 days.

• Our proposed stress prediction system can identify users’ stress risks 7 days earlier with a low burden, which is beneficial to
aid early intervention during the COVID-19 pandemic.

• We leverage mean absolute error and Pearson’s r, and accuracy to evaluate the performance of predicting stress scores and
labels, and investigate the prediction performance with different demographics.

2. Methodology

In this section, we demonstrate the prediction system that consists of optimal micro-EMA questions selection, time series features
crafting, Elastic Net-based features selection, and ensemble prediction model, as shown in Fig. 1.

2.1. Optimal micro-EMA questions selection

The first step of our system is to explore a set of optimal micro-EMA questions for prediction. We first construct a question
set in the aspect of social, physical, sleep, and cognitive, subjective feelings. These questions are derived from different clinical
questionnaires, such as UCLA loneliness scale-8 (Roberts, Lewinsohn, & Seeley, 1993), FACIT fatigue scale (Tennant, 2015),
generalized anxiety disorder 7-item (Mossman et al., 2017), cognitive and affective mindfulness scale-revised (Feldman, Hayes,
Kumar, Greeson, & Laurenceau, 2007), and sleep hygiene index (Mastin, Bryson, & Corwyn, 2006), as shown in Table 1. Each
question has four options ranging from never/rarely (0 points) to almost always (3 points).
Preliminary Data Collection: In the preliminary study, we deliver 13 independent questions and a perceived stress scale (PSS)
survey to 20 subjects in the same while on three different days. These subjects are requested to answer all questions and the PSS
survey carefully each time via a smartphone app. In total, we collect 60 responses for each question and the PSS survey.
Correlation Analysis: To identify a set of micro-EMA questions for prediction, we calculate the Pearson correlation between the
PSS score and each independent response. Based on Pearson’s r and 𝑝-value, we select the candidate questions that yields moderately
to strongly positive correlation with perceived stress (𝑝-value <0.0001): Q2: Tired (𝑟 = 0.66), Q5: Isolation (𝑟 = 0.54), Q11: Go to
Bed (𝑟 = 0.72), Q12: Distracted (𝑟 = 0.58). Additionally, we further identify one negatively correlated question, i.e., Q9: Control
Worry (𝑟 = −0.62), to investigate the ability of positive symptoms to predict stress. The inter-correlation between all independent
questions and PSS is exhibited in Fig. 2.

Finally, we obtain 5-item micro-EMA questions. Users are prompted to answer these micro-EMA questions every Monday,
Wednesday, and Friday for prediction.
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Fig. 2. Inter correlation between Q1–Q13 and PSS. The correlation between each question and PSS is outlined in black. Q2, Q5, Q9, Q11, Q12 are selected as
micro-EMA questions.

Table 1
A set of questions derived from clinical surveys.
Q1: Did you have poor appetite or overeating?
Q2: Did you feel tired or have little energy?
Q3: Did you often do physical activities?
Q4: Did you often communicate with others?
Q5: Did you feel isolation from others?
Q6: Did you need sleep during the day?
Q7: Did you feel easily annoyed or irritable?
Q8: Did you have trouble relaxing?
Q9: Were you able to stop or control worrying?
Q10: Did you have trouble sleeping?
Q11: Did you go to bed feeling stressed, angry, upset, or nervous?
Q12: Did you feel easily distracted?
Q13: Did you be able to tolerate emotional pain?

Options: 0-rarely; 1-sometimes; 2-often; 3-almost always

2.2. Time series feature crafting

The second step is to extract time series EMA features. We first calculate the mean of each time series EMA response in the past
14 days. It characterizes the average level of the user’s symptoms during the 14-day period. For example, the mean of tired feeling
over the 14-day period represents the average intensity that the user feels tired daily.

To capture the change of symptoms, we further calculate the slope for each time series EMA response, which can characterize
the direction and steepness of the change. Specifically, we fit each time series EMA response with a linear regression model and
use the regression coefficient as the corresponding slope. The Bayesian information criterion (BIC) (Weakliem, 1999) is applied to
select the best linear regression model for each time series EMA response, with a lower BIC value suggesting a better fitting model.
A positive slope indicates the increase of a certain symptom, while a negative slope indicates the decrease of a certain symptom.
For example, a positive slope in tired feeling represents that the user experiences more severe symptoms of feeling tired over time.
The absolute value of the slope describes how fast the symptom changes over time, with a higher value indicating a faster change.
We calculate three slopes for each time series EMA response: over the first 7 days, over the last 7 days, and over the whole 14 days.

2.3. Elastic net based feature selection

After achieving mean features and slope features, the next step is to select more relevant features and discard redundant
features for avoiding overfitting issues. The Least Absolute Shrinkage and Selection Operator (LASSO) (Fonti & Belitser, 2017)
is a conventional feature selection approach to enhance prediction accuracy for a small number of samples with a large number of
features. However, the LASSO method fails to select a group of features that are highly correlated with each other. It tends to select
one feature from a group and ignore the others.
3
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n

To overcome this shortage, we use the Elastic net method (Zou & Hastie, 2005) to select groups of correlated features. The Elastic

et-based feature selection solves the following optimization problem:

𝛽𝑒𝑛(𝜆) = argmin
𝛽

(
‖𝒀 −𝑿𝛽‖22

𝑛
+ 𝜆2‖𝛽‖

2 + 𝜆1‖𝛽‖1), (1)

where 𝑛 is the number of samples, 𝐘 is 𝑛×1 response vector (i.e., ground truth), 𝐗 is 𝑛×𝑝 feature matrix, 𝛽 is 𝑝×1 coefficient vector.
When minimizing the optimization problem, the regression coefficients are shrunk by combining L1-norm penalty and L2-norm
penalty together. The L1-norm part of the penalty shrinks some coefficients to zero to produce a sparse model, and the L2-norm
part of the penalty stabilizes the L1 regularization path using the LARS-EN algorithm (Reunanen, 2003) which encourages group
effect. In this way, the features with coefficients equal to zero are discarded from the model.

2.4. Ensemble prediction model

The prediction of perceived stress scores is a regression problem. In predictive modeling, a single regression model that trains on
a set of features may have biases or high variability. Therefore, we employ the following widely used regression model to improve
the reliability for prediction:

• Elastic Net Regression: Considering some of the input features are highly correlated with each other, we adopt Elastic net
regression (Zhang et al., 2017) to better fit these features. It is penalized with both the L1-norm and L2-norm to efficiently
shrink the regression coefficients and set some to zero. Specifically, the constant that multiplies the penalty terms is set as 1,
and the ElasticNet mixing parameter is set as 0.5 in our implementation.

• Super Vector Regression (SVR): SVR is a supervised learning method to find an appropriate line or hyperplane in higher
dimensions to fit the features within an acceptable error. We adopt SVR for prediction as it has superior generalization ability
for unseen data regression. Specifically, we use the Gaussian kernel function to find a maximum-margin hyperplane.

• Gradient Boosted Regression Trees (GBRT): GBRT is an ensemble of several weak regression trees (Friedman, 2001). It builds
base regression trees (i.e., estimators) sequentially for mitigating the bias of the previously combined estimators. GBRT is
applied because it is robust to overfitting and less sensitive to outliers. Specifically, the loss function is based on squared error,
the learning rate is set as 0.1, and the number of boosting stages is set as 100 in our implementation.

Finally, we combine the output scores of these three prediction models by weighted sum. The weights are set as 0.5, 0.2, 0.3 for
Elastic Net, SVR, and GBRT, respectively.

3. Evaluation

3.1. Experiment setup

We recruit college students who were taking online courses during the Fall term in 2020 to attend our 8-week study. Potential
participants undergo an initial online screening to include the ones having stress issues caused by social isolation in the COVID-19
pandemic. This study is approved by the Institutional Review Board (IRB). Finally, 27 eligible subjects (12 female and 15 male)
are enrolled with the age ranging from 18 to 37. They need to use our developed smartphone app for mental health assessment
during the study. This app prompts participants to answer 5-item micro-EMA questions every Monday, Wednesday, and Friday, and
delivers the Perceived Stress Scale (PSS) survey on day 1, day 28, and day 56. Participants are requested to respond to all pushed
micro-EMA questions and the PSS survey on that day. PSS scores are in the range of 0–40 with 0–13 indicating low stress, 14–26
indicating moderate stress, and 27–40 indicating high stress, which is regarded as stress ground truth. We also monitor participants’
PSS scores during the whole study and provide clinical care if in need. We use leave-one-record-out cross-validation to train and
test the prediction model. The leave-one-record-out cross-validation leaves one sample out from the dataset for testing and uses all
other samples for training, the process repeats until all samples are tested once, and thereby results in 2862 training samples and
54 test samples.

3.2. Metrics

We use the following metrics to evaluate the performance of predicting perceived stress scores/labels in the next 7 days:

• Mean absolute errors (MAE): MAE measures the error between the predictive scores and ground truth, given by: 𝑀𝐴𝐸 =
1
𝑛
∑

|𝑦𝑖 − 𝑥𝑖|, where 𝑦𝑖 is the ground truth, 𝑥𝑖 is the predictive score. The Lower MAE indicates the prediction is closer to the
ground truth.

• Pearson correlation coefficient (Pearson’s r): Pearson’s r measures the linear relations between the predictive scores and the
ground truth, and r > 0.5 means linear relation.

• Accuracy: Accuracy measures the performance of predicting perceived stress labels (i.e., low, moderate, high), given by:
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 .
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Fig. 3. The cumulative distribution function (CDF) of the absolute errors of predicted stress scores under leave-one-record-out cross validation.

Fig. 4. The correlation between predicted stress scores and ground truth with different regression models under leave-one-record-out cross validation.

Fig. 5. The performance of predicting the perceived stress labels with different classification models under leave-one-record-out cross validation.

3.3. Overall performance

Regression Performance: We first show the proximity between the predictions and the ground truth. Fig. 3 shows the cumulative
distribution function (CDF) (Drew, Glen, & Leemis, 2000) of the absolute error of the predicted stress scores in detail. CDF plot
demonstrates the distribution of absolute error for each prediction. As observed, our proposed ensemble regression model has
the lowest MAE (i.e., ±4.26 error, 10.65% of the scale) compared with Elastic Net regression, SVR, and GBRT. Our model also
outperforms a recent stress prediction work that reports a MAE with 13.7% of the scale (Yu et al., 2019). For the ensemble
regression model, around 75% of the prediction results are with absolute error less than 5 (i.e., 12.5% of the scale) when applying
leave-one-record-out cross-validation.

Then, we evaluate the linear relations between the predictions and the ground truth. As shown in Fig. 4, the predicted PSS scores
strongly correlate with the ground truth when using the ensemble regression model or Elastic Net regression model, with Pearson’s
r>0.7, p<0.0001. The correlation performance drops more than 10% when applying SVM and GBRT. To conclude, our proposed
ensemble regression model performs better than the Elastic Net regression model, which in turn outperforms GBRT and SVM.
Classification Performance: To examine the system performance of predicting the stress labels (low, moderate, high), we further
train some classification models, i.e., Elastic Net logistic regression (classification) model, SVM classifier, gradient boosted classifier.
The ensemble classifier combines the outcome of these three classifiers by weighted sum and the fusion weights are optimized based
on logistic regression. As observed in Fig. 5, the ensemble classifier achieves up to 85.2% accuracy. By contrast, the accuracy of
the other three classifiers is less than 80%. In conclusion, the ensemble classifier employed in predicting stress labels can achieve
superior performance.

3.4. Performance with demographic parameters

We are curious about whether the stress prediction performance will be affected by the demographics factors. Therefore, we
evaluate the system using leave-one-record-out cross-validation under different demographic parameters as follows:
5
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Fig. 6. The performance of predicting the perceived stress scores under different demographics.

Gender: 12 female and 15 male are enrolled in this evaluation. Fig. 6 (a) shows that the MAE of predicted stress scores is almost the
same (i.e., around 4.2) for male subjects and female subjects. It indicates that our prediction model is insensitive to gender factors.
Age: In the age group, 15 subjects aging from 18–22, 10 subjects aging from 22–30, and 2 subjects aging above 30. As shown in
Fig. 6 (b), the prediction MAE for the 18–22 age group and 22–30 age group are around 4.1, whereas the prediction MAE for users
above 30 years old increases notably, reaching up to 5.6. It suggests that our proposed model is not good at studying the feature
distribution of aging groups due to limited samples. In other words, the age factor might contribute to the prediction performance.
Education Background: As for the education background, there are 15 subjects major in engineering and 12 subjects major in
nursing. Fig. 6 (c) shows a slight difference in prediction MAE for engineering group and nursing group, which are 4.4 and 3.85,
respectively. The results indicate that we might need to consider the education parameter in the personalized prediction model.
Living Arrangement In the evaluation, 5 subjects live alone, 12 subjects live with family and 10 subjects live with friends. As
shown in Fig. 6 (d), the prediction MAE for living with family and friends groups is around 4, whereas the prediction MAE for users
who live alone is much higher, achieving up to 5.6. This is because our prediction model is trained on a limited number of college
students who usually live with friends or family, which makes our model lack generality to some extent. It also indicates that the
stress prediction model is sensitive to the life pattern. We plan to investigate demographic factors as predictors in the future.

3.5. Performance with new users

In real practice, we hope the stress prediction model can be easily applied to new users without consuming much effort for
training. Thereby, we use leave-one-subject-out cross-validation to evaluate the performance of predicting a new participant whose
history data are not available in the training phase. Fig. 7 shows an overall tendency of better prediction performance with the
increasing number of subjects for training, under both user-dependent and independent settings. The best performance of predicting
existing users is superior to the best of predicting new users, which is expected. To be specific, the prediction MAE on new subjects
steadily decreases as the number of subjects for training increases. Eventually, the MAE drops to 6.5 (i.e., 16.25% of the scale) when
6
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Fig. 7. The stress prediction performance for new subjects and existing subjects.

Fig. 8. The performance of predictive days under two training settings.

we have 27 subjects for training. In other words, it will be easy to find the closest existing user for a new user and ‘‘pretend’’ that
they are the same person when the training set is large. To improve the prediction performance on new users, we can 1) expand the
training dataset to involve different distributions of features for the generalization of the model; 2) develop a domain adaptation
model to adapt the training weights to the existing model.

3.6. Performance on predictive days

It is interesting to investigate how many days we need to look back for training the model and how many days this model
can predict. Therefore, we evaluate the prediction performance of the next 3–14 days’ stress labels under two training settings. As
shown in Fig. 8, the model can achieve above 85% accuracy for predicting the next 3–7 day’s stress labels using the past 14 days
history data. However, the accuracy drops to 70% or even lower when using the past 7 days for predicting the next 7–14 days. The
difficulties of long-term prediction originate from the time-sensitivity of the predictors. Therefore, on the one hand, we reduce the
number of predictors and select the most optimal predictors by performing correlation analysis. On the other hand, we investigate
the changes of predictors over time and extract the changing slope of the predictors for feeding to the model. Considering both
the training efforts and prediction time span, our model is efficient to forecast the next 7 days’ stress by using the past 14 days
information.

4. Conclusion and future work

In this paper, we develop a prediction system based on micro-EMA questions for forecasting the next 7 day’s perceived stress.
We first select an optimal set of micro-EMA questions that yields a strong correlation with PSS for reducing users’ burden. After
achieving users’ responses to micro-EMA questions in the past 14 days, we extract time-series features and adopt an Elastic net
regularization model for selecting more efficient features, which are then fed to an ensemble prediction model. Experiment results
show that the prediction system can forecast stress scores with 6.5 MAE for a new participant. In future work, we plan to enlarge
our data size to hundreds of subjects and further extend our study to other populations for developing a more generalized wellbeing
states prediction model, such as patients with mental disorders, and caregivers. Meanwhile, we will develop a just-in-time adaptive
intervention system based on early identified risks to help users reduce stress.
7
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