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A B S T R A C T

Biomarkers in the human voice can offer insight into neurological disorders because voice
signals are influenced by the underlying cognitive and neuromuscular functions. In the past
decade, there is an increasing research attention on voice-based neural disorder detection
using machine learning techniques. However, existing works only attempt to detect a single
neurological disorder (e.g., Parkinson’s or Huntington’s). In this work, we present the first
computational model, namely VoiceLens, that detects multiple neurological disorders at the
same time. The proposed VoiceLens framework combines the effectiveness of the powerful Mel-
Frequency-Cepstral-Coefficients (MFCC) within a two-phase multi-class classification module
to build an accurate voice-based disease prediction model. The first phase captures the fine-
grained details of these disorders and their sequential variation patterns within a stacked
Long-Short-Term-Memory (LSTM) network to make the baseline disease detection, i.e., healthy
v.s. pathology. In the second phase, the detected pathology samples are further analyzed by
a deep multi-layer learned descriptor to identify the disease types. The VoiceLens method
is developed and evaluated using a large-scale Saarbruecken-Voice-Database comprising of
samples from 2000 individuals with multiple disease patterns, including Laryngeal Cancers,
Dish-Syndrome, and Parkinson’s disease. Experimental results show the remarkable performance
of VoiceLens by reporting Accuracy up to 97.5% in the disease detection, where the model also
obtains 98.00% and 97.13% for F1-Score and Recall. Also, compared with existing machine
learning models, the proposed VoiceLens system demonstrates around 15% (and 12%) average
gain in the Accuracy (and F1-score) in a multi-disease identification test including six (6)
different pathology classes and one (1) healthy class.

1. Introduction

Voice pathology is the study and diagnosis of the disease using voice as a biomarker. While it is well known that most vocal fold
pathologies can be characterized by observing changes in the acoustic voice signal, distinguishing different pathology conditions
within an integrated multi-class classification framework is indeed challenging. Early detection of a disease is important and this can
be effectively achieved using voice signals. Voice usually provides an early sign or symptom related to a disease, such as Parkinson’s,
because multiple issues like tissue infection, mechanical stress, surface irritation, neurological and muscular changes, and several
other disordered conditions (Al-Dhief et al., 2020) affect voice samples. The affected functionality and shape of the vocal folds result
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Fig. 1. Problem Overview.

in strained, harsh, weak, and breathy voices (Stathopoulos, Huber, & Sussman, 2011). Therefore, voice-based proactive multi-class
disease classification is often an effective, convenient and pervasive approach, which may facilitate a more extensive follow-up
diagnosis as well as a just-in-time treatment plan.

Existing works (Fang et al., 2019; Huiyi, Soraghan, Anja, & Gaetano, 2018; Wu, Soraghan, Lowit, & Di Caterina, 2018) focus
on single disease detection, such as Parkinson’s and ADRD, using speech, which require a separate disease-specific model to be
created for every disease. Various parameters such as MFCCs, linear predictive cepstral coefficients (LPCCs), and higher-order
statistics (HOS) have been used to develop machine learning and statistical methods for automatic detection of voice pathology
conditions (Wang, Zhang, & Yan, 2011). A set of recent works have also employed deep learning based models for the task. However,
as highlighted earlier, most of these methods still focus on addressing this simplified binary classification task and the performance
deteriorates significantly when the problem setting turns more complex in a multi-class scenario. Moreover, as of now, existing
voice-based pathology detection methods have some implicit subjective bias in the evaluation process (Hillenbrand & Houde, 1996).
For example, (Markaki & Stylianou, 2009) uses auditory-perceptual assessments to evaluate the rate of severity of several clinically
derived voice samples of Laryngitis, wherein the entire evaluation process is sensitive to the parameter choices, in addition to being
time-consuming and expensive. Other invasive and manual procedures like Laryngostroboscopy require patients to be physically
present at the clinic, which cannot be leveraged for regular monitoring of patients in critical conditions and can also be quite
challenging for anyone in this COVID scenario.

As illustrated in Fig. 1, we aim to build an intelligent and proactive voice-based digital assistant, referred to as VoiceLens, which
can perform a real-time screening of voice as a biomarker to evaluate the speaker’s health condition, as they stay engaged in the
daily-life conversations in an unconstrained environment. As illustrated in Fig. 2, given a voice signal collected via a front-end
conversational chatbot (or a recording system), the proposed machine learning based intelligent model, VoiceLens, enables a real-
time, non-invasive, early screening process of the individual’s health condition to facilitate timely medical intervention, if required.
The experimental results show remarkable improvement in VoiceLens performance by reporting an Accuracy of up to 97.5% in binary
classification experiment setting, where the model also obtains 98.00% and 97.13% for F1-Score and Recall. The proposed VoiceLens
system reports around 15% (and 12%) average gain in the Accuracy (and F1-score) in a multi-class scenario with seven (7) categories
(i.e., six (6) different pathology classes and one (1) healthy class). The primary contributions of the paper are:

1. The proposed VoiceLens system develops the voice-based classification model that may identify disease-specific pathology conditions
from both sustained phonations of vowels and the daily conversations by the speaker. Unlike many existing methods which
formulate a simplified binary classification model (Healthy Vs. pathology), the proposed multi-class classifier offers a real-time
disease-specific prediction to facilitate a more appropriate follow-up treatment plan.

2. By analyzing the sequential utterance patterns of the conversation within the LSTM model, the proposed method attains more
detailed insights on the signal characteristics that may facilitate a more precise disease prediction by the consequential
2

multi-class deep classifier of VoiceLens.
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Fig. 2. An overview of the proposed VoiceLens method is shown in (a) and the detailed Architecture of the Proposed Multi-view Multi-Class Disease Classifier
is shown in (b).

3. In contrast to the existing methods addressing a simplified binary classification task (healthy vs pathology), an extensive
experimental analysis on various large-scale datasets demonstrate the generalized capacity of VoiceLens in identifying different
disease-specific pathology conditions.

The rest of the paper is organized as follows: Section 2 briefly describes the related works. The proposed method is described in
Section 3. Sections 4 and 5 respectively present the experimental results and conclusion.

2. Related work

Artificial Intelligence based methods have been effective in several real-life applications (Al-Dhief et al., 2020; Al-Nasheri,
Muhammad, Alsulaiman, Ali, Malki, et al., 2017; Alhussein & Muhammad, 2018; Djenouri, Laidi, Djenouri, & Balasingham, 2019;
Huiyi et al., 2018; Mohammed, Abd Ghani, Arunkumar, Hamed, et al., 2018; Mohammed, Abd Ghani, Hamed, Ibrahim, & Abdullah,
2017; Wu et al., 2018). To address the task of voice-based disease detection, various research has focused on using signal processing
techniques that may automatically evaluate the voice-manifestations of the pathology conditions using machine learning based
models (Harar et al., 2017; Hemmerling, Skalski, & Gajda, 2016; Mohammed, Abd Ghani, Arunkumar, Mostafa, et al., 2018). Various
handcrafted features (both time and frequency domain representations) that include entropy, energy, time, contained Mel-frequency
cepstral coefficients (MFCC), cepstral domains, frequency, harmonics-to-noise ratio, short-term cepstral parameters, normalized
noise energy have been used to represent the signals (Al-Nasheri, Muhammad, Alsulaiman, Ali, Mesallam, et al., 2017; Wang & Jo,
2006). These feature vectors are then passed as an input to a separate classification model (Steidl, 2009; Ververidis & Kotropoulos,
2006; Yap, Epps, Ambikairajah, & Choi, 2011). Eskidere and Gürhanlı (2015) use multitaper MFCC features to build a Gaussian
Mixture Model (GMM) based classifier to identify the disordered voice signal. Al-Nasheri, Muhammad, Alsulaiman, Ali, Mesallam,
et al. (2017) use features extracted by investigating different frequency bands using correlation functions to build an SVM(Support
Vector Machine) for binary pathology condition detection. Souissi and Cherif (2016a) utilize ANN(Artificial Neural Network) and
SVM(Support Vector Machine) model for classification.

In addition to being single-disease specific, most research (Martínez, Lleida, Ortega, Miguel, & Villalba, 2012; Mohammed et al.,
2020) focus on utilizing sounds of sustained vowel /a/ recorded in a clinical environment for their study, while some others (Al-
Nasheri, Muhammad, Alsulaiman, Ali, Mesallam, et al., 2017; Hemmerling et al., 2016; Muhammad, Alhamid, et al., 2017; Souissi
& Cherif, 2015) focus on the combination of vowels /a/, /i/ and /u/ to get high accuracy. Martínez et al. (2012) utilize 200 records
of sustained vowel /a/ to represent a high value. Other studies (Al-Nasheri, Muhammad, Alsulaiman, Ali, Mesallam, et al., 2017;
Muhammad, Alhamid, et al., 2017; Souissi & Cherif, 2016a) leverage the combination of vowels /a/, /i/ and /u/ to get high accuracy
and do not focus on the pathology causes. In a binary classification framework, Muhammad, Alhamid, et al. (2017) build a dataset
using three kinds of voice pathology samples. Important to note that while at one end, such a clinically informative data collection
process may not be a feasible option to adopt in a home-like environment, in the absence of a health expert around, at the other
end, these methods design a simplified binary classification task to identify only one disease-specific voice disorder pattern. Thus,
many rare kinds of diseases are often ignored by the research community. In contrast, this project utilizes a large scale Saarbruecken
Voice Database (SVD) (Muhammad, Alsulaiman, et al., 2017) comprising of both enunciations of vowels like /a/ and usual daily
conversations by the speakers from 71 different disease-specific pathology conditions, which presents a relatively new and more
challenging task of multi-class classification. Some diseases we are targeting in this work to build a multi-class classifier, have not
been addressed before.

To improve the binary classification performance, a set of recent works have also leveraged deep learning based models (Lee,
Jeong, Choi, & Hahn, 2008; Lee, Jeong, & Hahn, 2008). Fang et al. (2019) propose a deep neural network (DNN) to classify between
normal and pathological classes. Wu et al. (2018) suggest a convolution neural network (CNN) model and for feature extraction,
short-time Fourier transform (STFT) features for binary classification of voice samples. Huiyi et al. (2018) develop a convolution
3
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deep belief network (CDBN) that uses spectrograms of normal and pathological speech as the input to identify pathology conditions
in a binary classification framework. Mohammed et al. (2020) address the problem of voice pathology detection by designing a CNN.
In the specific field of speech-based automatic depression detection, most of the existing methods (Asgari, Shafran, & Sheeber, 2014;
Cummins et al., 2015; Quatieri & Malyska, 2012) rely on the importance of several acoustic characteristics like pitch, intensity, jitter,
shimmer, harmonic-to-noise ratio, and rates of speech to identify the predicting depression state of an individual. These voice quality
features are related to the observation that depressed speakers tend to speak in an unnatural and monotonous way. A set of recent
works (Abdel-Hamid et al., 2014; Deng et al., 2013; Golik, Tüske, Schlüter, & Ney, 2015; Lee, Lee, & Chang, 2019; Vázquez-Romero
& Gallardo-Antolín, 2020) have also employed deep neural network models to perform the depression detection. Important to note
that the task of building a multi-class classifier that may discriminate the signals representing multiple disease conditions within
a single model is still under-explored. Furthermore, while deep learning models for voice analysis may demonstrate an improved
performance in drawing a high-level binary decision, the learned deep descriptors are typically best only in deriving an overall data
characteristics.

Toward this, we argue that the complementary skills of both hand-crafted and deep features may be more effective to derive a
omprehensive understanding of the fine-grained disease specific patterns and time-dependent variance of the samples. To enable
generic and early identification of different disease patterns, the model must jointly learn these discriminative data patterns from
ultiple views designed by its hand-crafted as well as deep feature vectors. Using just one of them in isolation may not be enough

o represent the unique class-specific characteristics of the voice samples.

. Proposed method

In this work, we propose a two-phased generic deep learning based multi-class classification model that can analyze a voice
ignal collected via a commodity microphone (e.g., a front-end conversational chatbot or a recording system) to enable a real-
ime, unobtrusive, early screening process of the individual’s health condition. Different from existing machine-learning based voice
nalytical models, the proposed VoiceLens system presents a new processing scheme towards robust voice feature-based classification.

Specifically, given an annotated data collection  = {(𝑠𝑗 , 𝑦𝑗 )}𝑗 , 𝑠𝑗 represents a voice signal (which may either be phonation of
the vowel /a/ or a usual daily conversation by the speaker) and the corresponding label 𝑦𝑗 ∈  is the label specifying the pathology
condition of the signal 𝑠𝑗 , where  represents the set of all labels in the multi-class environment. Utilizing the multi-class annotated
training collection , the proposed VoiceLens system is learned to predict the pathology condition of a new voice sample 𝑠𝑡𝑒𝑠𝑡 ∈ 𝑡𝑒𝑠𝑡,
observed in test time, for which the underlying true label information (𝑦𝑡𝑒𝑠𝑡) is unknown. The proposed method consists of three
modules: (1) Feature Extraction, which can be divided into two parts namely handcrafted feature representation and deep learning
based feature representation. Given an input signal 𝑠, the proposed feature extraction module derives its handcrafted feature vector
𝐬ℎ and deep learned feature vector 𝐬𝑑 ; (2) the first phase LSTM based Binary Pathology Detection that learns to perform the initial
pathology condition detection, wherein the objective is to evaluate a given voice sample as healthy Vs. unhealthy; and (3) The
second phase Deep Multi-class Multi-view Classification, which jointly learns the fine-tuning of 𝐬ℎ and 𝐬𝑑 within its two branches,
to capture the disease-specific (like Parkinson’s, Alzheimer’s, Heart Diseases, Laryngeal Cancers, etc.) discriminative data patterns
more effectively.

3.1. Feature extraction process

An important step in both the training and classification stages of the VoiceLens system is the selection and extraction of the
features. Typically features used for audio classification tasks may either be defined in the time domain or the frequency domain.
While the time domain features are more intuitive and easy to compute, frequency domain features are more discriminative and
provide greater insight into the mutual connection between the signal and its articulation by the vocal organs. In this project, given
an input signal 𝑠, we use two types of feature vectors: handcrafted Feature representation scheme (e.g. Mel-Frequency Cepstral
Coefficients (MFCC)) to obtain a vector 𝐬ℎ ∈ R𝑑ℎ and Deep Learning Based Features (e.g. VGGish features) (Gupta, Jaafar, Ahmad,
& Bansal, 2013) to obtain a vector 𝐬𝑑 ∈ R𝑑𝑒 . Fig. 3 visualizes the features.

3.1.1. Handcrafted features
In this work, we have used three types of handcrafted features for audio signal representation: Mel-Frequency cepstral coefficients

(MFCC), Log Mel-filter bank coefficients (logFBANK), and Spectral Subband centroids features. Their computation process is
described below.

MFCC-based sequential feature extraction process. Mel-Frequency Cepstrum Coefficients (MFCC) are popular acoustic features repre-
senting the human auditory system. The advantage of MFCC is that it considers the perceptual characteristics of the human hearing
system, which as per Psycho-physical studies, are computed in a nonlinear logarithmic scale rather than in a linear scale, and the
frequencies are perceived in a nonlinear frequency binning based on critical ban filtering. While the nonlinear scale is represented
by the Mel scale, the critical band filtering is distinguished by the Mel filter bank. The equation connecting frequency scale (𝑓 ) and
Mel-scale (𝑓𝑚𝑒𝑙) is defined as: 𝑓𝑚𝑒𝑙 = 2595[𝑙𝑜𝑔(1 + 𝑓

1000 )].
The MFCC feature extraction task is initiated by generating the frequency-domain representation of the signal using its Fourier

Transformation. The Mel filtering in the frequency domain is then determined to get the Mel filter bank coefficients. Finally, the
4

Discrete Cosine Transform (DCT) of the log-scale Mel filter bank coefficients are derived as the resulting MFCC coefficient. Each 𝑠 is
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Fig. 3. The Visualizations of different Handcrafted (MFCC feature with 130 dimensions, LogFbank feature with 260 dimensions, and SSC feature with 260
dimensions) and VGGIsh deep features (with 128 dimensions) used for 128 audio signals.

represented in terms of a 𝑑𝑐 = 130 dimensional MFCC features, which for the frequencies below 1 kHz, will be linear. For frequencies
above 1khz, it will be logarithmic and defined as:

𝐜(𝑙) =
𝑀
∑

𝑚=1
𝑙𝑛((𝑥)′(𝑚))𝑐𝑜𝑠

(

𝑙𝜋(𝑚 − 1∕2)
𝑀

)

, (1)

for 𝑙 = 1,… , 𝑑𝑐 , where the spectral coefficients of the signal 𝑠, calculated by taking Discrete Fourier Transform (DFT) of the signal
is denoted by 𝑥 and ′ presents the derivative operator.

Thus, utilizing the MFCC feature representation scheme, every voice signal 𝑠 is represented in terms of a 𝑑ℎ = 130 dimensional
MFCC features 𝐬ℎ = 𝐜.

Spectral Subband Centroid. Spectral Subband Centroid (SSC) is defined as the center of gravity of the spectral energy for the frequency
band. This is defined as the unweighted sum of the power frequencies of the normalized power spectrum. As the frequency band is
divided into a pre-defined number of subbands, the centroid between lower and higher edges of each subband is computed using
the power spectrum of the audio signal (Paliwal, 1998; Seo et al., 2006). It is computed as:

𝐒𝐂(𝑘) =
∫ ℎ𝑘
𝑙𝑘 𝑓𝑤𝑘(𝑓 )𝑃 𝛾 (𝑓 )𝑑𝑓

∫ ℎ𝑘
𝑙𝑘𝑗

𝑤𝑘(𝑓 )𝑃 𝛾 (𝑓 )𝑑𝑓
, (2)

where given a signal 𝑠, 𝑆𝐶(𝑘) is the spectral centroid of the 𝑘th band, 𝑙𝑘 and ℎ𝑘 is the lower and higher edge of the frequency
subband, 𝑤𝑘(𝑓 ) is the filter shape, 𝑃 (𝑓 ) is the power spectrum, and 𝛾 is a constant controlling the dynamic range of the power
spectrum with 𝛾 < 1. As reported by Thian, Sanderson, and Bengio (2004), the trajectory of SSCs in a given subband actually
locates the peaks of the power spectrum in that subband. In this context, the representation is limited to one value per subband.

Thus, utilizing the SSC feature representation scheme, every voice signal 𝑠 is represented in terms of a 𝑑ℎ = 260 dimensional SSC
features 𝐬ℎ = 𝐒𝐂 and we use 𝑙𝑘 = 0 and ℎ𝑘 = 25,000.

Log Mel-filter bank energy. Log Mel-filter bank energy (LogFbank) via Mel-filter bank energy (Fbank) with the logarithmic transform
is also used as a frequency domain feature representative. Important to note, MFCC is not robust in presence of additive noise, while
LogFbank is found as a more noise-robust alternative in feature extraction (Wang, Fang, Li, & Chai, 2020). The LogFbank feature, a
log power spectrum on a non-linear Mel scale of frequency, performs the logarithm transformation to control the effective strength
of the Fbank energy. Therefore, the resulting features are more robust to the noise. The spectrum of a signal 𝑠 denoted as 𝑋(𝑠) using
Fast Fourier Transform (FFT). The power spectrum |𝑋(𝑠)|2 with a filter bank with 𝑀 filters, in which the filter 𝐿𝑚(𝜔) is a triangular
filter (Sahidullah & Saha, 2012) defined as:

𝐿𝑚(𝜔) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 𝜔 < 𝑠(𝑚 − 1)
𝜔−𝑠(𝑚−1)

𝑠(𝑚)−𝑠(𝑚−1) 𝑠(𝑚 − 1) ≤ 𝜔 ≤ 𝑠(𝑚)
𝑠(𝑘+1)−𝜔

𝑠(𝑚+1)−𝑠(𝑚−1) 𝑠(𝑚) ≤ 𝜔 ≤ 𝑠(𝑚 + 1)

0 𝜔 ≥ 𝑠(𝑚 + 1),

(3)

where the boundary points 𝑠(𝑚) are uniformly spaced in the Mel-scale and the 𝐋𝐅 is defined by taking the logarithm to the power
spectrum |𝑋(𝑠)| as:

𝐋𝐅(𝑖) = 𝑙𝑜𝑔{𝜃1
𝑓ℎ
∑

𝐿𝐾 (𝜔)|𝑋(𝜔)|2 + 𝜃2}, (4)
5
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for 1 ≤ 𝑖 ≤ 260 and we use 𝑓𝑙 = 0 and 𝑓ℎ = 25,000. Thus, by utilizing the LogFbank feature representation scheme, every voice
signal 𝑠 is represented in terms of a 𝑑ℎ = 260 dimensional LogFBank features 𝐬ℎ = 𝐋𝐅.

3.1.2. Deep learning based features
We extract short-term audio features from the VGGish model (Hershey et al., 2017), which is a deep audio embedding model,

inspired by VGGNet (Simonyan & Zisserman, 2014). VGGish audio embedding network is pre-trained on a large YouTube-8M
dataset (Abu-El-Haija et al., 2016) and produces a 128-dimensional audio feature. We utilize the VGGish opensource implemen-
tation1 for our experiments. Thus, by utilizing the VGGish feature representation scheme, every voice signal 𝑠 is represented in
terms of a 𝑑𝑒 = 128 dimensional deep features 𝐬𝑒.

3.2. Proposed LSTM-based binary pathology detection

To obtain a detailed insight on the signal characteristic, each input audio signal 𝑠 is divided into a sequence of 𝑛 smaller time-
stamped signal segments and presented as a sequence {𝑠(𝑡)}𝑛𝑡=1 and each 𝑠(𝑡) is represented in terms of a handcrafted MFCC feature
𝐜(𝑡), which appears to be most effective among the several handcrafted features that we have considered in the experiments of this
paper. In this work, the Long-Short-Term Memory (LSTM) network model (Pascanu, Gulcehre, Cho, & Bengio, 2013), a variant of the
Recurrent Network Model (RNN), is used for the first phase binary pathology condition detection module. RNNs form a chain-like
neural network architecture that takes into consideration the current input in the context of the information from the past, to
propagate the relevant historical information. While RNNs face a vanishing gradient problem and are unable to learn long-term
dependencies, LSTM integrates the gating functions into its state dynamics to provide an efficient alternative. We use a stacked
LSTM with 𝐿0 layers (Ullah, Ullah, Khan, & Cheikh, 2019), in which the final hidden layer 𝐿0, 𝐧(𝑡) = 𝑛(𝑡)𝐿0

, depends on the input
sequence and cell state is defined as follows:

𝐧(𝑡)𝑙 = 𝐡(𝑡)𝑙 ⊙ 𝑡𝑎𝑛ℎ(𝐚(𝑡)𝑙 )

𝐚(𝑡)𝑙 = 𝐞(𝑡)𝑙 ⊙ 𝐚(𝑡−1)𝑙 + 𝐟 (𝑡)𝑙 ⊙ 𝐛(𝑡)𝑙
𝐛(𝑡)𝑙 = 𝑡𝑎𝑛ℎ

(

𝐔𝑔
𝑙 𝐧

(𝑡)
𝑙−1 + 𝐕𝑔

𝑙 𝐧
(𝑡)
𝑙
)

𝐞(𝑡)𝑙 = 𝜎
(

𝐔𝑟
𝑙𝐧

(𝑡)
𝑙−1 + 𝐕𝑟

𝑙𝐧
(𝑡)
𝑙
)

𝐟 (𝑡)𝑙 = 𝜎
(

𝐔𝑗
𝑙𝐧

(𝑡)
𝑙−1 + 𝐕𝑗

𝑙𝐧
(𝑡)
𝑙
)

(5)

𝐡(𝑡)𝑙 = 𝜎
(

𝐔𝑜
𝑙 𝐧

(𝑡)
𝑙−1 + 𝐕𝑜

𝑙 𝐧
(𝑡)
𝑙
)

where 𝐧(𝑡)0 = 𝐜(𝑡), 𝜎() represents the logistic sigmoid function, and ⊙ represents element-wise multiplication. The terms 𝐚(0)𝑙 , 𝐧(0)𝑙 are
set to zero vectors for all 1 ≤ 𝑙 ≤ 𝐿0. The term 𝐛(𝑡)𝑙 is a hidden representative based on the current input and the previous state.
The terms 𝐞(𝑡)𝑙 , 𝐟 (𝑡)𝑙 , and 𝐡(𝑡)𝑙 determine the cell information flow with time, how the input is incorporated into the cell state, and the
relation between the hidden state and the cell state, respectively. The recurrent learnable weights are depicted by 𝐕𝑔 , 𝐕𝑟, 𝐕𝑗 , and
𝐕𝑜, and the projection matrices by 𝐔𝑔 , 𝐔𝑟, 𝐔𝑗 , and 𝐔𝑜.

In this paper, every voice signal 𝑠 represented as {𝐜(𝑡)}𝑡, is used as input to a stacked LSTM model with 2 LSTM layers. Each of
these layers is followed by a drop-out layer. The number of hidden units in each of the LSTM layers is set to be 128, the drop-out
ratio for each of their corresponding dropout layers is set as 0.2. The resulting output of the stacked LSTM sequence learning module
is fed into a stack of FC layers for classification. The proposed model uses 2 FC layers, the activation of the last FC layer is fed into
a soft-max layer to evaluate the pathology condition.

3.3. Deep multi-class multi-view disease classification

As illustrated in Fig. 2(a), a signal 𝑠, which is identified as ‘unhealthy’ by the initial LSTM based binary Pathology condition
detection model, is further investigated for evaluating the exact disease condition that might have caused the changes in the
individual’s voice pattern.

3.3.1. Joint multi-view classifier learning
As shown in Fig. 2(b), the proposed deep multi-view classification network consists of two branches (namely ℎ and 𝑑), each

representing one view (handcrafted feature and deep feature) of a signal.
The handcrafted branch ℎ takes one 𝑑 dimensional handcrafted feature vector 𝐬ℎ (e.g. MFCC feature where 𝐬ℎ = 𝐜) into a Multi-

layer Dense Neural Network model, which is comprised of 3 fully connected (FC) layers with rectified linear unit (ReLU) activation
function. Each of these layers is immediately followed by a drop-out layer. The number of hidden units in each of the first two Dense
layers is set to be 256 and the number of hidden units in the last Dense layer is set to be 128. The drop-out ratio for each of their
corresponding dropout layers is set to be 0.2. Given a signal 𝑠, the activation of the 3rd FC layer of ℎ is represented as a compact
learned feature representative with 128 dimensions 𝐠ℎ. In our experiments, the handcrafted branch uses 𝑑ℎ = 130 dimensional input
for MFCC and 𝑑ℎ = 260 dimensional inputs for both LogFBank and SSC (described in Section 3.1.1). The deep branch 𝑑 takes one

1 VGGish:https://github.com/tensorflow/models/tree/master/research/audioset/vggish.
6
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Fig. 4. Dataset Distribution for the Saarbruecken Voice Database (SVD) (Woldert-Jokisz, 2007).

𝑑𝑒 dimensional feature vector (e.g. Vggish feature 𝐬𝑒) into an identical Multi-layer Dense Neural Network model (as of ℎ). Given a
signal 𝑠, the activation of the 4th FC layer of 𝑑 is also represented in terms of a compact learned feature representative with 128
dimensions 𝐠𝑒. Both ℎ and 𝑑 are considered as a merged network, which is merged by concatenating the deep-learned features
and feed to a new fully connected layer. As illustrated in the figure, during training, the features of ℎ and 𝑑 are concatenated
as the input for fully connected layers and jointly learn the entire network for multi-class disease classification task. In order to
guide this merged network to extract disease-specific data patterns, we pre-train the weights of both sub-networks (ℎ and 𝑑)
separately with the corresponding annotated feature representations of , except the 5th fully connected layer. To highlight the
discriminative data patterns for each class, the loss function, 𝐿𝑜𝑠𝑠 is defined as follows:

𝐿𝑜𝑠𝑠(𝐖) = −

∑

𝑦∈
∑

||

𝑗=1(𝟏(𝑦 = 𝑦))𝑙𝑜𝑔(𝑝(𝑦 = 𝑦|𝑠;𝐖))

||

, (6)

where 𝟏. is the indicator function, 𝐖 represents the neural network weight parameters, and 𝑙𝑜𝑔(𝑝(𝑦 = 𝑦|𝑠;𝐖)) computes the
probabilistic score of the sample 𝑠𝑖 for the class 𝑦 ∈  . The learning task is formulated as solving the minimization problem defined
as: 𝑚𝑖𝑛

𝐖
𝐹 (𝐖). For pre-training ℎ and 𝑑 , each signal 𝑠 is represented using its corresponding feature descriptor.

4. Experiments

4.1. Dataset description

Saarbruecken Voice Database (SVD) (Woldert-Jokisz, 2007) is a collection of voice recordings and electroglottography (EGG)
signals collected from more than 2 000 speakers. It contains recordings of 687 healthy persons (428 females and 259 males) and
1356 patients (727 females and 629 males) with one or more of the 71 different pathologies. One session contains the recordings of
the following components: (a) vowels /i, a, u/ produced at normal, high and low pitch; (b) vowels /i, a, u/ with rising-falling pitch;
and (c) sentence ‘‘Morgen, wie geht es Ihnen?’’ (‘‘morning, how are you?’’). All samples of the sustained vowels are between 1 to
3 s long, sampled at 𝑓𝑠 = 50000 Hz with 16-bit resolution [62]. All audio samples (healthy and pathological) in SVD were recorded
in the same environment. Following Harar et al. (2018), we excluded samples that were shorter than 0.750 s in length (removed
319 recordings). We also excluded all recordings of speakers below the age of 19 and also above the age of 60 (it is known that the
most significant changes of voice happen during adulthood until the voice matures at around the age of 20 and remains relatively
stable until around the age of 60) (Stathopoulos et al., 2011). Fig. 4 provides more details on the dataset distributions. In the
following section, we will describe the performance of the proposed method both in a binary class application setting (i.e., healthy
Vs. pathology) and in a multi-class setting (i.e., classifying different disease conditions).

4.2. Evaluation metrics

In this work, to compare the performance of the proposed multi-class disease classifier VoiceLens against state-of-the-art methods,
a 10-fold cross validation technique is used. We use F1-score (the harmonic mean of the Precision and Recall) and Accuracy metrics
as the metrics to report the performances (Powers, 2020). For multiclass classification, we use Multiclass_Accuracy as the metric,
which are defined as

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
.100% (7)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
.100% (8)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑡𝑝 + 𝑡𝑛)

.100% (9)
7
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Fig. 5. Comparative Study on the Binary Pathology Detection task performed using the Saarbruecken Voice Database (SVD) (Woldert-Jokisz, 2007) dataset.

𝑀𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(
∑

𝑘 𝑡𝑝𝑘)
|𝑡𝑒𝑠𝑡|

.100% (10)

where 𝑡𝑝 presents the number of true positives, 𝑡𝑛 presents the number of true negatives, 𝑓𝑝 presents the number of false positives,
and 𝑓𝑛 presents the number of false negatives in the binary classification based experimental setting, where positive class represents
a pathology condition and negative class represents the healthy condition. In the multi-class experiment setting, 𝑡𝑝𝑘 presents the
number of identified true positive samples for the 𝑘th class in the entire test collection 𝑡𝑒𝑠𝑡.

4.3. Results

The proposed VoiceLens was implemented and executed in a personal computer, which is a 1.6 GHz, quad-core Windows system
with 16 GB RAM, I78550U CPU, 64Bit OS with Python 3.7, Tensorflow, and several other Machine learning related softwares
installed.

Computational complexity analysis. Table 3 describes the average time complexity obtained for the proposed joint learning model.
We have used Python library big_O2for the implementation. Since MFCC consistently reports improved performance compared to
the other hand-crafted features used in our work, we have used MFCC feature representation to model the hand-crafted classifier ℎ
for this set of experiments. As observed in Table 3 the proposed method performs on the order of micro-seconds, where input signals
are typically a few seconds long. This shows that the program performs in more-than-user-time as the decision time is significantly
lower than length of input signal.

Binary pathology detection performance. The first set of experiments reports the performance of the initial LSTM pathology condition
detection, described in Section 3.2. The experimental results show remarkable improvement in performance of VoiceLens by reporting
an LSTM-based binary pathology condition detection Accuracy 97.5%, F1-score 98.00%, and Recall 97.13%. Fig. 5 reports the
detailed comparative study on the binary classification task. The left side graph reports the performance using Accuracy (Eq. (9))
and the right side graph reports the performance using F1-score. We note that most of the existing models develop a vowel-based
pathology detection scheme that uses single or concatenated signals to achieve high performance. As seen by comparing the results
reported in the table, the proposed method shows an improved performance by reporting 3% improved Accuracy score compared
to the various state-of-the-art existing supervised learning based methods. XG-Boost (Chen & Guestrin, 2016) (version 0.6) which is
known for its effectiveness, efficient training phase and model interpretability. While a general heuristic is to have more training
samples that trainable parameters in the learning architecture, DenseNet demonstrates promise to overcome the problem of having
too many trainable parameters by densely connecting the convolutional layers. We have followed the implementation approach
by Harar et al. (2018) that has adjusted Thibault de Boissiere’s Keras implementation of the DenseNet (Keras framework Chollet
et al., 2015, version 2.1.2), to process 1D signals treating raw audio as 1D vector. Spectrograms are processed as a matrix using the
frequency bins as a stack of channels in the same way the 3 RGB channels are stacked in an image (Wyse, 2017). Souissi and Cherif
(2016b) leverage MFCC, their first and second derivatives as features to detect voice impairment by using Artificial Neural Network
(ANN). Dahmani and Guerti (2017) use MFCC, jitter, shimmer, and fundamental frequency as inputs to Naive Bayes classifier to

2 https://pypi.org/project/big-O/.
8
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Table 1
Comparative study on the first-phase LSTM based binary pathology detection task using the Saarbruechen Voice
Database (SVD) dataset (Woldert-Jokisz, 2007).
Extracted features Model method F1-score Accuracy

SSC

Gaussian Naive Bayes 89.88% 88.8%
Support Vector Machine 86.8% 88.0%
Decision Tree 82.7% 83.1%
Random Forest 87.8% 94.8%
Deep Neural Network 85.0% 88.0%
Proposed LSTM-based Binary Pathology Detection 𝟖𝟖.𝟎% 𝟗𝟒.𝟗%

LogFBank

Gaussian Naive Bayes 90.5% 92.1%
Support Vector Machine 90.6% 95.2%
Decision Tree 90.0% 94.5%
Random Forest 90.9% 𝟗𝟓.𝟗%
Deep Neural Network 95.0% 94.6%
Proposed LSTM-based Binary Pathology Detection 𝟗𝟓.𝟎% 95.7%

MFCC

Gaussian Naive Bayes 89.9% 95.4%
Support Vector Machine 89.8% 95.4%
Decision Tree 86.5% 94.4%
Random Forest 91.1% 95.6%
Deep Neural Network 93.5% 94.0%
Proposed LSTM-based Binary Pathology Detection 𝟗𝟖.𝟏% 𝟗𝟕.𝟓%

Table 2
The performance study of the VoiceLens system following different configurations of its proposed Deep Multi-Class Multi-view Disease
Classification module using the Saarbruechen Voice Database (SVD) dataset (Woldert-Jokisz, 2007).
Dataset distribution Method F1-score (Std. dev.

over all trials)
Accuracy (Std. dev.
over all trials)

𝑛0 = 2
diseased + 1 healthy

Single-view Deep Classifier(𝑑 with VGGish) 92.2(±2.7)% 88.5(±2.26)%
𝑑 with VGGish +ℎ with SSC 𝟖𝟕.𝟐(±𝟓.𝟓)% 𝟖𝟖.𝟏(±𝟓.𝟏)%
𝑑 with VGGish + ℎ with LogFBank 𝟗𝟐.𝟔(±𝟑.𝟓)% 𝟗𝟎.𝟐(±𝟗.𝟑)%
ℎ with VGGish + ℎ with MFCC 𝟗𝟒.𝟓(±𝟏.𝟏)% 𝟗𝟒.𝟑(±𝟏.𝟐)%

𝑛0 = 3
diseased + 1 healthy

Single-view Deep Classifier (𝑑 with VGGish) 88.8(±3.72)% 89.6(±2.77)%
𝑑 with VGGish +ℎ with SSC 90.9(±3.8)% 87.2(±3.6)%
𝑑 with VGGish + ℎ with LogFBank 84.5(±6.9)% 𝟖𝟑.𝟏(±𝟕.𝟐)%
𝑑 with VGGish + ℎ with MFCC 𝟗𝟎.𝟗(±𝟏.𝟖)% 𝟗𝟏.𝟏(±𝟏.𝟕)%

𝑛0 = 4
diseased + 1 healthy

Single-view Deep Classifier (𝑑 with VGGish) 85.43(±3.69)% 85.10(±3.54)%
𝑑 with VGGish +ℎ with SSC 𝟕𝟎.𝟐(±𝟗.𝟕)% 72.5(±10.4)%
𝑑 with VGGish + ℎ with LogFBank 𝟕𝟒.𝟐(±𝟔.𝟑)% 75.8(±7.2)%
𝑑 with VGGish + ℎ with MFCC 𝟖𝟕.𝟔(±𝟐.𝟒)% 𝟖𝟕.𝟒(±𝟐.𝟑)%

𝑛0 = 5
diseased + 1 healthy

Single-view Deep Classifier (𝑑 with VGGish) 82.50(±3.41)% 80.71(±3.87)%
𝑑 with VGGish +ℎ with SSC 𝟓𝟔.𝟒(±𝟏𝟎.𝟏)% 56.0(±8.2)%
𝑑 with VGGish + ℎ with LogFBank 𝟔𝟑.𝟔(±𝟕.𝟔)% 65.9(±10.8)%
𝑑 with VGGish + ℎ with MFCC 𝟖𝟑.𝟐(±𝟐.𝟑)% 𝟖𝟑.𝟏(±𝟐.𝟒)%

𝑛0 = 6
diseased + 1 healthy

Single-view Deep Classifier (𝑑 with VGGish) 80.75(±2.81)% 79.45(±2.23)%
𝑑 with VGGish +ℎ with SSC 𝟔𝟎.𝟑(±𝟗.𝟖)% 63.2(±10.1)%
𝑑 with VGGish + ℎ with LogFBank 𝟔𝟏.𝟕(±𝟗.𝟏)% 63.1(±8.6)%
𝑑 with VGGish + ℎ with MFCC 𝟖𝟐.𝟐(±𝟐.𝟏)% 𝟖𝟏.𝟔(±𝟏.𝟖)%

discriminate between three different groups: speakers with normal voice; speakers with spasmodic dysphonia; and speakers with
vocal folds paralysis. Souissi and Cherif (2015) use dimensionality reduction for voice disorders identification system based on MFCC
and Support Vector Machine (SVM). In this experiment setting, we also choose MFCC based feature vector as an input to a deep
neural network with 3 FC layers (with 256 hidden units in the first two layers and 128 hidden units in the 3rd FC layer) immediately
followed by a dropout layer (0.2 dropout ratio) and a Soft-max layer. Except for the final Soft-max layer, this deep architecture is
identical with the branches (ℎ and 𝑑) of the proposed deep multi-view classification network. In Fig. 5, referred as MFCC+Deep,
this deep neural network model reports Accuracy as 94%.

Table 1 reports the performances of the proposed binary classification module. To evaluate the effectiveness of several
andcrafted features used in this work, we develop our in-house implementations of several machine learning based classifiers
ike Random Forest, Support Vector Machine, Decision Tree, Gaussian Naive Bayes, and Deep Neural Network, which use the same
et of features are used as input and learn to make a binary decision. While MFCC demonstrates significantly better performance
ompared to other handcrafted features used in this work, the discriminability of SSC features appears to be considerably poor. As
e make this observation, it also correlates with the visualization illustrated in Fig. 3. We note that the visualization of a randomly

hosen healthy voice signal, as represented by its SSC feature vector, is very similar to its pattern observed for another randomly
hosen pathology voice signal. A detailed analysis of these results prompts us to choose MFCC as the feature vector in the first phase
athology detection task of VoiceLens.
9
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Table 3
Average time complexity details obtained from 10 iterations of training,
where the hand crafted classifier ℎ is modeled using MFCC feature and
the deep branch 𝑑 with VGGish feature of the signals.
Experiment setting Avg. complexity (in seconds)

Binary classification 5.89 × 10−6

Multi-class classification:
𝑛0 = 2 diseased + 1 healthy

0.96 × 10−5

Multi-class classification:
𝑛0 = 3 diseased + 1 healthy

1.34 × 10−5

Multi-class classification:
𝑛0 = 4 diseased + 1 healthy

1.57 × 10−5

Multi-class classification:
𝑛0 = 5 diseased + 1 healthy

1.95 × 10−5

Multi-class classification:
𝑛0 = 6 diseased + 1 healthy

1.87 × 10−5

Deep multi-class multi-view disease classification performance. The second set of experiments describes the performance of the deep
learning based multi-class disease classification model described in Section 3.3. Table 2 reports the performance of VoiceLens in
presence of up to 6 different multiple pathology classes, wherein the task is to predict the disease-specific pathology condition
of the test sample. For a given 𝑛0 ∈ {2,… ..6} and each disease-specific pathology sample subcollection 𝑃𝑘 ⊂ 𝑡𝑒𝑠𝑡 (𝑘 ∈ ), at a
given iteration of testing, we randomly choose (𝑛0 − 1) other pathology class-specific sample collections and the healthy sample
subcollection to form the subset 𝑠𝑢𝑏

𝑡𝑒𝑠𝑡 ⊂ 𝑡𝑒𝑠𝑡. Therefore, 𝑠𝑢𝑏
𝑡𝑒𝑠𝑡 has samples from 𝑛0 + 1 classes in total. For every choice of 𝑛0, we

reiterate the experiments with all possible choices of 𝑃𝑘 for 20 times with 10 fold cross-validations. The table shows the performance
of VoiceLens under different configurations of its multi-view multi-class classification module that is described in Section 3.3. Note
that the proposed Joint Multi-view Classifier reports an improved performance over the single-view deep classifier 𝑑 that leverages
VGGish as a ‘‘warm start’’ for its lower layers and adds customized Fully connected layers for making a disease-specific classification
decision. While LogFBank and SSC do not always positively contribute in terms of improving the classification performance, merging
𝑑 and the handcrafted branch ℎ using MFCC consistently improves Accuracy and F1-Score across several multi-class experiment
ettings with different choices of 𝑛0 ∈ {2,… ..6}. In fact, on average, the proposed Joint Multi-view Classifier of VoiceLens system

reports an improvement of around 2% over the single-view deep classifier 𝑑 .
Figs. 6 and 7 compare the performance of VoiceLens against several traditional machine learning models (Bishop, 2006), which

include Random Forest, Support Vector Machine, Decision Tree, Gaussian Naive Bayes, and the single-view deep classifier (ℎ),
as described in Section 3.3. To perform this set of experiments, we use LogFBank, SSC, and MFCC Features to describe the input
sample to all the machine learning models mentioned earlier. Fig. 6 (and 7) reports the performance details using the Accuracy
(and F1-Score) metrics. The results exhibit a more robust performance with a significantly lower standard deviation among Accuracy
nd F1-Score values and have an increase in the average by about 2 − 3%. As observed in both these figures, the proposed multi-
lass disease classifier module of VoiceLens consistently outperforms other machine learning models. The proposed joint multi-view
lassifier learning framework that integrates the finetuning process of ℎ and 𝑑 within a single neural network architecture also
emonstrates promise in improving the performance of the single view deep classifier ℎ.

. Discussion & conclusion

In this work, we have proposed Voice Lens, a two-phase multi-view multi-class classification module. The method leverages a
owerful Joint Learning framework enhanced by the combination of handcrafted and deep features used on acoustic signals obtained
rom patient voice samples. As shown in the Experiment section, Voice Lens significantly outperforms traditional Machine Learning
odels like Random Forest, Support Vector Machine, Gaussian Naïve Bayes, Decision Tree Classifier, and single view deep learning

lassifiers. However, one of the main roadblocks when addressing this problem include the lack of publicly available datasets with
ignificant voice samples. Although the dataset used to evaluate Voice Lens, Saarbrucken Voice Database, is one of the largest
atabases with both healthy and pathological Voice samples available to the research community, some of the rare disease classes
ave a considerably sparse number of representative samples. This affects the very basic necessity of training various sophisticated
achine learning including ours. Aside from this, the label information of the voice samples does not include the severity or stage of

he disease in question. Therefore, it may be possible that some mild disease symptoms may be overlooked. Furthermore, some of the
amples have been classified into multiple pathology classes, which can significantly affect training and testing processes. Moreover,
he samples in this dataset are both male and female. This may have also affected the model as the acoustic signals produced by
ale and female participants are somewhat different. Additionally, the dataset in consideration is in the German Language. When
10
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Fig. 6. Comparative Study on the proposed multi-view multi-class classification task using Accuracy in the Saarbruecken Voice Database (SVD) (Woldert-Jokisz,
2007) dataset. Columns (a), (b), and (c) show the results using LogFBank, SSC, and MFCC features respectively.

intend to collect data from patients both healthy and pathological under the consultation of healthcare professionals and separate
this collected database based on gender, age, disease stage and ensure all categories have a similar and sufficient number of samples
for training purposes. Moreover, given the sensitive nature of the problem being considered, the model must be explainable to the
patient and caregiver. For example, the system must be able to identify which specific segment of the acoustic signal led the system
to arrive at its decision. Toward this, one possible future extension would be to create a network architecture that may have the
explainability capacity of its reasoning for its prediction.
11
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Fig. 7. Comparative Study on the proposed multi-view multi-class classification task using F1-Score in the Saarbruecken Voice Database (SVD) (Woldert-Jokisz,
2007) dataset. Columns (a), (b), and (c) show the results using LogFBank, SSC, and MFCC features respectively.
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