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A B S T R A C T

The brain–computer interface supports a variety of applications with the help of machine
learning technology. However, existing edge-cloud infrastructure requires subjects to send their
sensitive neural signals to the cloud for training the model which brings privacy concerns.
Although the recent distributed learning technology is used to help protect subjects’ privacy, it
brings high communication costs and cannot avoid privacy reconstruction attacks. In this paper,
we propose deep compression learning techniques in the privacy computing infrastructure
that can be used for neural decoding while preserving privacy and largely reducing the
communication cost. Specifically, we first perform heterogeneous neural signals processing and
convert them to resized functional brain connectivity images. Then, a semantics structure-
based unsupervised deep compression learning network is trained and generates a neural hash
locally for each image. Each hash value is irreversible that cannot be used to reconstruct the
user’s original neural signal. After that, the cloud end receives the uploaded neural hashes and
corresponding labels and filters the abnormal ones. Finally, these neural hashes are used for
training neural decoding models. Since a single hash value can correspond to different types of
labels, it only needs to be uploaded once with a very small size and then reused for different
training tasks, which largely reduce communication cost. Our experiment results show that
the proposed privacy computing techniques can be applied to heterogeneous neural signals for
training different neural decoding models where the relative accuracy can achieve above 83%.

1. Introduction

A brain–computer interface (BCI) system can provide a high-throughput communication method to convey brain messages
independent from the brain’s normal output pathway (Santhanam, Ryu, Byron, Afshar, & Shenoy, 2006). With the development of
machine learning technology, BCI becomes increasingly promising and popular for human–machine interaction, which can support
a wide variety of applications including command inference, emotion recognition, disease detection, etc (Wolpaw et al., 2000).
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Fig. 1. A privacy computing infrastructure using deep compression learning techniques for training neural decoding models in edge-cloud brain computer
interface.

However, traditional edge-cloud infrastructure and machine learning techniques are required to send subjects’ sensitive brain data
from the edge to the cloud for training, which brings concerns in security and privacy.

Existing works explored some distributed deep learning-based neural decoding approaches in BCI to protect users’ pri-
vacy (Bercea, Wiestler, Rueckert, & Albarqouni, 2021; Wu, Chen, Zhou, & Zhang, 2020). In distributed deep learning, each party
trains a model using private data locally and only uploads the model parameters to the cloud for updating the global model. Gao,
Ju, Wei, Liu, Chen, and Yang (2019) developed a heterogeneous federated learning model for training over heterogeneous EEG
data. Li et al. (2020) proposed a privacy-preserving federated learning framework that adds Gaussian and Laplace noise into local
model weights for training the fMRI-based decoding models. To summarize, these existing works mainly have two limitations:
1) High communication cost : Distributed learning is typically limited by an upload bandwidth of 1 MB/s or less (McMahan, Moore,
Ramage, Hampson, & y Arcas, 2017), and needs many communication rounds for convergence, therefore communication is a critical
bottleneck. 2) Privacy recovery : User private data (e.g., age, gender, health condition) is likely to be recovered from uploaded model
weights and gradients in distributed deep learning (Melis, Song, De Cristofaro, & Shmatikov, 2019). Although adding Gaussian and
Laplace noise may defense reconstruction attacks, it will increase iteration times to converge and bring more communication costs.
Therefore, how to preserve user’s privacy and save communication costs are still an ongoing issue in training recognition models
for BCI applications.

To this end, we develop deep compression learning techniques in the privacy computing infrastructure for neural decoding. To
implement our framework, we first pre-process and convert brain signals (e.g., EEG, fNIRS, fMRI) to brain functional connectivity
images, and then a semantics structure-based unsupervised deep compression learning network is trained based on these images
for generating neural hashes in the edge. Hash values are irreversible that cannot be used to reconstruct a user’s privacy. After
that, these neural hashes are uploaded to the cloud and grouped by labels, and a statistical autonomous and data-driven approach
is leveraged to filter abnormal hash values. Finally, these neural hashes are used for training neural decoding models centralized.
Since a single neural hash can correspond to different types of labels, it only needs to be uploaded once with a very small size and
reused for different training tasks, which largely reduces communication costs.

Our contributions are summarized as three-fold:

• We develop a distributed deep compression learning framework in the privacy computing infrastructure that preserves users’
privacy and largely reduces communication cost in training neural decoding models to support extensive BCI applications.

• We implement functional brain connectivity image construction, deep compression learning network, and anomaly filter to
deal with heterogeneous EEG data, fNIRS data, and fMRI data in our framework.

• We leverage relative accuracy to evaluate the neural decoding performance with different hash sizes in three applications.

2. Framework overview

Edge end: In the edge end, collected brain signals are first pre-processed and converted into functional brain connectivity images.
Then, each participant trains a semantic structure-based unsupervised deep compression learning network based on a pre-trained
model locally and generates neural hashes, which are transmitted to the cloud server along with labels afterward, as shown in Fig. 1.
Cloud end: In the cloud server, the received neural hashes from different participants are grouped by their labels, and then an
abnormal neural hash filter is applied to find and discard the inconsistent hash values. These uploaded neural hashes can be reused
in the training process for developing customized neural decoding models for different applications.
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3. Methodology

3.1. Heterogeneous neural signal processing

The fMRI sensor collects a sequence of whole brain volumes data in a time interval. In fMRI scan, a voxel is the unit of the
rain volume. Therefore, raw fMRI data is four-dimensional, i.e., three dimensions represent spatial information and one dimension
epresents temporal information. After realignment, slice time correction, normalization, smoothing, Blood Oxygenation Level
ependent (BOLD) time series of each voxel is calculated by using a filtering approach (Athanasiou, 2014; Yan, Wang, Zuo, &
ang, 2016). BOLD time series represents the change of activation of the neurons over a time period.

For fNIRS measurement, time sequences of optical intensity changes from different channels are recorded. Then, we apply a
andpass filter of 0.01 to 0.3 Hz to mitigate the physiological noise caused by heartbeat and respiration. After that, time series
f relative changes in concentrations of oxygenated hemoglobin (𝛥HBO) for each channel is calculated based on the modified
eer–Lambert law (Hoshi, 2003).

For EEG signals, we first use filter methods to remove extrinsic artifacts such as sweating and drift in the electrode impedance,
nd then apply independent component analysis to remove some intrinsic artifacts caused by eye movement, blinking, and facial
uscle activity (Jebelli, Hwang, & Lee, 2018). After that, we can obtain channel-wise clean ECG signals.

.2. Functional brain connectivity image construction

Different tasks activate different regions of the brain cortex. For example, performing and coordinating motor tasks activate the
ensorimotor region, complex problem-solving tasks activate the Frontal–parietal region, and visual information processing tasks
ctivate the Occipital region (Pfurtscheller & Neuper, 1997; Yang, Deng, Xing, Xia, & Li, 2015). Recent studies find that the activated
rain region shows increased local functional connectivity density, while weakly activated/deactivated regions show decreased local
unctional connectivity density (Tomasi, Wang, Wang, & Volkow, 2014).

Therefore, it is critical to construct a functional brain connectivity graph with vertices corresponding to neurons and edges
orresponding to the temporal dependency of neurons for studying task-related brain activation. Specifically, we calculate the
earson correlation coefficients between each pair of 𝛥HBO signals from 𝑛 channels to get a 𝑛 ∗ 𝑛 adjacency correlation

matrix. For each element in the matrix, high correlation coefficients represent strong functional connectivity between two neurons
(i.e., corresponding channels), and low correlation coefficients represent weak functional connectivity between two neurons.

The next step is to convert the correlation matrix to an image that preserves the characteristics of functional brain connectivity.
We first shift each original element value (in the range of −1∼1) to 0∼2, and then scale it to 0∼255. Since blue and orange are
shown to be more sensitive in deeper layers in convolutional neural networks (used in next subsection) (Flachot & Gegenfurtner,
2021), we choose jet colormap (Thyng, Greene, Hetland, Zimmerle, & DiMarco, 2016) as the mapping function from element value
to RGB space. In this way, (positive and negative) strong connectivity which is represented by near-blue and near-orange can be
well-captured. After that, we resize the 𝑛 ∗ 𝑛 to 224 ∗ 224 using bicubic interpolation.

3.3. Deep compression learning network

To protect users’ privacy and reduce communication costs, we develop a semantic structure-based unsupervised deep compression
learning network to transform functional brain connectivity images to fixed-size neural hashes. Our proposed hash function has the
following characteristics:

• Irreversible: Hash values cannot be used to infer or reconstruct the original functional brain connectivity images which contain
users’ privacy information, such as age, gender, health condition, etc (Salakhutdinov & Hinton, 2009).

• Semantic-preserving: Relative distance between the input data samples is preserved in the relative distance between the output
hash values. Therefore, similar input data samples are mapped to the same or similar hash values.

The main goal of a deep compression learning network is to map original data samples to Hamming space where semantic
relationships between different data samples can be captured and preserved. Recent studies show that features extracted from pre-
trained deep architectures have rich semantic information (Girshick, Donahue, Darrell, & Malik, 2014), which provides the potential
to learn the semantic similarity structure without using any label information.
Semantic similarity construction: We first adopt a pre-trained VGG-F network (Simonyan & Zisserman, 2014) to extract deep
feature vectors from input functional brain connectivity images. Then, we calculate the cosine distance for every two deep feature
vectors. It is assumed that feature vectors with much smaller distances than the others are semantically similar, and feature
vectors with much larger distances than the others are semantically dissimilar. Thereby, we split the distance histogram from
the maximum value and use Gaussian distribution to approximate each part. The distance thresholds 𝑑similar and 𝑑dissimilar for
semantically similarity and dissimilarity are calculated based on the mean and standard deviation of the Gaussian distribution
in each part, respectively (Yang, Deng, Liu, Liu, & Tao, 2018). After that, we can obtain a semantic similarity function as:

𝐺𝑗𝑘 =

⎧

⎪

⎨

⎪

1 if 𝑑(𝑗, 𝑘) < 𝑑similar

0 if 𝑑similar ≤ 𝑑(𝑗, 𝑘) ≤ 𝑑dissimilar (1)
3
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−1 if 𝑑(𝑗, 𝑘) > 𝑑dissimilar



Smart Health 23 (2022) 100229H. Li et al.

i
o

c

3

m
T

d
I
c

o

where 𝑑(𝑗, 𝑘) is the cosine distance between deep feature vectors of a image pair 𝑥𝑗 and 𝑥𝑘. If an image pair is semantically similar,
the semantic function will return 1; If an image pair is semantically dissimilar, the semantic function will return -1. We will set the
semantic function as 0 if ambiguous similarity is obtained.
Neural hash similarity construction: In the same while, we construct a Hash similarity function by using the inner product of a
pair of hash codes, which can be formulated as: 𝐻𝑗𝑘 = 1

𝑙 𝐛
⊤
𝑗 𝐛𝑘, where 𝑙 is the bit number of hash codes, 𝐛𝑗 is the hash codes of input

mage 𝐱𝑗 , and 𝐛𝑗 ∈ {−1, 1}𝑙. If a pair of hash codes is similar, the Hash similarity function will return a value closer to 1; If a pair
f hash codes is dissimilar, the Hash similarity function will return a value closer to −1.
Optimization problem: Our goal is to map semantically similar image pair into similar neural hashes, semantically dissimilar image
pair into dissimilar neural hashes, and discard the pair with ambiguous semantic similarity. Therefore, we develop a loss function
to minimize the difference between hash similarity and semantic similarity (Yang et al., 2018), which is formulated as:

𝑚𝑖𝑛 𝛤 (𝜔) = 1
𝑛2

𝑛
∑

𝑗=1

𝑛
∑

𝑘=1
|𝐺𝑗𝑘| ⋅ ‖𝐺𝑗𝑘 −

1
𝑙
𝐛̃⊤𝑗 𝐛̃𝑘‖

2
2, (2)

where 𝐛̃𝑗 = tanh (𝐹 (𝐱𝑗 ;𝜔)) that relaxes the binary constraint to enable the back propagation in the modified VGG-F network (i.e., the
last layer is changed to a fully-connected layer with 𝑙 hidden units), 𝐹 (𝐱𝑗 ;𝜔) is 𝑙 dimension output of this deep neural network, 𝜔
is the network parameters. We apply stochastic gradient descent (SGD) method (Li, Zhang, Chen, & Smola, 2014) to minimize this
function to obtain optimized network parameters. Finally, for an input functional brain connectivity image 𝐱𝑎, we can generate the
orresponding neural hash as: 𝑠𝑖𝑔𝑛(𝐹 (𝐱𝑎;𝜔)).

.4. Abnormal neural hash filter

After generating a neural hash for each input image, users upload the hash values and labels to the cloud. On the user end, users
ay accidentally generate or upload some abnormal hash values, due to the wrong measurement of brain signals or mislabeling.
herefore, we leverage a statistical autonomous and data-driven method to filter the abnormal hash values.

The first step is to identify the potential anomalies from the empirically observed hash codes by using the density-based outlier
etection method. The uploaded hash codes are represented as: {𝐛1,𝐛2,… ,𝐛𝑛} that correspond to the input image {𝐱1, 𝐱2,… , 𝐱𝑛}.
n these hash code sets, some hash codes should be the same which represent semantically similar images. The set of unique hash
odes is denoted as: {𝐮1,𝐮2,… ,𝐮𝑚} and the corresponding frequency is defined as: {𝐟1, 𝐟2,… , 𝐟𝑚}. For a single hash code 𝐛𝑗 = 𝐮𝑖, the

multimodal density (Gu & Angelov, 2017) is formulated as:

𝐷𝑀 (𝐛𝑗 ) = 𝐷𝑀 (𝐮𝑖) =
𝑓𝑖

1 + ‖𝐮𝑖−𝜇‖2
𝐵−‖𝜇‖

, (3)

where 𝐵 and 𝜇 are the average dot product and mean value of the {𝐛1,𝐛2,… ,𝐛𝑛}. Moreover, we also calculate the weighted local
unimodal density (Gu & Angelov, 2017), given by:

𝐷𝑊𝐿(𝐛𝑗 ) = 𝐷𝑊𝐿(𝐮𝑖) =
𝑝𝑖 − 1
𝑚

⋅
𝑓𝑖

1 +
‖𝐮𝑖−𝜆𝑚𝑖 ‖

2

𝑈𝑚
𝑖 −‖𝜆𝑚𝑖 ‖

, (4)

where 𝑚 is the number of unique hash codes, 𝑝𝑖 is the size of the {𝐮}𝑚𝑖 set, 𝑈𝑚
𝑖 and 𝜆𝑚𝑖 are the average dot product and mean value

f the {𝐮}𝑚𝑖 set. After that, we rank 𝐷𝑀 (𝐛) and 𝐷𝑊𝐿(𝐛) in ascending order, respectively, and consider the first half of 1
9 of the hash

codes with the smallest multimodal density and weighted local unimodal density as potential anomalies.
The second step is to use the union-find method to find several clusters of these potential anomalies. Finally, we calculate the

average cluster members count and compare each cluster. If the member count of one cluster is lower than the average, then the
potential anomalies will be regarded as actual anomalies and be discarded in the cloud.

3.5. Customized neural decoding models

After obtaining filtered neural hashes and corresponding labels, we develop a set of decoding models that are customized for
different applications. For each functional brain connectivity image, it is mapped to a single neural hash, but it can correspond
to multiple types of labels. For example, a functional brain connectivity image can have a behavior label and an emotion label
at the same time. Different from application-based features, neural hashes are fair to different applications and thereby only need
to be uploaded once to the cloud for training diverse decoding models, which largely reduce communication costs in distributed
learning. By leveraging powerful computational resources in the cloud server, we are able to select the most suitable decoding
models including classic machine learning models (e.g., SVM, Random Forest, etc.) and deep learning models (e.g., CNN, LSTM,
etc.) for different applications.
4
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Fig. 2. The impact of hash codes length on mental arithmetic recognition performance using fNIRS signals.

4. Evaluation

4.1. Data preparation

We prepare three types of brain data (e.g., fNIRS, EEG, and fMRI) for three different applications, which are mental arithmetic
recognition, motor imagery recognition, and visual stimuli recognition. With a pre-trained VGG-F network, we train a customized
deep hashing model for each subject. After that, the generated hash codes and corresponding labels are used to train a recognition
model in the cloud. We perform 5-fold cross-validation for each recognition model.

In the fNIRS dataset (Shin et al., 2016), fNIRS signals are collected by 72 channels at a 10 Hz sampling rate. There are 29 subjects
(14 males and 15 females) in this study. Each subject performs 30 mental arithmetic tasks and 30 rest tasks with a length of 10 s
for each. The mental arithmetic task is to repeatedly perform subtracting a one-digit number from a three-digit number, such as
‘‘341-8-8-..’’. Each task is regarded as a sample. Finally, we can get 870 mental arithmetic samples and 870 rest samples in total for
training a mental arithmetic recognition model.

In EEG dataset (Shin et al., 2016), EEG signals are collected by 30 channels at a 200 Hz sampling rate. There are 29 subjects
(14 males and 15 females) in this study. For motor imagery application, subjects are requested to perform haptic motor imagery,
i.e. imagine the feeling of opening and closing their left hands or right hands as they were grabbing a ball. Each subject performs
30 left-hand motor imagery tasks and 30 right-hand motor imagery tasks with a length of 10 s for each. Each task is regarded as a
sample. Finally, we can get 870 left-hand motor imagery samples and 870 right-hand motor imagery samples in total for training a
motor imagery recognition model.

In fMRI dataset (Chang et al., 2019), the subjects are asked to judge whether they like, dislike, or are neutral about the stimuli
image of each trial. One image is presented for 1 s in each trial, with 9 s of fixation between trials. There are 5252 stimuli trials
in total. In each trial, the fMRI sensor scans the whole head volume five times. Since the occipital place area of the right head is
activated more during the stimuli trial and is often involved in scene perception (Dilks, Julian, Paunov, & Kanwisher, 2013), we
select this area that consists of 187 voxels to construct the functional connectivity map. One subject data is used in our experiment,
and one trial is regarded as one sample, so we finally get 2178 samples labeled by like, 2054 samples labeled by dislike, and 1020
samples labeled by neutral for training a visual stimuli recognition model.

4.2. Metrics

We use the relative accuracy as the metric, given by:

𝐴𝑐𝑐𝑅 =
𝐴𝑐𝑐𝐻
𝐴𝑐𝑐𝐵

, (5)

where 𝐴𝑐𝑐𝐻 represents the recognition accuracy of our system, 𝐴𝑐𝑐𝐵 is the baseline recognition accuracy. The baseline model is
trained without using the hash codes. Specifically, each element in the functional brain connectivity matrix is regarded as a feature,
and thereby we can get a 𝑛2 dimension feature vector for inputting to an SVM classifier. For fNIRS signals and EEG signals, 𝑛 is the
number of channels, and for fMRI signals, 𝑛 is the number of voxels. We perform 5-fold cross-validation for the mental arithmetic
recognition model, motor imagery recognition, and visual stimuli recognition, and get a baseline accuracy for each.

4.3. Overall performance

We first train the deep hashing network and generate the hash code with the length of 8 bits, 16 bits, 32 bits, 64 bits, 128 bits,
256 bits, respectively. Then, we train the recognition model with each length of hash code as input. The impact of the hash codes
length on system performance is evaluated.
Mental arithmetic recognition: As shown in Fig. 2, we find that the relative accuracy is low when the length of hash codes is less
than 16 bits. The performance is improved when the length of hash codes increased, however, the improvement is not significant
as the length of hash codes increases from 128 bits to 256 bits. To be specific, the relative accuracy can achieve 78%, 86%, 91%,
92% for 32 bits, 64 bits, 128 bits, and 256 bits, respectively.
5
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Fig. 3. The impact of hash codes length on motor imagery recognition performance using EEG signals.

Fig. 4. The impact of hash codes length on visual stimuli recognition performance using fMRI signals.

Motor imagery recognition: The system achieves around 83% when the length of hash codes reaches 64 bits, but it does not
increase a lot after that, as shown in Fig. 3. This is because the original size of the functional brain connectivity graph (i.e., 30∗30)
is relatively small, and thereby does not need much hash space to store the connectivity information. The highest accuracy is much
lower than the mental arithmetic recognition model trained with fNIRS data. This may be because the functional connectivity of EEG
data that is based on the time-series correlation misses some frequency information in representation. Such frequency information
is proved to be effective in many EEG-based neural signal analytics (Ismail & Karwowski, 2020).
Visual stimuli recognition: As observed in Fig. 4, the relative accuracy slightly increases from 8 bits to 64 bits, and then experiences
a notable improvement from 64 bits to 256 bits, and reaches the highest at 256 bits, i.e., 88%. This is because the functional brain
connectivity graph is 187∗187, some rich connectivity information cannot be well-preserved in a small hash size.

To summarize, the trained decoding models for different applications can achieve above 83% relative accuracy when the neural
hash size is set as 128 bits. Compared with the transmission of a functional brain connectivity matrix or image, the transmission
cost can be reduced by at least 100 times, which largely saves the communication cost.

4.4. Performance with demographic factors

We are curious about whether the generated neural hashes can be used to train inclusive decoding models. Therefore, we evaluate
the recognition performance under different demographic parameters using the fNIRS dataset and EEG dataset, and the neural hash
size is set as 128 bits. 14 males and 15 females are enrolled in the evaluation. Fig. 5 (a) shows that the relative accuracy is almost
the same for male subjects and female subjects in both mental arithmetic recognition and motor imagery recognition. It indicates
that the decoding models trained on neural hashes are insensitive to gender factors. In the age group, 21 subjects aging from 20–30,
and 8 subjects aging above 30. As observed in Fig. 5 (b), the 20–30 and >30 age group achieve around 91.5% and 90% relative
accuracy of mental arithmetic recognition, and achieve around 82.7% and 83.6% relative accuracy for motor imagery recognition.
It suggests that the age factor does not affect the performance of decoding models trained on neural hashes.

5. Conclusion

In this paper, we develop deep compression learning techniques in privacy computing infrastructure for analyzing and training
neural decoding models. In the edge end, the heterogeneous neural signals are first processed and converted to functional brain
connectivity images with unified size. Then, we train an unsupervised deep compression learning network based on the semantics
structure of the input images to generate neural hashes, which are uploaded to the cloud together with their labels afterward.
Neural hashes are irreversible that cannot be used to reconstruct privacy. Moreover, the size of neural hash is small which largely
reduces communication cost. In the cloud end, a statistical autonomous and data-driven approach is leveraged to filter abnormal
hash codes. After that, we use these neural hashes and labels to train different decoding models. Experiment results show that the
trained decoding models for different applications can achieve more than 83% relative accuracy.
6
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Fig. 5. The performance of trained recognition models under different demographics.
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