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A B S T R A C T

Acoustic signals generated by the human body have often been used as biomarkers to diagnose
and monitor diseases. As the pathogenesis of COVID-19 indicates impairments in the respiratory
system, digital acoustic biomarkers of COVID-19 are under investigation. In this paper, we
explore an accurate and explainable COVID-19 diagnosis approach based on human speech,
cough, and breath data using the power of machine learning. We first analyze our design space
considerations from the data aspect and model aspect. Then, we perform data augmentation,
Mel-spectrogram transformation, and develop a deep residual architecture-based model for
prediction. Experimental results show that our system outperforms the baseline, with the ROC-
AUC result increased by 5.47%. Finally, we perform an interpretation analysis based on the
visualization of the activation map to further validate the model.

1. Introduction

At face-to-face clinical visits, clinicians often leverage human body sounds (e.g., breathing, heart, digestion) to diagnose disease
or evaluate disease progression, such as respiratory disease, Parkinson’s disease (Erdogdu Sakar, Serbes, & Sakar, 2017; Pramono,
Bowyer, & Rodriguez-Villegas, 2017; Zhang et al., 2019). With the development of mobile health technology, researchers investigate
digital biomarkers from these human sounds collected by microphones for facilitating telemedicine (Baghai-Ravary & Beet, 2017;
Cummins et al., 2015).

As the pathogenesis of COVID-19 is increasingly indicating impairments in the respiratory system, recent studies start to explore
the digital biomarker from respiratory sounds (e.g., coughs, breathing and voice) to assist the detection of COVID-19 in an effortless
and remote manner. Huang et al. (2020) used a remote electronic stethoscope to capture the lung auscultation characteristics as
the indicator of COVID-19. Imran et al. (2020) developed a smartphone app to collect cough sounds for studying the difference of
pathomorphological changes in the respiratory system caused by COVID-19 infection and other respiratory infections. Brown et al.
(2020) developed an automatic diagnosis of COVID-19 approach based on crowdsourced breath and cough data. However, these
works only scratch the surface of the potential of such respiratory sound data, rather than providing insightful explanation on how
these data contribute to COVID-19 diagnosis.
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In this paper, we develop an explainable automatic COVID-19 detection system based on speech, cough, and breath data. We
irst summarize our design space considerations from the aspect of data size, data dimension, and model. A preliminary feature
tudy is also conducted to investigate the data variance between COVID subjects and healthy subjects based on our dataset. After
aining the basic domain knowledge, we first apply a set of data augmentation techniques including time shifting, pitch shifting,
nd Gaussian noise injection, to promote the variance of the data during training phase. Then, we transform the 1D audio data to
D Mel-spectrogram for preserving pathological information with a high-resolution. Next, these Mel-spectrograms are fed to a deep
esidual architecture for the automatic features selection and the COVID risk estimation. Finally, a feed-forward network is applied
o fuse the results from Cough Net, Speech Net, and Breath Net to make the final decision.

To evaluate our system, we construct a baseline that implements a respiratory sound-based COVID diagnosis work (Brown et al.,
020) on our dataset. The baseline is based on a machine learning classifier (e.g., SVM) with handcrafted features and learnable
eatures as input. ROC-AUC results show that our work can outperform the baseline with a single breath input, a single speech
nput, and a fusion input. To validate the interpretability of our model, we further visualize the activation map and identify that
he regions of formants, some unvoiced phonemes, and inhales after unvoiced signals can contribute to the COVID prediction.
he visualization of the model’s regions of interest can provide more insights and explainability for researchers and clinicians to

nvestigate the correlation between human acoustic characteristics and COVID-19 onset, specifically for COVID patients with no
ymptoms. It also helps explore a brand new vocal biomarker, which can identify the difference between respiratory diseases and
OVID-19. To summarize, it boosts the transition from existing expensive molecular testing methods to non-contact, effortless, and

ast testing schemes.
To summarize, our contributions are three-fold:

• We investigate a set of fundamental theories to select the most suitable feature design space and model design space for disease
detection.

• We develop an explainable COVID-19 detection system based on speech, cough, and breath, which consists of data augmen-
tation, Mel-spectrogram transformation, and a residual deep learning network.

• We evaluate our system on 172 COVID-19 subjects and 793 healthy subjects, and achieve above 70% ROC-AUC result. An
interpretation analysis is performed to further validate our model.

2. Design space consideration

2.1. Data consideration

Data size. The key bottleneck to developing the audio-based classification model using deep learning technology is limited labeled
data. Recent studies have shown that increasing the amount of data can promote the generalization ability as well as the model
performance (Wen et al., 2020). Data augmentation is an effective tool to increase the size and improve the quality of the training
data, and solve the imbalanced class issue. The basic idea of data augmentation is to generate a synthetic dataset that can cover
unexplored input space while keeping correct labels. To design a suitable audio data augmentation approach, we need to consider:
(1) the intrinsic properties of time series audio data, such as temporal dependency; (2) the data augmentation methods should be
task-dependent. For example, the data augmentation methods effective for classification problems may not be valid for time series
anomaly detection.

Data dimension. How to effectively represent the data for feeding to the machine learning model is a critical issue. We need to
onsider the representation dimension and the information in each dimension. For the time series audio data, it can be abstracted
n the time domain, frequency domain, or both.

reliminary feature study. We conduct a preliminary study to investigate the data variance between COVID subjects and healthy
ubjects based on our dataset. A set of handcrafted features (Brown et al., 2020) is extracted from each cough, breath, and
peech sample, including pitch onset, root-mean-square (RMS) energy, spectral centroid, roll-off frequency, Mel-Frequency Cepstral
oefficients (MFCC), 𝛥MFCC. Specifically, pitch onset characterizes the peak from a pseudo syllable strength envelope, which can
e achieved by adding the positive first-order difference across each Mel band. RMS energy is the root-mean-square of the spectral
agnitude of a short-time Fourier transform. The spectral centroid locates large peaks corresponding to formants’ positions and
itch frequencies and is related to the sound brightness. The roll-off frequency is the center frequency for a spectrogram bin. MFCC
an characterize the shape of the vocal tract, which manifests in the envelope of the short-time power spectrum. As shown in Fig. 1,
ost features show a slight difference between COVID subjects and healthy subjects on speech samples except for onset and 𝛥MFCC.
owever, for breath samples and cough samples, most feature distributions are nearly the same across healthy subjects and COVID

ubjects, only MFCC displays a slight difference on breath samples, and only spectral centroid has a minor difference on cough
amples. To summarize, we can obtain that pathological information are not well preserved in these hand-crafting features, especially for
2
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Fig. 1. The comparison of the mean features of breath, cough, and speech across healthy subjects an COVID subjects.

2.2. Model consideration

Machine learning technology is boosting various applications nowadays. To select the most appropriate machine learning model
for a specific application, we need to consider: (1) Input representation type. For example, 1-D input and 2-D input should choose
different network architectures; (2) Generalization ability. The labeled data collected in real-world applications are often limited.
How to design a network architecture that can be trained using small amounts of data without overfitting is an ongoing problem. (3)
Explainability. Most machine learning models are black boxes, which may influence the model extendability in similar applications.
Therefore, model explainability is required for the design.

3. Methodology

3.1. Data augmentation

We first apply a set of augmentation techniques on the time series audio data of each input batch in the training process. These
can increase the variance of the data during training to build a more generalized and robust model.

Although the dataset has a large amount of cough, breath, and speech data from COVID-19 patients, it still has an unbalanced
issue. Therefore, we intentionally over-sample the audio samples of COVID-19 subjects and healthy subjects following a rate of 7:1
in the training process. We combine the augmentation operations for each sample, which are summarized as follows:

Shifting. A recent study shows that pitch shifting and time shifting are effective in cough data augmentation for training a cough
detection model (Xu et al., 2021). Inspired by this work, we apply basic pitch shifting and time shifting on the raw audio signals.
Specifically, time shifting is set as a rolling basis from −0.5 s to +0.5 s to emulate different signal window positions in the audio
stream. In the same while, we lower or raise the pitch of the audio sample while maintaining the duration unchanged. The pitch of
each sample is randomly shifted from −4 semitones to 4 semitones.

Noise Injection. Noise injection is a method that injects a small amount of noise/outlier into time series signals without changing
the corresponding labels. To reduce the generalization error and improve the structure of the mapping problem, we choose to add
random noise in time-series audio data. It is intuitive to expect that noise might degrade the model performance in the training
process. In contrast, recent work has suggested that training a model with noise is equivalent to a form of regularization by adding
an extra term to the loss function (Bishop, 1995), which can reduce the generalization error. Moreover, noise injection to raw data
can enlarge the training dataset size and is proven to be an effective augmentation approach for audio data. When the training
sample is fed to the model, random noise is injected into the input variables which makes them different each time but the labels
are unchanged. Specifically, we add Gaussian noise to the audio signal with the amplitude ranging from 0.001 to 0.015, and SNR
ranging from 0 to 35 dB, while maintaining the label unchanged.
3
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Fig. 2. System overview. Our system consists of feature extraction and SoundNet.

3.2. Mel-spectrogram representation

Challenge: Intuitively, Fast Fourier Transform (FFT) is a useful tool to investigate the frequency properties of audio signals.
However, breath and cough sounds are usually non-stationary and thereby an FFT operation is not able to reflect their time-domain
characteristics.

Solution & Insights: To solve the above challenge, we partition the human sounds into multiple segments while assuming that the
signal in every segment is stationary, and then the FFT is performed on every segment. After that, we can present the data in both
time domain and frequency domain. To avoid the truncation effect, we adopt the window function on each segment to reduce the
spectrum leakage and enhance the spectral resolution. A recent study has shown that an appropriate window function can effectively
prevent the implicit pathological information from the high-frequency interference (Zhang et al., 2019).

Specifically, the augmented human sounds are segmented into a series of small Hanning windows with a length of 25 ms for
each and overlapping with 60%. The Hanning window function is formulated as:

𝑤[𝑛] =
1 − cos 2𝜋 ⋅ 𝑛

𝑁−1
2

. (1)

After segmentation, 1-D audio signals in these small windows can be transformed to 2-D spectrograms by:

Spectrogram{𝑥(𝑡)}(𝑚,𝜔) = |

∞
∑

𝑛=−∞
𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑗𝜔𝑛|2. (2)

Since Mel frequency can accurately represent the envelope of the short-time power spectrum associated with the shape of the
vocal tract, we map the spectral magnitudes of short-time Fourier transform onto the Mel-scale using the filterbank technology
for Mel-spectrogram generation. The mapping from 𝑦-axis (frequency) to the Mel frequency is given by (Ittichaichareon, Suksri, &
Yingthawornsuk, 2012):

𝑀𝑒𝑙(𝑓 ) = 2595 log
(1+ 𝑓

100 )
10 . (3)

The Mel-spectrogram reflects abundant correlation and pattern information, e.g., formants, sound intensity, which are prone to be
extracted by a deep learning model. We detail the SoundNet in the next subsection.

3.3. SoundNet

Challenge: CNN is a useful network for image classification problems. However, it needs a large dataset that contains tens of
thousands of samples for training to overcome the overfitting issue. Therefore, it is challenging to develop a deep neural network
with a small size dataset.

Solution & Insights: We leverage residual architecture (as shown in Fig. 2) in two aspects. (1) Prevent overfitting. Firstly, compared
with plain networks, the residual architecture does not have extra fully connected layers, which results in few parameters. Secondly,
the batch normalization layers in the residual network mitigate overfitting. This is because the normalization operation makes the
4
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Table 1
The performance comparison between our work and baseline.

Data type Set 0 Set 1 Set 2 Set 3 Set 4 Average 𝛥

Baseline Cough + Breath + Speech 0.7231 0.6451 0.6572 0.6332 0.6268 0.66

Our Work

Cough 0.6002 0.6181 0.5509 0.6876 0.4238 0.5761 −8.39%
Breath 0.4479 0.6955 0.7483 0.7558 0.7683 0.6831 2.31%
Speech 0.66 0.8727 0.8121 0.7162 0.7417 0.7598 9.98%
Cough + Breath + Speech 0.6347 0.6955 0.8269 0.7534 0.6228 0.7047 4.47%

mean and variance values slightly different from one another on each mini-batch, which can be regarded as injecting noise to every
hidden layer’s activations and thereby resulting in a slight regularization effect. (2) Accelerate convergence (He, Zhang, Ren, & Sun,
2016). The shortcut connections perform identity mapping by adding their outputs to the outputs of the stacked layers. In this way,
the network is able to convey the higher-level understanding of the last layers to the previous layers, which can re-modulate how
to understand the input in the training phase.

Implementation: Each type of human sound is labeled by users themselves, and then they are fed to the corresponding Cough Net,
Speech Net, and Breath Net, which are based on the 34-layer residual architecture. Each type of Net contains an input block, and
[3, 4, 6, 3] residual blocks. Each residual block has 2 convolutional layers, batch normalization is right after each convolution, and
the shortcut connection and downsampling are adopted between the residual blocks. Finally, we apply a feed forward network to
fuse the outputs from Cough Net, Speech Net, and Breath Net, and get the decision afterward.

4. Evaluation

4.1. Data preparation

In the dataset (Sharma et al., 2020), 172 subjects are COVID-19 positive and 793 subjects are COVID-19 negative. These negative
ubjects are completely healthy, have respiratory ailments (such as tuberculosis, pneumonia, and chronic lung disease) or COVID-19
ike symptoms, e.g., cough, fever, etc. They are in the age group of 15–90 years, and most of them fall in the age of 15–40 years.
mong them, 242 subjects are female and the rest are male. Each subject has three audio files, which are speech file, breath file,
nd cough file. The speech file is number counting from 0 to 20.

Each file longer than 3 s is regarded as a sample. If less than 3 s, we repeat it until it reaches 3 s. We divide all subjects into five
ets and perform a 5-fold cross-validation. In each training process, we augment the COVID samples and healthy samples following
rate of 7:1, and then we obtain around 1100 COVID samples and 1200 healthy samples of speech, breath, cough, respectively, for

ach round. In each test process, we do not augment the samples, and get around 40 COVID samples and 300 healthy samples of
peech, breath, cough, respectively, for each round.

.2. Software Implementation

We implement our Resnet-34 network in PyTorch which is pre-trained with ImageNet (Deng et al., 2009). We adopt Adam
ptimizer with a mini-batch size of 64. The initial learning rate is set as 0.01.

.3. Baseline

To objectively evaluate our system performance, we construct a baseline that applies a state-of-the-art respiratory sound-based
OVID detection model (Brown et al., 2020) on our dataset. This work develops a simple machine learning classifier (e.g., SVM)
ith various features (handcrafted and obtained through transfer learning) as input. We repeat this work based on their public
vailable model and perform 5-fold cross-validation on our dataset. Since the baseline is implemented on our dataset, the data
uality is controlled, the methodology can be compared in a more fair manner.

.4. Results

We use the ROC-AUC result as the metric to evaluate the COVID detection performance. As shown in Table 1, our system can
chieve above 70% ROC-AUC result. It outperforms the baseline with a single breath input, a single speech input, and a fusion
nput, where the ROC results are increased by 2.31%, 9.98%, and 4.47%, respectively. Although the system achieves the highest
OC-AUC for speech, the standard deviation of recall and precision is more than 3% higher with single speech as input than those
ith fusion as input. Therefore, our system requires the end-user to provide all three types of sound to conduct inference.

We further evaluate the impact of gender on system performance because the articulatory organs are different male and female.
s observed in Fig. 3, with a single speech input, the detection performance for females is slightly higher (less than 2%). Overall,
ur system is not biased on gender.
5
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Fig. 3. The impact of gender on system performance.

Fig. 4. Activation map visualization for model interpretation.

5. Interpretability validation and analysis

5.1. Implementation

To understand which time–frequency region of the spectrogram contributes to the final COVID prediction the most, we can apply
the weights to each element of each final convolution channel and then average along channels to generate an activation map. The
regions with the highest value contributed the most. We then overlay the activation map with the original Mel-spectrogram to
visualize.

5.2. Interpretation analysis

Speech Net. The Speech Net captures subjects’ formants and pitch information for prediction, whereas ignoring a few unvoiced
information, as shown in Fig. 4. The formant frequencies are due to the frequency shaping of vocal source signals by the vocal tract,
6



Smart Health 26 (2022) 100332H. Li et al.

M
b

6

N
a
o
f

N
c
s
d

I
s
h
t

7

o
d
p
f
S
t
w
m
r

D

t

D

A

g
s
p

which involves multiple articulators’ cooperation. Thereby, it is likely to contain pathological information and become the focus of
the Speech Net.

Cough Net. As observed in Fig. 4, the periodic inhales and unvoiced regions contribute most to the prediction when the subject is
continuously performing cough behavior. It is visible that the inhale of a COVID subject following a cough is not clear compared
with healthy subjects, which is learned by the Cough Net consequently.

Breath Net. In the Breath Net, our model is interested in both formants and the unvoiced regions as shown in Fig. 4. This is because
the strength, rate, and pitch frequency of inhaling and exhaling differ a lot across subjects, which may hide pathological information.

To summarize, our proposed deep residual architecture is explainable and can effectively learn pathological information from
el-spectrogram for COVID prediction. The interpretation analysis can help quantify pathological information and build a new vocal

iomarker for COVID-19, which can be distinguished from other respiratory diseases.

. Discussion

oise Interference. When the user speaks, the generated sound wave propagates in the air media, which is prone to interference from
mbient noises. The noise makes our system insensitive to minute changes in human acoustic sounds. We find that the performance
f breath-based COVID detection decreases more notably (around 13.2%) than that of cough-based and speech-based models. In the
uture, we plan to apply software-based noise reduction technology to improve the resilience of our system.

eural Network Size. We examine the COVID detection performance on a relatively smaller and larger neural network than our
urrent network model. We observe that the performance of ResNet-18 is around 8.7% lower than our model. When the network
ize is increased to ResNet-50, the performance is almost not changed compared to our current model. This is because our training
ata size is not large enough to learn the parameters of a deeper network.

ntegration of Health History. Since respiratory ailments (such as pneumonia, and chronic lung disease) share certain similar
ymptoms as COVID-19, the false alarm rate is slightly higher among the subjects with respiratory disease than that of completely
ealthy people. Self-report of health history can help our system make a more accurate prediction. In the future, we plan to add
he self-reporting function to our mobile COVID screening app.

. Conclusion

In this paper, we are the first to summarize the design space consideration for audio-based classification model in the aspects
f data and model. Based on it, we first leverage task-dependent data augmentation techniques to increase the variance of training
ata, and then perform frequency and time domain modulation to transform the 1D audio data to 2D Mel-spectrogram for preserving
athological information with a high-resolution. After that, the extracted Mel-spectrograms are fed to ResNet-34 for pathological
eatures selection and the COVID risk estimation. Finally, a feed-forward network is adopted to combine the results from Cough Net,
peech Net, and Breath Net to refine the final prediction result. Evaluation shows that our system’s ROC-AUC result is 5.47% higher
han the baseline. Furthermore, we perform interpretation analysis based on the visualization of the activation map to identify
hich time–frequency region of the spectrogram contributes to the final COVID prediction the most. Our exploration can provide
ore insights and explainability for researchers and clinicians to investigate acoustic modality for disease detection, not limited to

espiratory disease.
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