
Smart Health 28 (2023) 100396

A
2

Contents lists available at ScienceDirect

Smart Health

journal homepage: www.elsevier.com/locate/smhl

SimPPG: Self-supervised photoplethysmography-based heart-rate
estimation via similarity-enhanced instance discrimination
Soumyadeep Bhattachrjee a,∗, Huining Li b, Jun Xia b,c, Wenyao Xu b

a Williamsville East High School, NY, United States of America
b Department of Computer Sc. & Engg., University at Buffalo, United States of America
c Department of Biomedical Engg., University at Buffalo, United States of America

A R T I C L E I N F O

Keywords:
Remote photoplethysmography (rPPG)
approximation
Heart-rate estimation
Evaluation
Self-supervised learning
Instance discrimination

A B S T R A C T

Photoplethysmography (PPG) is an optical measurement technique to detect blood volume
changes in the microvascular bed of target tissues and has been a widely used technique
adopted by wearable devices to evaluate an individual’s health condition. However, as motion
and noise artifacts continue to pose manifold challenges toward the task of remote estimation
of this signal (popularly known as rPPG), an authentic approximation of rPPG signals is of
immense interest and convenience. In this work, we present a self-supervised learning-based
regression framework that can reliably estimate the heart rate by accurately approximating a
PPG signal from a participant’s videos with sufficient coverage of their skin regions, in the
presence of different types of local noises. The idea is that the PPG signals generated from the
different parts of an individual will be nearly identical, while these signals from two different
individuals may be comparably different. Though the severity of difference may vary based
on the variance in their health conditions. Motivated by this intuition, we augment an rPPG
signal extracted from a given facial landmark of an individual, using various other rPPG signals
extracted from the neighboring facial landmarks of the same individual, to align their unique
personalized patterns. Specifically, we develop a robust Similarity-aware PPG (SimPPG) based
heart-rate estimation scheme that adopts the instance discrimination method within a self-
supervised learning setting to perform two-fold objectives: (1) discriminating every positive pair
(rPPGs from different local skin regions of a given individual) from all negative pairs (rPPGs
from different local skin regions of different individuals in a batch); (2) enforcing the alignments
in the individual’s respective heart-rate predictions with that of the corresponding ground truth
PPG signals in parallel. Experiments using the large-scale UBFC-Phys dataset and our in-house
data collection not only show a remarkable performance of SimPPG (𝑀𝐴𝐸ℎ𝑟=1.89bpm, which
is 77% improvement compared to the existing baseline and 𝑀𝑆𝐸=2.91 in approximating the
PPG signal), but also show its effectiveness in terms of handling various skin features across
demographics. In a limited data environment, SimPPG is reported to have used only a random
75% of the available training collection to attain a competitive performance compared to several
state-of-the-art models.
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1. Introduction

While the Heart Rate Variability (HRV) of an individual often captures some critical insights into their health conditions,
hotoplethysmography (PPG) is a popular technique adopted in various applications of medicine, health, and sports, to track heart
ctivity and proactively detect an anomalous condition (if any) (Gil et al., 2010). As such, Remote estimation of PPG signals (rPPG) is
vascular optical measurement method, which estimates the reflected light and its variation to monitor the blood volume changes

n the microvascular bed of the skin tissues (Allen, 2007). In contrast to the traditional PPG technique that utilizes a contact or
ear-field pulse oximeter (Hassan et al., 2017), rPPG utilizes a low-cost RGB camera under visible light and does not require any
hysical contact. Typically, a video containing an individual’s skin regions (often facial videos) is captured by a webcam. The
xisting facial landmark localization algorithms are then leveraged to mark the regions of interest (ROIs) (Chen et al., 2018; Choi
t al., 2022; Patil, Wang, Gao, Xu, & Jin, 2018a, 2018b; Ryu et al., 2021). The sequences of average pixel information obtained from
everal ROIs across three color channels are defined as the initial raw rPPG signals, which are later post-processed to eliminate the
ffects of motion illumination variances. Finally, Heart Rates (HR) are estimated from these filter signals by identifying a bunch of
eliable peaks (Lin, Zheng, Li, Zhou, & Chen, 2021; Zaunseder, Vehkaoja, Fleischhauer, & Antink, 2022). Not only in evaluating an
ndividual’s health condition, but this technology has also been used in several other critical use case applications, including driver
tatus assessment, affective state evaluation, and in-vivo detection (Chen et al., 2018).

However, the majority of these studies demonstrate their effectiveness under certain assumptions being valid: (1) requiring
isibility to some predefined skin regions (e.g. finger, toe); (2) availability of large-scale training data demonstrating diverse data
haracteristics; (3) satisfying some restricted experimental conditions (e.g. in the absence of noises like motion artifacts); (4) lack of
hysical explainabilities (e.g. higher pulsatile strength may not always translate into the region’s potential for more accurate rPPG
xtraction). For example, a considerable amount of works have attempted to estimate heart rates from the rPPG, for which signals
re first approximated from the face videos (Perepelkina, Artemyev, Churikova, & Grinenko, 2020; Yang, Yang, Jin, & Wu, 2019) and
ater aggregated to appraise a gross signal. Significant attention is also invested in establishing the correlation between the region’s
osition and rPPG quality. Kwon, Kim, Lee, and Park (2015) find the forehead and both cheeks as potential regions for accurate
ulse extraction, while the mouth and chin regions provide a comparably less accurate estimation. Zhao, Mei, Xu, Li, and Feng
2019) use the ROIs below eye lines for the estimation task. Another set of works select a predefined number of face regions, which
re later evaluated in terms of their comparative pulsatile strength. However, due to the frequent non-rigid motion artifacts, a higher
ulsatile strength may not always translate into the region’s potential for more accurate rPPG extraction. Furthermore, as we observe,
ost of these algorithms rely on handcrafted features and multiple complex post-processing steps, which are difficult to reproduce.
dditionally, a wide variety of skin colors, the number of melanocytes, and textural changes due to the age of the individual (Shao,
sow, Liu, Yang, & Tao, 2016), may also pose extra challenges to the optical skin feature extractor module of the system. To improve
he representation scheme, a few recent works (Lampier et al., 2022; Ni, Azarang, & Kehtarnavaz, 2021; Perepelkina et al., 2020)
everage the power of deep learning-based techniques for the task of remote heart-rate estimation. However, most of these existing
ethods still depend on the availability of massive amounts of data, which may not always be a feasible assumption in this specific

cenario. A wide variety of data characteristics influenced by an individual’s age group, racial/ethnic, and other background details,
ay not have sufficient representatives in the training collection.

Toward this, we present a self-supervised learning-based (Devlin, Chang, Lee, & Toutanova, 2018; Ge et al., 2022) regression
ramework that can reliably approximate the PPG signal (and thereby estimate the heart rate) from a participant’s videos with
ufficient coverage of their skin regions. Self-supervised learning (Devlin et al., 2018; Ge et al., 2022) is a form of semi-supervised
earning, which has shown tremendous promise in recent years. In fact, even in challenging datasets like Imagenet, self-supervised
earning utilizing contrastive losses (Chen, Kornblith, Norouzi & Hinton, 2020; He, Fan, Wu, Xie, & Girshick, 2020) has recently
utperformed supervised pre-training, which requires a large collection of labeled training data necessitating an intensive human
nnotation effort. In this work, we develop a robust Similarity-aware PPG (SimPPG) based heart-rate estimation scheme that leverages

the instance discrimination approach, which matches features from multiple representations/views of the same instance while
distinguishing these features from those of other instances. Within a self-supervised learning setting, the proposed SimPPG learns to
discriminate every positive pair (two rPPGs from different local skin regions of a given individual are considered to be a positive
pair) from all negative pairs (two rPPGs from different local skin regions of different individuals are considered to be a negative
pair) by utilizing contrastive losses (Chen, Kornblith, Norouzi et al., 2020; He et al., 2020), while also enforcing the alignments in
their respective heart-rate predictions with that of the corresponding ground truth PPG signals. Actually, our approach to instance
discrimination stems from a basic observation that the vital health signals generated from the different parts of an individual will
be nearly identical to their ground truth PPG obtained via wearable devices (like pulse oximeter), whereas these signals from
two different individuals may still be comparably different and the severity of these difference may vary based on the variance
in their health conditions. Thus, if the model may learn the instance-specific discriminative characteristics of vital rPPG signals
without requiring any extra annotation effort, it may end up delivering a learning representation scheme that can capture the
unique personalized pattern variances for such physiological signals, while also remaining equally effective in depicting its class-
wise patterns (e.g. healthy Vs. non-healthy). The overview of the proposed method is shown in Fig. 1. To summarize, the primary
contributions of the work include.

1. The proposed SimPPG introduces a self-supervised learning-based regression framework that may reliably reconstruct the PPG
signal and thereby estimate the heart rate from an individual’s video stream with sufficient coverage of their skin regions. The
proposed estimation scheme may not only enable a robust and proactive health condition evaluation but also may facilitate
a real-time solution for several user case applications (e.g., emotion analysis, and biometric recognition).
2
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Fig. 1. Overview of the Proposed SimPPG Method, in which the system aims to learn a self-supervised sequence learning model that may approximate a PPG
response from a test video sequence, which may then be used for several downstream tasks like heart rate estimation.

2. By formulating an instance discrimination-based loss component, SimPPG explicitly emphasizes highlighting the instance-
specific similarity observed within two rPPG signals generated from the different skin regions of a given individual covered
in a video, while enforcing each of their learned intermediate representations to be closely aligned in their prediction of
heart rate, which makes the model more robust to local noises and the training module more effective to the limited data
environment.

3. An extensive experimental analysis using a large-scale UBFC dataset and our in-house test collection demonstrate the
efficiency of the proposed SimPPG in estimating the heart-rate, while also demonstrating its effectiveness in terms of handling
various facial features across demographics. As reported in the experiments, the proposed SimPPG can effectively reconstruct
the PPG signals (with an average approximation error of 𝑀𝑆𝐸=2.91) and reports an impressive Mean Absolute Error (MAE)
of 1.89 bpm, which is an improvement of 77% compared to that reported by the best existing baseline. In fact, we observe
that SimPPG only uses a random 75% of the training collection to attain an improved performance compared to several
state-of-the-art models.

The rest of the paper is organized as follows: Section 2 briefly describes the related works. The proposed method is described in
Section 3. Sections 4 and 5 respectively present the experimental results and conclusion

2. Related works

2.1. Remote photoplethysmography estimation

To identify the critical PPG features, several algorithms are introduced. These include: adaptive methods (Argüello-Prada, 2019),
digital filter based models (Jang, Park, Hahn, & Park, 2014), wavelet transformation (Vadrevu & Manikandan, 2018). However,
since non-rigid motion artifacts are found to be one of the main sources of noises contaminating the extracted rPPG signals (Siontis,
Noseworthy, Attia, & Friedman, 2021), blind source separation methods emphasize the denoising efforts to extract the BVP signal
(e.g. Principle Component Analysis (PCA) (Chen et al., 2018), Independent Component Analysis (ICA) (Wei, He, Zhang, & Wu,
2017)). Another set of works rely upon the optical or physiological principles to develop skin reflection-based models (Wang,
Den Brinker, Stuijk, & De Haan, 2016). These algorithms perform the signal estimation task by projecting the components related
to specular and diffusion reflectance, which are later fine-tuned, and the resulting signal along every color channel is represented as
the linear combination of all corresponding projected components. While at most two independent sources may be eliminated, in a
practical scenario, the component may still carry more independent sources (Wang, den Brinker, Stuijk, & de Haan, 2017). Though
such methods perform comparably better both in stationary and motion situations, strict reliance on hand-crafted features is not
sufficiently generalizable.

A set of recent research works (Almarshad, Islam, Al-Ahmadi, & BaHammam, 2022; Cheng, Wong, Chin, Chan, & So, 2021) have
adopted the deep learning algorithms for analyzing vital health signals like electrocardiogram (ECG) and PPG to perform several
machine learning tasks like classification, waveform segmentation toward facilitating early disease diagnosis or monitoring other
health conditions. Chen and McDuff (2018) designed a Convolutional Neural Network (CNN) based on an attention-enhanced skin
3
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reflection model for video-based HR estimation. Špetlšík, Franc, and Matas (2018) perform a 2-step CNN model to improve the HR
estimation performance. To enhance the reconstruction of rPPG signal from an individual’s video, some authors attempt to combine
spatiotemporal information via designing a deep Recurrent Neural Network (RNN) and 3D CNN (Tsou, Lee, Hsu, & Chang, 2020;
Yu, Li & Zhao, 2019; Yu, Peng, Li, Hong & Zhao, 2019). Yu, Peng et al. (2019) propose a spatio-temporal video enhancement
network (STVEN) to enhance the video and an rPPG network (rPPGNet) for accurate recovery of the rPPG signal from the enhanced
video. Tsou et al. (2020) proposes a Siamese-rPPG network that combines a Siamese architecture with 3D CNN to contrastively
improve the rPPG representation. Hu, Qian, Guo, Wang, He and Ren (2021), Hu, Qian, Wang, He, Guo and Ren (2021) introduce a
spatio-temporal attention network to highlight the unique information about the rPPG signal from a video segment that may enhance
its long-range temporal details. Song, Chen, Cheng, Li, Liu, and Chen (2021) employ the generative neural network to compensate
for the dearth of the data by generating some realistic rPPG signals. To boost the generalization capacity, recent authors also propose
attention-enhanced, sequential quality assessment networks (Gao, Wu, Geng, & Lv, 2022; Gao, Wu, Shi, Gao, & Geng, 2021), which
may explicitly contribute to accurate HR estimation. In recent work, Gao et al. (2022) predict the HR by focusing more attention
to the less noisy signal segments, whereas cues from the other segments, which are comparably more corrupt, are not included in
the estimation process. In contrast to these existing algorithms, which depend on a fundamental assumption of the availability of a
large-scale data collection, SimPPG enables a self-supervised learning mechanism that may leverage only a limited data collection to
apture the unique personalized signal patterns within the learned feature descriptor, while also retaining the critical class-specific
iscriminative patterns.

.2. Self-supervised instance discrimination

Self-supervised learning (SSL) as a form of semi-supervised learning has shown tremendous promise in recent years. In fact, in
ecent works (Oord, Li, & Vinyals, 2018; Zhang et al., 2021), SSL methods utilizing contrastive losses (Chen, Kornblith, Norouzi et al.,
020; He et al., 2020) have reported a remarkable performance superseding that of supervised pre-training. Various contrastive SSL
ethods solve an instance discrimination task, wherein the target is to discriminate each positive pair from all negative pairs within a

atch of samples. Although some alternatives to contrastive objectives (self-distillation (Caron et al., 2021; Grill et al., 2020), input
econstruction (Bao, Dong, & Wei, 2021; He et al., 2022)) have also been proposed, owing to its impressive performances, self-
upervised instance discrimination has been introduced as a prominent pre-training strategy in various problem settings. Although
he initial attempts were driven by the challenges specific to visual data (Feng, Xu, & Tao, 2019; Liu, Wu, Hu, & Lin, 2019), recently,
everal variants of instance discrimination algorithms have also been developed to handle the pre-training tasks for natural language
ata (El-Nouby et al., 2021; Ericsson, Gouk, Loy, & Hospedales, 2022; Giorgi, Nitski, Bader, & Wang, 2020; Meng et al., 2021;
ethmeier & Augenstein, 2021). In this work, we formulate self-supervised instance discrimination to support twofold objectives: (1)
ontrastively highlight instance-specific similarity patterns observed within two rPPG signals generated from different skin regions
f a given individual covered in a video, compared to the pair obtained from two different individual’s videos; (2) the learned
epresentations of rPPGs representing different skin regions of the same individual to be closely aligned with their ground-truth
PG signals.

. The SimPPG framework

In this work, we propose a self-supervised learning-based regression framework that can estimate a Photoplethysmography (PPG)
signal from the videos with sufficient coverage of human skin regions. While this may facilitate a real-time, unobtrusive, early
screening process of the individual’s health condition, videos are often susceptible to noise, such as color channel variances, non-
uniform resolution, lightness conditions, and offset of face positions in the visuals. To mitigate the issues related to such noise or
variations, we employ a pre-processing stage to crop, reshape, and normalize the image, described in Section 3.1. Unlike existing
methods obtaining a 1-D aggregated PPG signal to represent a human face video, the proposed SimPPG extracts multiple PPG signals
rom different local skin regions to deal with the variances in the PPG waveform over time, which may be due to the differences in
orphology and dynamics between different peripheral body sites (Huthart, Elgendi, Zheng, Stansby, & Allen, 2020). To leverage the
nique personalized pattern variances for such physiological signals that may facilitate an improved system generalization, SimPPG
dopts the instance discrimination method (Wu, Xiong, Yu, & Lin, 2018), where each video instance is treated as its own distinct
lass, and discriminative PPG representations are learned to distinguish between such individual instance classes. In a self-supervised
ontrastive learning setting with two different views of the same video instance, obtained by spatial data augmentation, we train
he network with the objective that the skin regions from the same video should be mapped nearby in learned embedding space
hile all other inputs should be contrasted.

In fact, given an annotated data collection  = {(𝐯𝑗 , 𝐲𝑗 )}
||

𝑗=1, where 𝐯𝑗 represents a video sequence and the corresponding label
𝐲𝑗 ∈ R𝑑 is the ground truth PPG signal collected by the wearable pulse Oximeter in parallel while recording the video, the task is
to learn an embedding model that can estimate an accurate PPG signal response from a video sequence 𝐯.
4



Smart Health 28 (2023) 100396S. Bhattachrjee et al.

a
r
R
o

∏

3

a
t
𝜃
K
r
o

3.1. Data preprocessing

While the proposed model is generic enough to capture PPG information from any video displaying sufficient skin regions of
ny body part of the patient, given the video context of the datasets used in our work, the face was the primary region dominantly
epresenting the skin information of the patients. Therefore, as a part of the preprocessing task, face regions are detected using a
etinaNet network (Lin, Goyal, Girshick, He, & Dollár, 2017) with a backbone MobileNet network (Howard et al., 2017). By means
f ROI average pooling, the facial area in each keyframe of the video sequence is resized to a fixed size of 𝑊 ×𝐻 ×𝐶, where 𝑊 ×𝐻

represents the spatial dimension of each keyframe and 𝐶 is the color channel. Thus, the entire video sequence 𝐯𝑗 is represented
in terms of a sequence of 𝑁 key frames

{

𝐯𝑓𝑗
}𝑁
𝑓=1 (i.e. 𝐯𝑗 ∈ R𝑊 ×𝐻×𝐶×𝑁 ). As this preprocessing step is mandatory to our proposed

model, we adopt a slight notation abuse and introduce a notation simplification to refer to the entire processed video collection as
{𝐯𝑗}

||

𝑗=1.

3.2. Feature extraction

For each detected face, affine face alignment based on facial landmarks detection [21] is performed to track the landmarks over
time. PPG signals are approximated using the rPPG method (we use the POS algorithm for our experiments) (Wang et al., 2016)
at multiple identified facial landmarks (Dong et al., 2018). A bandpass filter for [45𝑏𝑝𝑚, 180𝑏𝑝𝑚] frequencies is applied for each
(pixel, channel) pair independently in order to filter out signals not related to pulse cycles. Then, each 𝐯𝑗 is represented in terms of
a collection of rPPG signals {𝑥𝑖𝑗}

𝑛𝑗
𝑖=1, where 𝑛𝑗 denotes the number of identified facial landmarks that can be tracked in the entire

video sequence and 𝑥𝑖𝑗 is an initial approximation of the PPG signal (Wang et al., 2016) obtained from a region of interest around
the 𝑖th landmark.

3.3. Instance discrimination

For each detected face, affine fa
We adopt the instance discrimination approach that formulates an objective function based on the Softmax criterion, to highlight

the instance-specific similarity observed within the PPG signals generated from different skin regions of a given individual covered
in a video. Each 𝐯𝑗 is assumed to represent a distinct class in itself, and SimPPG aims to learn a stacked LSTM-based sequence
representation learning framework (described as an embedding function 𝐹 ) that can reconstruct the ground truths {𝐲𝑗}

||

𝑗 . In fact,
if we consider 𝐹 (𝑥) = 𝐠, the probability of the learned representation 𝐠 (representing a given rPPG signal 𝑥) being assigned into the
𝑗th class is:

𝑃 (𝑗|𝑥) =
𝑒𝑥𝑝(𝐲𝑇𝑗 𝐠∕𝜏)

∑

||

𝑗=1 𝑒𝑥𝑝(𝐲
𝑇
𝑗 𝐠∕𝜏)

, (1)

where 𝐲𝑇𝑗 𝐠 evaluates the fitment of 𝑔 to the 𝑗th instance, 𝜏 is a temperature parameter that controls the concentration of the
distribution (Hinton, Vinyals, Dean, et al., 2015), and 𝐠 is normalized (‖𝐠‖ = 1). Our objective is to maximize the joint probability

||

𝑗=1 𝑃 (𝑖|𝐹 (𝑥𝑗𝑗 )) as:

𝐼𝑛𝑠 = −
||

∑

𝑗=1

𝑛𝑗
∑

𝑖=1
𝑙𝑜𝑔(𝑃 (𝑖|𝐹 (𝑥𝑖𝑗 ))) = −

||

∑

𝑗=1

𝑛𝑗
∑

𝑖=1
𝑙𝑜𝑔

( 𝑒𝑥𝑝(𝐲𝑇𝑗 𝐹 (𝑥𝑖𝑗 )∕𝜏)
∑

||

𝑗=1 𝑒𝑥𝑝(𝐲
𝑇
𝑗 𝐹 (𝑥𝑖𝑗 )∕𝜏)

)

. (2)

.4. Self-supervised learning with positive and negative samples

Given 𝑥𝑖𝑗 , a batch  of training samples is formed by two types of instances: a set of random 𝑏 rPPG signals obtained from
n augmented sample 𝐯𝑎𝑢𝑔𝑗 generated from the same video sequence as 𝐯𝑗 ; a set of 𝑏 random negative samples generated from
he different video sequences 𝐯𝑙 ∈  (such that 𝑙 ≠ 𝑗), so that 𝑑𝑖𝑓𝑓 (𝐲𝑗 , 𝐲𝑙) is greater than 𝜃. In our experiments, we use
= 1𝑏𝑝𝑚. Given the limited annotated collection , we adopt a recent self-supervised learning approach SimCLRV2 (Chen,

ornblith, Swersky, Norouzi, & Hinton, 2020) that may contrastively learn a robust descriptor by maximizing the instance-level
epresentation consistency between a sample (𝑥𝑖𝑗 , representing an instance of 𝐯𝑎𝑢𝑔𝑗 ) and its augmented visual (𝑥𝑖,𝑎𝑢𝑔𝑗 ) compared to an
verall representation consistency computed on the samples in the .

𝑆𝑒𝑙𝑓 = −
𝑏
∑

𝑗=1
𝑙𝑜𝑔

( 𝑒𝑥𝑝(𝐹 (𝑥𝑖,𝑎𝑢𝑔𝑗 )𝑇𝐹 (𝑥𝑖𝑗 )∕𝜏)
∑𝑏

𝑙=1 I(𝑙 ≠ 𝑗)
(

𝑒𝑥𝑝(𝐹 (𝑥𝑖𝑙)
𝑇 , 𝐹 (𝑥𝑖𝑗 )∕𝜏)

)

)

, (3)

where I is the indicator function such that I(0) = 1 and I(𝑎) = 0,∀𝑎 ∈ R − {0}, 𝜏 is a temperature parameter.
Sequence Representation Learning: the Long–Short-Term Memory (LSTM) network model (Pascanu, Gulcehre, Cho, & Bengio,

2013), a variant of the Recurrent Network Model (RNN), is used for the first phase binary pathology condition detection module.
RNNs form a chain-like neural network architecture that takes into consideration the current input in the context of the information
from the past, to propagate the relevant historical information. While RNNs face a vanishing gradient problem and are unable to learn
long-term dependencies, in this work, the Long–Short-Term Memory (LSTM) network model (Pascanu et al., 2013), a variant of the
5
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Fig. 2. Some examples of video shots from the UB-PPG dataset with different skin tones and lighting conditions, where all participants are in the age range of
20–80 years and of Asian origin.

that takes into consideration the current input in the context of the information from the past, to propagate the relevant historical
information. While RNNs face a vanishing gradient problem and are unable to learn long-term dependencies, LSTM integrates the
gating functions into its state dynamics to provide an efficient alternative. We use a stacked LSTM with 𝐿0 layers (Ullah, Ullah,
Khan, & Cheikh, 2019) with the total loss as 𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑛𝑠 + 𝑆𝑒𝑙𝑓 . While several scaling configurations can be employed to weigh
each of these components, we have not used any scaling in our experiments. Each layer is followed by a drop-out layer. The number
of hidden units in each of the LSTM layers is set to be 128, and the drop-out ratio for each of their corresponding dropout layers is
set as 0.2. The resulting output of the stacked LSTM sequence learning module is fed into a stack of FC layers, with the last layer
having 𝑑 units. The proposed stacked LSTM model (the proposed model has 2 FC layers) uses an rPPG signal 𝑥 as input and produces
a learned embedding as the activation of its last FC layer that is expected to produce the reconstructed 𝐲𝑗,𝑟𝑒𝑐 .

4. Evaluation

4.1. Data preparation

UBFC-Phys Dataset: Reliable estimation of heart rate from an individual’s video, despite their various emotion and affective
states, is a challenging task and of immense importance. Therefore, to evaluate the performance of the proposed SimPPG, we use a
large, publicly available UBFC-Phys dataset, which captures the videos and PPG signals of individuals at different stress and emotion
states. The dataset contains the videos and corresponding ground truth PPG signals (blood volume pulse and electrodermal activity
signals obtained from the E4 wristband recording the PPG signals with a sampling rate of 64 Hz) from the 56 healthy subjects,
all aged between 19 and 38 (mean age is 21.8, and the standard deviation is 3.11). The frame rate of the videos is about 35
fps. Among the participants, 46 are female, and 10 are male. During the data collection phase, the participants were given three
experience tasks: a resting task (T1), a speech task (T2), and an arithmetic task (T3). To ensure uniformity, each video representing
an individual executing a specific task is 3 min long. For the speech task, the sample video in the dataset captures the middle
3 min, while for the speech and the arithmetic tasks, the corresponding videos represent the 3 min at the beginning. As ground
truth data, we transformed the blood volume pulse recorded in this dataset into HR by using Python framework for Virtual Heart
Rate (pyVHR) (Boccignone et al., 2020).

UB-PPG Data Collection: To evaluate the generalization capacity of the proposed system, we also collected an in-house UB-PPG
dataset comprising 10 volunteers of both genders of Asian origin, aged from 20 to 70 years old, who participated in the study.
Some example video shots are shown in Fig. 2. Following the data collection protocol of the UB-Phys Dataset, each participant was
recorded performing two different tasks: rest and speech. The ground truth PPG signal was collected using an FDA-cleared Oximeter
device. In a well-lit room environment with uniform background (e.g., the subject standing or sitting with a wall at the back), a
12MP Ultra Wide Camera was placed on a tripod 50 cm away from the face and at the height of the face of the subject. During the
video-capturing session, the oximeter was strapped onto the subject’s finger. The video recording and oximeter reading device were
started simultaneously and timed for 50 s. To ensure the quality of data collection, any sample demonstrating a heart rate less than
60𝑏𝑝𝑚 was eliminated, and we repeated the data collection from that subject again.

4.2. SimPPG implementation

As a part of preprocessing, we downsample each video to 30 FPS and segmented them into 40 s clippings with a 10 s sliding
window. So, 30 to 40 (depending on the video length) video clips were obtained from each participant. During the SimPPG training,
we perform 3-fold cross-validation. All the experiments were conducted in a computer server with a 2.90-GHz CPU (Intel Core
i7-10700F), 16-G RAM, and an NVIDIA Titan Xp. The proposed SimPPG was implemented using the PyTorch2 framework on an
NVIDIA GeForce GTX 1650 GPU The Adam optimizer with a learning rate of 0.001 was used in all the implementations of the
stacked LSTM model. On average, the testing process took around 5–8 s. While UB-Phys training collection (1) was primarily used
for training, in different experiment settings, due to the diverse participants’ background of UB-PPG, we have also used a part of
UB-PPG dataset ( ) to augment the training collection. We will discuss more details on this in Section 4.4 and in Tables 2 and 3.
6
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Table 1
The evaluation of the SimPPG compared to the baseline methods based on MAE metric. The column annotated as 𝑝%1 describes
the performance of SimPPG trained using 𝑝% of the UBFC-Phys dataset (1).
Method 𝑀𝐴𝐸𝐻𝑅 (in bpm)

25%1 50%1 75%1 1

Stress-PPG (T1) (Sabour, Benezeth, De Oliveira, Chappe, & Yang, 2021) – – – 3.55
Stress-PPG (T2) (Sabour et al., 2021) – – – 9.26
Stress-PPG (T3) (Sabour et al., 2021) – – – 5.99

Stress-PPG (Avg) (Sabour et al., 2021) – – – 6.27

Green (Verkruysse, Svaasand, & Nelson, 2008) – – – 8.27

ICA (Poh, McDuff, & Picard, 2010) – – – 6.71

SQA-rPPG (Gao et al., 2022) – – – 6.01

LSTM-rPPG Wim et al. (Verkruysse et al., 2008) – – – 6.48

CHROM Haan et al. (De Haan and Jeanne, 2013) – – – 4.39

POS (Wang et al., 2016) – – – 5.98

1D-CNN Radim et al. (Špetlšík et al., 2018) – – – 5.41

SimPPG (T1) 6.95 4.03 1.77 𝟎.𝟖𝟒
SimPPG (T2) 12.47 10.29 5.25 3.53
SimPPG (T3) 8.62 5.71 2.96 1.29

SimPPG (Avg) 9.35 6.68 3.32 𝟏.𝟖𝟗

Table 2
The evaluation of the SimPPG under Cross Subjects and Cross Dataset experimental settings. SimPPG is trained using different
data collections from UBFC and UB-PPG and tested on the remaining videos from UB-PPG dataset, which were not included in
the training sub-collection. The experimental setting 𝑇𝑆𝑖 that reports the performance of SimPPG trained on the 𝑖th (𝑖 = 1, 2, 3)
task-specific sub-collection of UBFC-Phys dataset 1 (and 1 ∪ 𝑝%2), which includes the task-specific sub-collection of 1
(combined with 𝑝% of 2). The experimental setting 𝑇𝑆𝐶𝑜𝑚𝑏 that uses the training collection 1 (and 1 ∪ 𝑝%2), reports the
performance of SimPPG trained on the entire UBFC-Phys dataset (combined with 𝑝% of 2). The performance is reported using
MAE metric.
Experimental Setting Training Collection 1 1 ∪ 20%2 1 ∪ 40%2 1 ∪ 60%2

𝑇𝑆1 7.81 4.35 3.28 2.44
𝑇𝑆2 8.76 8.32 5.29 3.12
𝑇𝑆3 11.22 9.37 8.26 5.06
𝑇𝑆𝐶𝑜𝑚𝑏 10.94 10.54 7.11 4.98

Evaluation Metric: To investigate the performance of the proposed approach, we leverage the Mean Absolute Error (MAE) of the
eart-rate estimation as the evaluation metric, which allows comparing two variables that have the same scale by evaluating their
ifference. More specifically, given 𝑣 ∈ 𝑡𝑒𝑠𝑡, where 𝑡𝑒𝑠𝑡 represents the test collection, MAE in beats per minute (bpm) is obtained

by calculating the mean difference between the remote heart rate estimated by SimPPG (𝑦𝑝𝑟𝑒𝑑𝑣 ) and that obtained from the ground
truth signal (𝑦𝑣) obtained by the Oximeter and computed as:

𝑀𝐴𝐸𝐻𝑅 =

∑

𝑣∈𝑡𝑒𝑠𝑡
|𝑦𝑝𝑟𝑒𝑑𝑣 − 𝑦𝑣|

|𝑡𝑒𝑠𝑡|
(4)

4.3. Experimental setup

To evaluate the generalization capacity of SimPPG to different environments and different video acquisition sources, we perform
two types of tests: Cross Subject Experiments and Cross Dataset Experiments. In Cross Subject Experiments, we use a set of random
video recordings from the same dataset to perform the testing. Thus, following a 3-fold cross-validation technique, the entire data
is divided into 3 subsets, each subset serves iteratively as a test set, and the rest constitutes the training set, and the MAE error is
computed for each fold. We perform this set of experiments using two types of data collections: (1) UBFC-Phys and (2) a combined
collection that is comprised of the UBFC-Phys and a random subset of subjects from the UB-PPG. In Cross Dataset Experiments, we
use the publicly available UBFC-Phys dataset for training and prepare a separate UB-PPG dataset for testing.

4.4. Experimental results and analysis

Comparative Study: The proposed SimPPG is compared against the baselines (Green (Verkruysse et al., 2008), ICA (Poh
et al., 2010), Stress-PPG (Sabour et al., 2021)) for non-contact HR estimation using the UBFC-Phys (1) dataset. The task-specific
performances of SimPPG compared to that of Stress-PPG (Sabour et al., 2021) in an identical experimental setting is consistently
igh. As observed in the 5th column of the Table 1, in these Cross Subject Experiments, the proposed SimPPG has attained an average
7
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Fig. 3. Illustration of the PPG Signal Estimation Performance by the proposed SimPPG. In each figure, a raw signal (i.e. the ground truth PPG) 𝐲𝑗 (shown in
Blue) is paired with its corresponding approximated signal (i.e. SimPPG) 𝐲𝑗,𝑟𝑒𝑐 (shown in Red).

of 𝑀𝐴𝐸𝐻𝑅 of 0.84 bpm for the task T1, 3.53 bpm for the task T2, and 1.29 bpm for the task T3, which in turn has allowed the
model to reach an average 𝑀𝐴𝐸𝐻𝑅 of 1.89 bpm, an improvement of 77% over the best baseline performance (an MAE of 3.86)
reported by Poh et al. (2010). In fact, in Task T1 (rest task) SimPPG appears to be most effective. In fact, limited movements during
task T1, compared to the other two tasks (i.e., T2 and T3) contributed to the most accurate estimation objective.

Performance in a limited Data Environment: To evaluate the performance of the proposed SimPPG in the limited data
environment, we several subsets of the dataset 1 containing a given fraction (𝑝%) of the entire data collection to train the model.
For example, the column annotated as 𝑝1 reports the performance of SimPPG trained using 𝑝% of the dataset 1. As observed
from the 2nd column of the Table 1, the average MAE of SimPPG is usually high when we utilize only 25% of the sample collection
available in 1. By comparing the 2nd–4th columns of the 8th–10th rows in the Table 1, depicting the performances of SimPPG in
several task-specific environments, we also note that as the size of the task-specific training set is increased (i.e. we leverage a larger
sub-collection of 1), the MAE steadily improves, a fact that is also evident from the average performances of SimPPG reported in
the last row of the table. In the Cross Subject Experiments, while SimPPG continues to demonstrate a more reliable performance
in task T1, it is also interesting to find that in a self-supervised learning environment, SimPPG only uses a random 75% of the
training collection in 1 to attain an improved performance compared to several state-of-the-art models (Poh et al., 2010; Sabour
et al., 2021; Verkruysse et al., 2008). In fact, the proposed SimPPG requires only 50% of 1 to achieve an MAE of 6.68, a nearly
equivalent performance reported by Stress-PPG (Sabour et al., 2021). Finally, using 75% of 1, SimPPG reports an MAE of 3.32,
which is competitive to the best performing baseline (Poh et al., 2010) that uses the entire training collection of 1 to achieve an
MAE of 3.36. To validate the performance, in each testing configuration described in 2nd–4th columns of the 8th–10th rows in the
Table 1, the experiments are repeated 5 times using 5 random choices of 𝑝1, and the average result is reported in Table 1.

Performances in the cross-subject and cross-dataset Environments: While the performance of the PPG-based heart-rate pre-
diction techniques has been evaluated in large-scale data collections, their generalization abilities across demographic specification
of the users (where diversity occurs due to the participant’s appearances, skin tones, age, and cultural artifacts) have not been
analyzed sufficiently yet (Dasari, Prakash, Jeni, & Tucker, 2021). In fact, the data acquisition environment for the existing public
datasets is often tailored to eliminate the potential sources of noise as much as possible. Toward this, we investigate the performance
of SimPPG in several combined collections of UBFC-Phys (1) and UB-PPG dataset (2) and the results are detailed in Table 2.
For example, the experimental setting 𝑇𝑆𝑖 that reports the performance of SimPPG trained on the 𝑖th (𝑖 = 1, 2, 3) task-specific
subcollection of UBFC-Phys dataset, when tested using the samples from the UB-PPG dataset. This represents the generalization
capacity of SimPPG in the Cross Dataset Experiment setting without any retraining. Similarly, the experimental setting 𝑇𝑆𝑖 that
uses the training collection 1 ∪ 𝑝2 reports the performance of SimPPG trained on a combined dataset that uses the 𝑖th (𝑖 = 1, 2, 3)
task-specific subcollection of UBFC-Phys dataset and 𝑝% of the UB-PPG dataset (2), when tested using the samples from the UB-PPG
dataset. While the second column reports the performance of SimPPG in a Cross Dataset Experiment setting, third, fourth, and fifth
columns describe its performance in several Cross Subject Experiment settings, wherein the subjects in training collection and the
test collection represent the population from a diverse socio-econo and demographic backgrounds. As the existing literature mostly
does not address this challenge, in Table 2, we investigate the performance of SimPPG using different cross dataset configurations.
The experimental setting 𝑇𝑆𝐶𝑜𝑚𝑏 that uses the training collection 1 (and 1 ∪ 𝑝2) reports the performance of SimPPG trained
on the entire UBFC-Phys dataset (combined with 𝑝% of 2). As observed in the table, SimPPG reports a comparably more stable
performance in the Cross Dataset Experiment setting with no retraining, when learned using the 𝑇1 task specific sub-collection of
UBFC-Phys. We note that with finetuning using a smaller sub-collection of the UB-PPG dataset, the performance improves. In fact,
for every experimental setting 𝑇𝑆𝑖, with the growing size of the UB-PPG sub-collection, the performance demonstrates a steadily
improving pattern.

PPG Signal Estimation Evaluation: While existing methods primarily focus only on estimating the heart rates, in order to show
the robustness of the proposed SimPPG, we also compute the Mean Squared Error (MSE) of the averaged learned signal 𝐲𝑗,𝑟𝑒𝑐 =

∑

𝑖 𝐲𝑖𝑗,𝑟𝑒𝑐
𝑛𝑗

compared to the ground truth signal 𝐲𝑗 and a baseline is presented in Table 3, which reports the results in different training settings.
The Fig. 3 illustrates the performance of the proposed system in approximating the ground truth 𝐲𝑗 effectively. As reported in the
Table 3, in different experiment sessions we use several subsets of the dataset 1 containing a given fraction (𝑝%) of the entire data
collection to train the model. As observed from the 2nd column of the Table 3, the average MSE of SimPPG is high when we utilize
only 25% of the sample collection available in 1. Then as the size of the task-specific training set is increased (i.e. we leverage
a larger sub-collection of  ), the MSE continues to improves and this trend is observed across different task-specific experimental
8
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Table 3
The evaluation of the PPG signal estimation task using Mean Squared Error (MSE) metric in the
Cross Subjects experimental setting. The column annotated as 𝑝%1 describes the performance of
SimPPG trained using 𝑝% of the UBFC-Phys dataset (1).
Method 𝑀𝑆𝐸

25%1 50%1 75%1 1

SimPPG (T1) 9.14 6.23 3.48 𝟏.𝟒𝟓
SimPPG (T2) 11.05 8.97 6.29 4.82
SimPPG (T3) 12.77 7.81 4.35 2.46

SimPPG (Avg) 10.97 7.67 4.71 2.91

settings. As such, the performance of SimPPG is more reliable when the individual is resting (i.e. executing the task T1). Also, we
note that by using only a random 75% of the training collection in 1, SimPPG attains a reasonably promising 4.71 average MSE.
inally, when in possession of the whole training collection, the system reports an impressive MSE of 2.91.

. Conclusion

In this work, we present an rPPG-based heart rate monitoring system that leverages a powerful self-supervised learning-based
egression framework to accurately estimate the heart rate via approximating the PPG signals using a participant’s video with
ufficient coverage of their skin regions. To develop a robust prediction framework in a limited data environment, the proposed
imPPG adopts an effective instance discrimination approach that matches features from multiple representations/views of the
ame subject, while distinguishing these features from those of other subjects. An extensive set of experiments performed using
he large-scale public as well as our in-house data collection not only show a remarkable performance of SimPPG in approximating
he heart rates from a large variety of skin features across demographies but also enables an effective training scheme in a limited
ata environment that can attain competitive performance compared to several state-of-the-art models. In the future, we intend to
xtend the framework in a multi-modal data environment, where voice signals and visible skin visuals may be combined to ensure
urther improvement.
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