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A B S T R A C T

Ventricular Arrhythmia (VA) is a leading cause of sudden cardiac death (SCD), which kills
an average of 180,000 to 350,000 people annually, accounting for 15%–20% of all deaths.
Furthermore, fewer than 6% of those who experience sudden cardiac arrest outside the hospital
survive, compared to 24% of those who experience SCD inside a hospital. To aid in earlier
detection and improve outcomes for out-of-hospital cardiac events, an automated passive
detection system for these events could be used. Such automated detection would allow users to
raise their self-awareness of potential cardiac risks in life-threatening situations. Diagnosis and
detection of heart dysfunctions at early stages can help to prevent complications of a patient’s
condition.

In this work, we propose VANet and design framework for ECG-related application, a
small-scale deep learning-based real-time inference solution for VA detection. VANet achieves
milliseconds scale inference speed on various platforms, including desktop CPUs, mobile devices,
micro-controllers, and devices with constrained computation resources. It only requires a
minimum of 13 kb of storage space and 34 kb of available run-time, making it small enough to
be integrated into portable devices such as smartwatches and other Internet of Things (IoT)
medical monitoring devices. VANet can trigger an alarm whenever it is necessary to alert
someone with cardiac dysfunction.

VANet leverages optimization techniques, such as residual connections, and architecture
designs, such as transformers and RNNs, to maximize neural network performance and minimize
computational and storage costs. Our architecture achieved a 96.89% accuracy using multiple
different ECG collection devices.

1. Introduction

In many cases, sudden cardiac death has been a leading cause of human mortality. However, some incidents often go undetected
due to different types of arrhythmia and misdiagnosed diseases (Huang et al., 2014; Li, Xu, Huang, & Sarrafzadeh, 2012; Srinivasan
& Schilling, 2018; Weissler-Snir et al., 2019; Zhang, Zhang, Lo, & Xu, 2019). Early detection of VA symptoms can raise awareness
and prevent incidents from occurring. Unfortunately, the lack of effective solutions to detect VA has resulted in many unexpected
deaths.

Several proposed solutions attempt to address this problem: (1) a high-accuracy personalized VA detector that achieves 97%
accuracy for personalized detection models, but is individual-dependent and cannot be generalized for a large population (Jia et al.,
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Fig. 1. VANet application scenario.

2020); (2) a high-accuracy, computationally expensive model that proposes a robust VA detection algorithm achieving 97% accuracy
and an f1-score of 96% on a 10,000-segment database (Chen, Huang, Shih, Hu, & Hwang, 2020; Yildirim, Talo, Ciaccio, San Tan,
& Acharya, 2020). Despite the high accuracy presented by both methods, the models are too complex and it is almost impossible
to achieve real-time monitoring on mobile devices in daily life. To address the issues mentioned earlier, we propose VANet as a
lightweight and robust detection solution that can be implemented across a wide range of platforms. VANet achieves optimization
on four levels: (1) Design level: the architecture is lightweight and only includes essential weights, making it efficient in its RAM
usage. (2) Algorithm and data structures level: ECG data segment duration is short yet efficient in providing accurate results. (3)
Runtime level: the number of operations is reduced, and multiply-accumulate (MACs) are minimized. (4) Operation optimization:
selected optimizations for faster execution (see Fig. 1).

To achieve high-accuracy measurements while maintaining its lightweight, we need to address the following two technical
challenges in our work: (a) Information filtering and removing non-essential components in the architecture. (b) Effective model
design. When reducing the model’s complexity, the performance may degrade. Therefore, the proposed architecture should be simple
yet effective in utilizing all the information from raw data.

In this study, we meticulously analyzed the effects of each operation and the role of different configuration parameters
in Ventricular arrhythmia (VA). The medical knowledge is integrated into the neural network architecture design to provide
a comprehensive small-scale, fully data-driven solution for VA detection. Additionally, we addressed the issue of performance
degradation by strategically incorporating compensation modules. These modules enhance computational complexity and introduce
additional dimension information to the system. Real-world implementation has demonstrated the potential of VANet to be
seamlessly integrated into existing applications. This makes it suitable for implementation in most medical residential areas.

2. Select model baseline and identify constraints

2.1. Baseline model and parameter reduction

We adopted VGG-16 as our backbone model (Simonyan & Zisserman, 2014). The reasons are two-fold. (1) Model simplicity: VGG-
16 is a simple vanilla Convolution Neural Network (CNN) by stacking 16 convolution layers. Its simplicity allows us the ability
to implement advanced techniques to improve the model. (2) Model accuracy: presents a fair performance in the classification,
segmentation, and detection of tasks.

In order to establish a performance baseline, we did not use the VGG-16 model (𝑀𝑜𝑑𝑒𝑙𝑎) directly. Instead, we implemented
structural pruning for every layer by reducing the number of kernels. This idea was initially presented in the EfficientNet
architecture (Tan & Le, 2019a), where the design of the model architecture is determined by the data scale. We created an adjusted
version of the VGG-16 model (𝑀𝑜𝑑𝑒𝑙𝑏) as our performance baseline. This was achieved by customizing the model architecture to
the specific problem domain. We derived the configuration 𝑃 of the performance baseline model by considering a combination of
the input dimension and problem scale. This was formulated as follows:

𝑀𝑜𝑑𝑒𝑙𝑎 𝑠𝑖𝑧𝑒
𝑀𝑜𝑑𝑒𝑙𝑏 𝑠𝑖𝑧𝑒

= 1
2
∗ (𝑠1 ∗

𝐷𝑎𝑡𝑎 𝐷𝑖𝑚𝑎
𝐷𝑎𝑡𝑎 𝐷𝑖𝑚𝑏

+ 𝑠2 ∗
𝑇 𝑎𝑠𝑘𝑎
𝑇 𝑎𝑠𝑘𝑏

) = 𝑃 . (1)

2.2. Estimate memory consumption

In addition to the baseline configuration, minimizing runtime memory (RAM) and storage memory (ROM) is essential when
compressing the model to smaller sizes. The baseline model configuration solely relies on data dimension and problem scale without
any additional information. However, the model can always be smaller just from the baseline model since there might have been
redundant information in the system (see Fig. 2).

The largest RAM consumption is from storing the output from convolution operations or linear connections. The output from
the convolution layer is in the shape of 𝐵 ∗ 𝐶 ∗ 𝐻 ∗ 𝑊 where 𝐵 is the batch size, 𝐶 is the output channels, and 𝐻 ∗ 𝑊 is
2
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Fig. 2. Memory costs for convolution and dense operation.

the image dimension height and width. For linear connection, RAM required would be the number of neurons in the current layer
times the number of neurons in the proceeding layer, given by:

𝑅𝐴𝑀𝑚𝑖𝑛 ∶ 𝑀𝑎𝑥(𝐶𝑖 ∗ 𝐻𝑖 ∗ 𝑊𝑖, 𝐿𝑗 ∗ 𝐿𝑘). (2)

The ROM consumption is due to storing all weights of the architecture. However, only kernels 𝐾𝑖 and weights 𝐿𝑖 are saved. A kernel
𝐾𝑖 is a type of weight used for convolution operations, while a weight 𝐿𝑖 is a dense connection used for matrix multiplication:

𝑅𝑂𝑀 𝐶𝑜𝑠𝑡 ∶
𝑛
∑

𝑖=1
𝐿𝑖 +

𝑛
∑

𝑖=1
(𝐾𝑖 ∗ 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒). (3)

Our goal is to design a model that meets the following constraints: it should minimize ROM and RAM usage wherever possible
while maximizing accuracy. This objective translates into an optimization problem where we seek to minimize the cost of both RAM
and ROM for a given model 𝑥, while maximizing the accuracy of 𝑃 ′(𝑥). We aim to find an optimal configuration 𝑃 ′ that satisfies
the constraint 𝑃 ′(𝑥) ≥ 𝑃 (𝑥) (Eq. (4)):

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∶ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃 ′(𝑥)),

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑅𝐴𝑀(𝑃 ′(𝑥)) < 𝑅𝐴𝑀(𝑃 (𝑥)),

𝑅𝑂𝑀(𝑃 ′(𝑥)) < 𝑅𝑂𝑀(𝑃 (𝑋)),

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃 ′(𝑥)) > 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃 (𝑥)).

(4)

3. ECG parameters in design language

3.1. Deeper view into ventricular arrhythmias

When the medical evaluation group identifies different ventricular arrhythmias, they focus on four things (Fig. 3): (1) Measuring
heart rate regularity using RR interval and cycle length (Garcia-Alberola et al., 1996). (2) High-frequency heartbeat per minute
(BPM) (Brembilla-Perrot et al., 1993). (3) Geometry composition of QRS peak (Koplan & Stevenson, 2009; Mandala & Di, 2017).
(4) Arrhythmias sustaining abnormalities over a period of time. Arrhythmias is a sustained abnormal pattern that lasts (more than
30 s). These features describe general VA patterns which are individually distinctive and can identify VA patients from healthy
subjects (Lloyd et al., 2020).

3.2. Learned QRS complex extraction

The ECG signal is a time-varying signal that records the electrical activity of the heart. The QRS complex is the most prominent
feature of the ECG waveform and represents the depolarization of the ventricles. The overall goal of convolution operation in ECG
analysis is to capture all possible QRS occurrences accurately. In an ideal scenario, a single convolution feature map would be
sufficient to capture all QRS complex occurrences. However, in the real world, QRS complexes are often present within the noise,
making it challenging to isolate them accurately.

Therefore, finding a minimum sufficient amount of kernels that creates enough levels of abstraction is crucial in ECG analysis.
The challenge lies in initializing the model with fixed parameters that are related to the known ECG parameters. Our hypothesis is
that increasing the number of channels/kernels 𝐾 and the final output sequence length 𝑆 will improve the accuracy of the model in
capturing QRS complex occurrences and amplitudes revealed in heart activity. In ECG analysis, the maximum heart rate (Max BPM)
represents the highest known beats per minute for a subject. However, it is possible that some subjects may exceed the known Max
3
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Fig. 3. Ventricular Fibrillation (VF), Ventricular Tachycardia (VT), and Normal QRS complex.

PM. To account for this, a scaling coefficient, denoted as 𝑁 , is used to adjust the Max BPM. By applying this scaling coefficient,
e can obtain upper and lower bounds for our parameter configurations, which are given by:

𝐵𝑃𝑀𝑀𝑎𝑥 ≤ 𝐾 ∣ 𝑆 ≤ 𝑁 ∗ 𝐵𝑃𝑀𝑀𝑎𝑥. (5)

hese bounds can be useful in ensuring that our analysis is accurate and applicable to a wide range of subjects.

.3. Robust R-peak segmentation and detection

Convolution is a known process for extracting and refining characteristics. In this context, ‘‘refinement’’ refers to signal de-noising,
hile ‘‘feature extraction’’ refers to QRS complex extraction. The system achieves two objectives through two components: kernels
nd a non-linear activation function.

The kernel is a crucial component of the neural network architecture, as it determines how the incoming ECG signal is processed.
he size and weights of the kernel influence the information scope that flows through the network. The convolution operation aims
o capture heart-beat events, and the configuration of the kernel plays a vital role in the quality of the resulting data. Recent
tudies (Yun et al., 2022; Zahid et al., 2021) have utilized CNNs to segment R-peaks from the original ECG signal. These studies
sed a small kernel size of 3 × 1 and stacked layers to increase the field of view. Increasing the number of layers widens the view, but
t also increases the runtime of the network. The choice of kernel size and the number of layers ultimately affect the accuracy and
fficiency of the ECG analysis. Kernel size impacts not only run-time efficiency but also noise level. Small kernels are appropriate
or fine-grained information in the data, but they lack robustness against noise. On the other hand, a large kernel size, as shown
n Peng, Zhang, Yu, Luo, and Sun (2017), has a broader scope and is less susceptible to noise. However, it sacrifices attention to
etails, as pointed out by Tan and Le (2019b).

.4. QRS information flow

VANet learns segmentation and de-noising during training. Segmentation happens when the model forward passes input through
onvolution layers. Non-linear Activation units like ReLU bound the data sample within the range of (0,∞). Instead of retaining all

data samples, it only retains data with the highest amplitude. The output format should be comparable to traditional QRS peak
detection (Pan & Tompkins, 1985), and the segmented signal will also be down-sampled when the input passes through the pooling
layer. Aside from the consideration of the data dimension level of the QRS nature, we also want to preserve the neighboring cell
information during forward and backward passes. For that reason, we will use average pooling instead of max pooling.

It is also important to note that VANet can be adapted to different hardware through training and normalization/standardization
techniques. ECG recording devices can vary in terms of their sampling rates and hardware specifications. To address these
differences, the model can be trained on data from different devices to learn how to handle varying hardware specifications.
Additionally, normalization and standardization techniques can be used to ensure that the model is robust to these differences.

To account for differences in sampling rates, the receptive field of the model can be adjusted accordingly to capture all patterns
in the given ECG segments. In this case, the target pattern that VANet is designed to capture is the QRS complex. Therefore, the
receptive field should be at least as large as the QRS complex size to ensure that the model can accurately detect and segment the
complex regardless of the sampling rate or other hardware specifications.
4
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Fig. 4. The comparison of baseline and VANet.

4. Reduction framework for ECG applications

We introduce VANet (Fig. 4) as a combination of our ECG parameter and our compression framework configuration. In VANet,
we reduced the number of channels in each layer 5 times. Such a design is capable of capturing occurrences of QRS complex,
replacing traditional convolution operation with depthwise convolution to achieve less computation requirement. The residual and
channel attention modules increase information quality.

4.1. General reduction principles

To effectively reduce the size of a model, it is important to take into account two key factors: the model architecture and data
representation. One approach to minimizing model architecture is to reduce its width and depth (Tan & Le, 2019a). The model’s
width pertains to the number of channels or neurons in the dense layer, while the depth refers to the number of layers and kernels
in each layer. We can decrease the model’s depth by utilizing fewer kernels in single convolution layers or decreasing the number
of stacked layers. To simplify the data representation, we can reduce the input data dimensions H and W and store data in various
bit-widths. Pooling, a technique that reduces the spatial dimensions of the data, can also be employed. Additionally, we can opt for
less computationally intensive operations with fewer parameters and multiply-accumulate operations (MACs) to further optimize the
model. For instance, depthwise convolution carries out 2D convolution on each channel and concatenates the outputs to create the
final output of each kernel as a 2D tensor, in contrast to traditional convolution that processes a 3D input resulting in each kernel
being 3D. In our experiment, it is crucial for data segments to have a longer duration of over two seconds to achieve real-time
monitoring, since a one-second segment may not encompass an entire QRS cycle (see Fig. 5).

4.2. Low-accuracy compensation

Whenever we reduce the size of a model, we inevitably decrease its complexity by reducing the number of parameters. However,
this reduction in complexity may lead to a decrease in performance. To compensate for this performance degradation, we can use
assistive modules that increase the model complexity. These modules can help to mitigate the performance loss caused by the
model size reduction. While these modules may add a small amount of memory overhead, the benefits they provide can outweigh
this additional cost.

One technique to compensate for low accuracy is to use residual connections (Courbariaux, Hubara, Soudry, El-Yaniv, & Bengio,
2016; He, Zhang, Ren, & Sun, 2016). This technique helps to improve data representation by connecting the previous layer directly to
the current layer. This mechanism allows the gradient to flow directly back to the input, helping to resolve the problem of vanishing
5
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Fig. 5. Model and data scaling during the inference process.

gradients in deep neural networks (He et al., 2016; Yue, Fu, & Liang, 2018). The gradient can become very small, resulting in minimal
changes to previous modules. This method adds extra overhead to memory since residuals have to be stored separately. Therefore,
it should be applied in a later stage of the neural network.

In addition, to improve data expressiveness, we added a mechanism that further increases representation complexity and reduces
noise. The Attention Mechanism (Hu, Shen, & Sun, 2018; Jaderberg et al., 2015; Vaswani et al., 2017) is a well-known technique
that increases accuracy by applying weights to different parts of the data. The goal is still to minimize overhead whenever possible.
The Squeeze and Excitation Network (Hu et al., 2018) is a channel-based attention mechanism that selectively focuses only on
certain channels in a specific feature map. This helps reduce data complexity and increase overall expressiveness. Both techniques
are used in this work since the architecture design compensates for compression degradation in performance.

4.3. Temporal dimension in ECG signals

There are two types of information that could be present in the data: spatial and temporal. To maximize the information extracted
from the data, we may need to introduce additional dimensionality, if possible. Unlike time-domain signals, such as ECG, which
possess information from the temporal field and introduce additional information from the temporal space, CNN, which emphasizes
spatial information, has little knowledge of time sequences. This means that we will need a sequence classifier at the end of the
convolution module. Any architecture can be used for sequence classifiers, such as dense layers and sequence-based neural networks
(RNN and Transformer). However, some sequence architectures may be more suitable than others for different tasks, and determining
the best one may require experimentation.

5. Data collection

We utilized three distinct datasets to train and evaluate VANet for ECG analysis. The first dataset is the MIT-BIH Supraventricular
Arrhythmia Database (Greenwald, Patil, & Mark, 1990), which includes 78 half-hour ECG recordings of supraventricular arrhythmia.
The second dataset is from the 2022 ACM/IEEE TinyML design contest at ICCAD, a total of 30,215 samples of healthy patients and
various types of ventricular arrhythmia. Lastly, we also collected a self-collected dataset using shimmer that contains 20-minute
ECG recordings of healthy subjects. All datasets were collected at a frequency of 250 Hz. To ensure effective training and evaluation
of VANet, we split the datasets into 80% for training and 20% for testing. Each data sample consists of 2.5 s of ECG samples.
This duration was chosen because shorter recordings would have a larger response window during life-threatening situations.
Additionally, we considered runtime considerations for real-time inference and opted for smaller input sizes.

6. Performance evaluation

6.1. Model specification

In this section, we aim to comprehensively evaluate the performance of VANet by employing a variety of sequence classifiers,
such as linear, recurrent neural network, LSTM, and Transformer. These classifiers vary in their computational requirements, memory
usage, and detection accuracy. Notably, all classifiers have demonstrated remarkable accuracy levels, exceeding 95%, in effectively
analyzing VANet data. This assessment allows for a detailed understanding of the individual strengths and limitations of each
classifier (Tables 1–4).
6
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Table 1
Performance evaluation on different sequence classifiers.
Sequence classifier Number of

parameters
Detection
accuracy

MACs ROM usage

Transformer 466 96.89% 68.14 K 31 KiB
RNN 776 96.06% 61.04 K 17 KiB
Dense 1040 95.03% 60.32 K 21 KiB
Baseline (Reduced VGG16) 154,518 93.15% 2,840 K 618 KiB

Table 2
Benchmark platform setting: number of cores, clock frequency, operating system, deployment framework, instruction
sets, and L1 Cache.

Nvidia GTX1050 ARMv8
Cortex-A53

Intel(R)
i5-7300HQ

Snapdragon 860 Intel(R) Xeon(R)
E5-1620

768 CUDA Cores Quad-core Quad-core Octa-core Octa-core
1.4 Ghz 1.96 Ghz 2.5 Ghz 2.96 Ghz 3.5 Ghz
Driver 451.67 Armbian 22.11 Windows 10 Andriod 12 Ubuntu 16.04.7 LTS
Tensorflow ONNX-runtime TFlite-runtime TFlite-runtime TFlite-runtime
CuDNN ARMv8.1-A x86-64 ARMv8.1-A x86-64
48 KB 64 KB 256 KB 128 KB 128 KB

Table 3
Inference time benchmark.
Nvidia GTX1050 ARMv8

Cortex-A53
Intel(R)
i5-7300HQ

Snapdragon
860

Intel(R) Xeon(R)
E5-1620

Transformer: 19.21 ms 3.36 ms 0.97 ms 0.62 ms 0.1 ms
RNN: 20.43 ms 3.75 ms 0.08 ms 0.12 ms 0.05 ms
Dense: 20.51 ms 3.06 ms 0.99 ms 0.14 ms 0.05 ms

Table 4
Memory usage benchmark.
Driver 451.67 Armbian 22.11 Windows 10 Andriod 12 Ubuntu 16.04.7

LTS

Transformer: 80 Kib 50 Kib 210 Kib 64 Kib 213 Kib
RNN: 79 Kib 47 Kib 220 Kib 35 Kib 218 Kib
Dense: 78 Kib 50 Kib 215 Kib 50 Kib 220 Kib

6.2. Real-world application deployment

We selected five devices with different operating systems to run inferences and measured their runtime performances i.e., RAM
nd inference time (ms). We used tflite-runtime and onnx-runtime for mobile and IoT devices. Additionally, we used Pytorch and
ensorFlow for python to enable desktop devices (Abadi et al., 2016; Paszke et al., 2019).

The inference time is where we report the least amount of time used among the listed frameworks. For RAM usage measurement,
e only measure the RAM used to store the input and execute the model. RAM usage involves allocation for files that store executing

nstructions. These instruction files can be modified to use less space.
For RAM measurement less than one MB, we take the average difference between usage of the program with inference and

ithout inference. In the android system, we tracked the memory usage by using the android studio CPU profiler to track execution
or each layer. We specifically used the android studio as the median to run the inference, adding additional overhead. RAM
enchmark is more related to the operating system.

. Conclusion and future work

In this work, we have primarily focused on addressing model architecture in relation to ECG parameters and the general
ompression framework. As we continue to explore methods for reducing the model size, we must consider the impact of data type
n overall model execution. Larger data types may offer greater accuracy but require more storage space, while smaller data types
ffer less accuracy but require less storage space. This trade-off between accuracy and storage space is an important consideration
hen optimizing model performance.

Moreover, the inference time cost of the model is also a critical factor that depends mostly on the computation graph and
peration execution. An optimized computation graph and operation set can significantly improve the final performance of the
odel. In our future work on VANet, we plan to focus on further improving the computation graph complexity and constructing

ptimal operation sets to maximize inference speed. By doing so, we hope to further enhance the performance of our model and
dvance the field of ECG analysis.
7
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