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Abstract—Sleep constitutes a big portion of our lives and is
a major part of health and well-being. Monitoring the quality
of sleep can aid in the medical diagnosis of a variety of sleep
and psychiatric disorders and can serve as an indication of
several chronic diseases. Sleep stage analysis plays a pivotal
role in the evaluation of the quality of sleep and is a proven
biometric in diagnosing cardiovascular disease, diabetes, and
obesity [32]. We describe an unobtrusive framework for sleep
stage identification based on a high-resolution pressure-sensitive
e-textile bed sheet. We extract a set of sleep-related biophysical
and geometric features from the bed sheet and use a two-phase
classification procedure for Wake - Non Rapid Eye Movement -
Rapid Eye Movement stage identification. A total of seven all-
night polysomnography recordings from healthy subjects were
used to validate the proposed bed sheet system and the ability
to extract sleep stage information from it. When compared with
the gold standard, the described system achieved 70.3% precision
and 71.1% recall on average. These results suggest that unob-
trusive sleep macrostructure analysis could be a viable option
in clinical and home settings in the near future. Compared with
existing techniques for sleep stage identification, the described
system is unobtrusive, fits seamlessly into the user’s familiar sleep
environment, and has additional advantages of comfort, low cost,
and simplicity.

Index Terms—Sleep staging, sleep quality, polysomnography,
respiratory rate, bed sheet, pressure sensor array, unobtrusive,
e-textile.

I. INTRODUCTION

HOUGH once considered an inactive state in which the
body and brain simply shut down, sleep is now recog-
nized as a phase of high mental activity that fulfills necessary
biological functions. The vital tasks carried out during sleep
are essential for our physical, mental and emotional health.
Studies have shown that the quality of sleep, rather than its
quantity, is highly correlated with health and well-being [26].
Sleep quality analysis is, therefore, gaining importance and
being used in the diagnosis of diverse health problems.
Sleep medicine divides sleep into two broad classes: Non-
rapid eye movement (NREM) and rapid eye movement (REM)
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sleep. The American Academy of Sleep Medicine (AASM)
further divides NREM sleep into three distinct stages: NI,
N2, and N3 [30]. In healthy adults, a sleep cycle, which
lasts between 90 and 100 minutes, begins with 3 stages of
NREM sleep followed by REM sleep. The first stage (N1)
is the lightest and shortest stage of sleep (1-7 minutes) and
marks the transition from wakefulness (W) to sleep. NI is
followed by N2, which lasts anywhere from 10 to 25 minutes.
This stage is where the body reaches a state of complete
relaxation in preparation for the deeper sleep to come. After
N2, a healthy adult enters N3, the last stage of NREM which
is also referred to as deep sleep. N3 lasts 20 to 40 minutes
and is the stage where the body does most of its repair and
regeneration work. Following the N3 stage of sleep, a healthy
adult ascends to lighter NREM sleep stages, typically N2,
for 5 to 10 minutes before entering the REM sleep episode.
REM sleep is characterized by high brain activity and is
where memory consolidation occurs. REM sleep comprises
about 20 to 25% of total sleep in typical healthy adults
[4], [18]. In healthy subjects, this pattern continues to repeat in
a cyclical fashion throughout the night. Since each stage fulfills
a vital biological function, sleep stage analysis is crucial to the
evaluation of the quality of sleep and is a proven biometric in
diagnosing cardiovascular disease, diabetes, and obesity [32].

In sleep medicine, polysomnography (PSG) is a sleep
test that is conducted in a specialized sleep laboratory to
assess sleep stages and other characteristics of sleep qual-
ity. Measurements taken include EEG (brain waves), EOG
(eye movement), EMG (muscle activity), and ECG (heart
rhythm) to mention a few. The standard practice is to divide
the sleep time into 30-second epochs, and based on the
recorded signals, each epoch can be scored by sleep tech-
nicians as W, N1, N2, N3 or REM. Since the pattern of the
Wake-NREM-REM stages is highly modified for subjects with
sleep disorders and other diseases, sleep stage analysis can
provide valuable information about sleep quality. The very
nature of polysomnography, however, can interfere with the
results and accuracy of the measured signals. The unfamiliar
environment of the sleep laboratory as well as the equipment
and sensors attached to the subject’s body can disturb the
subject’s quality of sleep - a phenomenon referred to as the
first-night effect [31]. Thus, a system able to non-invasively
evaluate sleep quality can contribute to more convenient and
accurate sleep screening results and is highly desirable.

Our contributions in this work can be summarized as
follows. To the best of our knowledge, our work is the first
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to perform sleep stage analysis using a completely contact-
free unobtrusive system. In addition, our sleep stage analysis
results are validated against over 50 hours of gold standard
polysomnography data - the current state-of-the-art in sleep
analysis. Finally, our results are in the range of interrater
agreements reported in the literature (70% and 72% [11])
which is very promising.

The remainder of the paper is organized as follows.
Section 2 briefly discusses previous research in sleep stage
detection. Section 3 describes the components of our system
which incorporates a pressure-sensitive bed sheet. Section 4
describes the algorithm used for sleep stage identification,
including biophysical and geometric feature extraction from
pressure images and a two-phase procedure used for classi-
fication. In section 5, the experimental setup and results are
demonstrated, followed by our planned future work in section
6. Section 7 concludes the paper.

II. RELATED WORK

While there are many academic and commercial sleep
monitoring tools available, there is a dearth of low-cost, unob-
trusive solutions. This section surveys the major categories of
solutions and describes their characteristics and limitations.

Existing sleep monitoring tools can be classified into three
categories. The first category of tools extracts sleep stages
from directly-measured physiological signals. Because many
body functions like breathing, heart rate and movement change
during sleep, tracking these changes throughout the night can
provide a good indication of the sleep stage that a patient is
in. Many tools distinguish themselves from full PSG by using
only a small subset of the PSG sensors. [28] shows that ECG
and respiratory effort alone can be sufficient to distinguish
between the WAKE, NREM and REM stages with moderate
accuracy. [13] uses features extracted from the EEG signal in
addition to heart rate variability to detect the different sleep
stages. [14], on the other hand, uses only the EEG signal to
study brain activity and determine sleep stages based on it.
Another example is Zeo [8], a commercial sleep monitoring
product that detects sleep stages based on brain activity.
A headband, to be worn during sleep, analyzes brain signals
and identifies sleep stages based on the signals’ frequencies.
Although these systems use fewer sensors than a full PSG, they
still require equipment to be attached to the patient’s body and
are often expensive.

The second category of tools tries to infer sleep stages from
body movement. Actigraphy is a commonly used technique
for sleep monitoring; it uses an accelerometer embedded in a
watch-like device to monitor activity and identify sleep stages
[12], [15], [29]. Sleeptracker [6], Actiwatch [5], and UP [1]
are a few examples of the many commercial products available
in this category. Though less invasive than the products in
the first category, these products still require a device to be
attached to the patient’s wrist. To overcome this limitation,
[16] presents a sleep monitoring system based on RFID
technology. WISP tags are added along the edge of the bed
mattress and accelerometer data is collected from these tags by
an RFID reader. This system does not require any attachment
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to the patient’s body but might represent a problem if it were
to be deployed in a clinical setting since the RFID frequency
can interfere with other medical devices [34].

The third category of products uses audio and video signals
to identify sleep stages. [25] uses audio and video sensors
to infer sleep-wake stages. These systems are expensive and
raise obvious privacy concerns. In [9], the authors attempted
to solve the privacy problem by using an infrared camera.
They analyze the temperature maps acquired from the camera
to detect the patient’s body and to extract body movement
information. Infrared cameras are a controversial technology,
however, as the high-resolution thermal images make it very
simple to observe exactly what the patient is doing in bed and
can be considered a breach of privacy.

Our proposed system opens the way for a fourth category of
sleep monitoring that is completely unobtrusive, comfortable,
cheap, and avoids privacy violations. The system architecture
of this new unobtrusive system is described in the next section.

III. SYSTEM ARCHITECTURE

In this section, we describe the design of our bed sheet
system, followed by a detailed description of the PSG system
that was used for validation.

A. Bed Sheet System

E-textiles are fabrics that have electronics and interconnec-
tions woven into them. E-textiles are built by sandwiching a
sheet of very thin piezoresistive fabric between two sheets of
traditional textile fabric [33]. The middle e-textile layer has
a couple of useful characteristics: 1) the electrical resistance
of the piezoelectric fabric decreases with increasing pressure
force, 2) the fabric’s thickness is on the order of microns,
comparable to the diameter of a human hair. These two
characteristics enable us to build a highly flexible, comfortable
and low-cost pressure-sensing system that perfectly fits our
sleep monitoring application.

The proposed system consists of an e-textile bed sheet that
records the pressure distribution of the body. The prototype
bed sheet is 1.25 m wide x 2.5 m long and can fit easily
on any standard-size bed. The thickness of the bed sheet is
1.5 mm which makes it flexible and suitable for noninvasive
applications. The bed sheet is a matrix of 8192 pressure
sensors generated by the intersections of 64 columns and
128 rows of conductive buses.

To build the sensors, we use a three-stacked-layer structure
as shown in Fig. 1. The top layer is a conductive bus that is
connected to a voltage supply via an analog multiplexer (M).
The middle layer consists of the pressure-sensitive e-textile
piezoresistive fabric. Lastly, the bottom layer is a conductive
bus that is orthogonal to the top bus. This bottom layer
connects to an analog-to-digital converter (ADC) via a second
analog multiplexer (M>) such that each input to the ADC is
grounded via an offset resistor (Rp). The intersection areas
between the orthogonal buses form the individual sensors.
A microcontroller is used to set the addresses of both M|
and M, to uniquely select a pressure sensor. For example,
when M connects bus i on the top layer to a voltage supply
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Fig. 1. The circuit used to scan the pressure distribution of the bed sheet
Sensor array.

Fig. 2. Cross section of the three-stacked-layer structure of the e -textile
bed sheet. The e-textile piezoresistive fabric is sandwiched between two
orthogonal conductive bus layers.

and M, connects bus j to the ADC, the sensor located at row i,
column j, which is denoted as V;; in Fig. 1, will be read. The
ADC converts the voltage of the selected sensor to an 8-bit
integer with a value of O representing no pressure (highest
e-textile resistance) and a value of 255 representing maximum
pressure (lowest e-textile resistance). The sensor values are
then sent to an Android tablet over USB for storage and further
analysis. Fig. 2 shows a cross section view of the bed sheet.
The e-textile piezoresistive fabric is sandwiched between two
orthogonal conductive bus layers, as described above.

The advantage of this design is that the top and bottom
layers can be made out of traditional fabric coated with par-
allel conductive buses with the e-textile piezoresistive fabric
embedded in between. Another advantage of this design is that
the MxN sensor structure only requires 2(M+N) I/O pins.
Also, the matrix structure of the bed sheet enables random
access to an arbitrary sensor in the system.

Fig. 3(a) shows an example of a user lying on the bed
sheet and Fig. 3(b) shows the corresponding pressure map.
Compared to other systems that use bed mattresses, sheets or
pads for health applications [21], [23], the described system
has the flexibility of e-textiles as well as a dense high-
resolution pressure map that enables high-quality medical
diagnosis.
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(2) (b

Fig. 3. (a) A subject sleeping on the pressure-sensitive bed sheet in the
supine position. (b) The corresponding pressure map.

B. PSG System

The reference gold standard used for assessing the accuracy
of our sleep identification algorithm is the SOMNOscreen
plus PSG system manufactured by SOMNOmedics [7]. The
PSG system has a comprehensive set of sensors that allows
it to monitor many body functions and accurately identify
sleep stages. Fig. 4 shows all the PSG sensors and their
respective locations on the subject’s body. Fig. 4(a) shows
8 EEG electrodes that are attached to the subject’s head to
measure brain activity. The electrodes measure the frontal
(red), central (blue), medial (yellow) and occipital (green) EEG
signals which have different characteristics and frequencies
during the various stages of sleep. Fig. 4(b) shows face and
neck sensors. One electrode is attached to the middle of the
forehead for grounding. To measure eye movement, two EOG
electrodes are attached near the eyes; one is attached above
the right eye and the other is attached below the left eye.
Three EMG electrodes are attached to the subject’s chin to
detect chin muscle movement which can be indicative of teeth
grinding (bruxism), sleep apnea and other sleep disorders [3].
The two EMG electrodes to the left and right of the chin
midline are the negative and positive leads, respectively, while
the one in the middle of the chin is the reference EMG
lead. A thermistor is placed directly below the nostrils. The
thermistor measures the nasal and oral flow of the patient. In
addition, a nasal cannula is placed on top of the thermistor and
directly inside the nostrils. This sensor detects the fluctuations
in pressure caused by inhalation and exhalation. A microphone
is placed on the neck, lateral to the larynx, to detect snoring.
Fig. 4(c) shows the sensors that are attached to the upper
body. Two ECG electrodes are used to measure the rate and
regularity of heartbeats. One electrode is attached under the
right clavicle (collarbone) and the other one is attached under
the rib cage on the left side of the body. Two effort belts
are attached around the thorax and abdomen to measure the
expansion of the chest and abdomen during breathing. Finally,
Fig. 4(d) shows the lower body sensors. A pulse oximeter is
attached to the ring finger to measure blood oxygen saturation,
heart rate, and changes in lung volume. A pair of EMG
active electrodes are attached to the legs centered between the
knee and the ankle to record leg movement. All the sensors
are plugged in to the central PSG system, which in turn is
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Fig. 4. PSG sensors and their placement on the head(a), face(b), upper body(c), and lower body(d).

i T A oo Y e gty P B

Ay P s

e e e

Fig. 5. A sample polysomnogram that shows a subject transitioning from
sleep stage N1 to REM as indicated by the circles. The polysomnogram shows
19 of the PSG signals and the three arrows are pointing to the three channels
that are used as ground truth for leg movement (PLM), respiration (Thorax)
and whole-body movement (Posture).

connected to a Bluetooth transmitter. The transmitter sends
the data wirelessly and in real time to a receiver connected to
a laptop that runs the PSG analysis software. Fig. 5 shows a
sample polysomnographic record as provided by the analysis
software.

While the PSG system accurately captures all the necessary
body functions, it is clear to see how the attached sensors can
disturb the patient’s sleep and restrict movement and thereby
affect the quality of sleep. In the next section, we describe
how to identify sleep stages using our unobtrusive bed sheet
system.

C. Analysis Methods

In our study, three statistical classifiers were used in a two-
phase procedure to classify a sleep epoch to the NREM, Wake
or REM sleep stage. The parameters for each classifier were
obtained by learning from our training dataset. In each phase
of classification, each target/non-target sample was labeled
with the binary values 1 or 0, respectively; each classifier
was used to assign a testing data point - in our case a sleep
epoch - to one of these two labels which map to two differ-
ent sleep stages. The overall accuracy is determined by the
percentage of the testing data that was assigned to the correct

sleep stage. The three classifiers used in this work are based
on different statistical principles and are described below.

The binary Support Vector Machine (SVM) classifier is a
non-probabilistic linear classifier. It constructs an optimized
hyper-plane in the feature space such that the separation
between two different types of samples is maximized. The
hyper-plane is obtained by learning from the training samples.
Each training sample contains a binary label to indicate the
group it belongs to. Once the hyper-plane is calculated, the
testing data can be projected onto the feature space and
classified by the hyper-plane into one of the two categories.

The K-Nearest-Neighbor classifier uses the notion of dis-
tance between data points in the feature space as the basis for
classification. It assigns a testing data point to the class which
the majority of the k nearest neighbors are from. Similar to
SVM training, the labels of the nearest neighbors are obtained
from the training data. In this work, Euclidean distance is used
as the distance metric and the majority rule is applied to the
k candidates in order to determine the group that the sample
belongs to.

Naive Bayes is a probabilistic classifier based on the
Bayesian theorem. It is particularly suitable when the dimen-
sionality of the inputs is high. It assumes that features con-
tribute independently to the probability of a given sample
belonging to a certain class. Bayes’ Theorem finds the prob-
ability of an event given the probability of another event that
has already occurred.

IV. SLEEP STAGE IDENTIFICATION

In this section, we describe the features used for classi-
fication, how they are extracted from the bed sheet pressure
images and why they are suitable for sleep stage identification.
The pressure images from the entire night are divided into
30-second epochs, as is the convention in sleep medicine, and
the features are extracted for each epoch. Following feature
extraction, we describe the two-phase procedure used for
identifying the Wake, NREM and REM stages.

A. Biophysical Feature Extraction

As discussed in Section 2, several physiological signals
change during normal sleep and vary with each sleep stage.
Three important signals for sleep stage identification are
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Fig. 6. Pressure signal corresponding to respiration over a 30-second epoch.

respiratory effort, leg movement and body movement. The
following subsections describe each one in more detail and
explain how they were extracted from the pressure images.

1) Respiration Rate Variability: Respiration is a phys-
iological signal that undergoes significant changes during
sleep. During the NREM sleep stage, the breathing pat-
tern is regular, both in amplitude and frequency, while in
REM the signal becomes irregular, much more rapid, and
sudden changes in both amplitude and frequency can be
observed [20].

To capture this behavior of the respiratory signal, we first
extract the respiration signal from the bed sheet. When the
user lays on the bed sheet and starts breathing, the movement
of the diaphragm resulting from inhalation and exhalation
causes the observed pressure values to decrease and increase,
respectively. These alternating movements of the chest area are
significant enough to cause a substantial change in the overall
pressure intensity of a pressure image. The pressure intensity
of an image can be calculated by summing up the individual
pressure values from each one of the 8192 pressure sensors
(pixels) in that image. Fig. 6 shows a plot of the pressure
intensity signal for a user in the supine position over the period
of the first 30-second epoch. Since the sampling rate is 1 Hz,
this also corresponds to 30 frames. When the user laying on
the bed sheet inhales, his/her chest will rise up towards the
ceiling and the pressure applied to the bed sheet underneath
will decrease. Therefore, each local minimum in the figure
represents a drop in pressure or, alternatively, an inhalation.
The figure also shows the drifting phenomenon. Drift is an
inherent property of pressure sensors that often causes a signal
to grow logarithmically over time until the system reaches
operating temperature [24]. Such drift is a significant source
of noise and needs to be compensated for to improve the
quality of the signal. In our previous work, we showed how
first-order derivation can be exploited to compensate for the
drifting phenomenon [17]. Fig. 7 shows the resulting signal
after first-order derivation is applied. To eliminate short-term
fluctuations, we apply a low-pass filter to the signal to get the
final signal shown in Fig. 8.

After drift compensation and low-pass filtering are applied,
the resulting signal is used to evaluate the accuracy of our
bed sheet system in extracting respiration. To evaluate the
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Fig. 7. Pressure signal corresponding to respiration over a 30-second epoch
after drift compensation. As can be seen, the logarithmic growth of the
respiration signal is now eliminated.
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Fig. 8. The figure shows the respiration signal after low-pass filtering is
applied. As can be seen, low-pass filtering eliminated short fluctuations in the
signal and produced a smoother respiration signal.

respiration signal obtained from the bed sheet, we use the
thorax effort signal obtained from the PSG system as ground
truth. The thorax signal is generated by measuring the amount
of pressure applied to the effort belt that the user wears around
the chest. The thorax effort signal is shown in Fig. 9. It is
noteworthy to mention that, in contrast to the pressure signal
obtained from the bed sheet, this signal indicates an inhalation
event at each local maximum. The signals are inverted because
when a user inhales and his/her chest rises, the pressure
exerted on the bed sheet decreases while the pressure exerted
on the effort belt increases. Another difference between the
two signals under comparison is the sampling rate. While the
bed sheet pressure image is sampled at 1 pressure image per
second, the thorax effort signal has a sampling rate of 32 Hz.
While Fig. 6 shows 30 samples on the x-axis, Fig. 9 shows
960 samples for the same period of time. As shown in the
figure, the thorax effort signal indicates a total of 8 inhalations
and 8 exhalations (local maxima and minima, respectively), for
a total of 8 breaths. During the same time period, the pressure
signal obtained from the bed sheet indicates the same number
of inhalations and exhalations. Both systems would therefore
result in a respiration rate of 8 breaths per 30 seconds, or
16 breaths per minute.
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Fig. 9. The figure shows the thorax effort signal obtained from the PSG
system. Each local maximum indicates an expansion of the chest which
corresponds to an inhalation event.

After extracting a filtered drift-free respiration signal, we
compute the mean amplitude and the mean frequency of that
signal in each 30-second epoch. Then, for each portion of the
signal in the 30-second epoch, we compute its variability from
the mean in terms of both amplitude and frequency. This is
done as follows. Starting from the first sample in the signal,
we compute its standard deviation from the mean amplitude
and the mean frequency of that epoch. We incrementally
grow the size of the signal by adding one sample at a
time and computing the amplitude standard deviation and the
frequency standard deviation until all 30 samples of an epoch
are covered. We then move to the next epoch and repeat the
process. That way, we get a measure of the dispersion of
the respiration signal from the mean amplitude and the mean
frequency of an epoch at each pressure frame.

The variability of the respiration signal is a very good
feature to distinguish between the NREM stage where
the signal is regular and shows very little variability,
and the Wake-REM stages where the amplitude and frequency
of the respiration signal vary significantly and rapidly.

2) Respiration Rate: Respiration rate, as measured by the
number of breaths observed per minute, is another biophysical
signal that changes during sleep. Respiration rate is consider-
ably faster during the REM and Wake sleep stages than in
the NREM stage. So, an additional respiratory feature used
for sleep stage identification is the respiration rate observed
during a 30-second epoch. The breathing rate is extracted from
the respiratory signal by counting the number of breaths as
described above and multiplying by two to get the number of
breaths per minute.

3) Leg Movement: Leg movement is also an important
indicator of sleep stage. During the first stage of NREM,
sleepers can experience sudden jerks of their legs. These jerks
are common while falling asleep but, if excessive, can also be
a symptom of sleep disorders like Periodic Limb Movements
(PLM) and Restless Legs Syndrome (RLS) [10]. In either case,
these jerks are associated with the NREM sleep stage and can
be used as a feature to distinguish the NREM sleep stage from
the other stages.

To extract leg movement from the bed sheet, we assume that
a subject’s legs while lying on the bed sheet will occupy the
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lower half of the sheet. To extract leg movement, we sum all
the pixels in the lower half of the pressure image and mark a
leg movement when a significant drop or increase in pressure
is detected. This is a crude approximation of leg movement and
can be improved in the future by localizing the patient’s legs in
the pressure images. The ground truth for leg movement events
is obtained from the PLM channel of the PSG recording, as
shown in Fig. 5. This signal measures leg muscle movement
over time. The signal is obtained by sampling the leg EMG
electrode at 256 Hz. When compared to the PLM signal
obtained from the PSG system, our approximation accurately
detects 80.7% of all leg movements.

4) Body Movement: In addition to leg movement, whole-
body movement can also occur during sleep. The movements
are associated with the Wake stage and light stages of NREM
as a result of changes in sleep posture that occur every
5-10 minutes. REM sleep, on the other hand, is characterized
by muscle immobility and body paralysis to prevent sleepers
from acting out their dreams and hurting themselves [27].
Therefore, the lack of movement can be a good indication
of the REM sleep stage.

During movements, certain body parts like arms, hands,
elbows or knees are lifted off the bed sheet. This abrupt
release in pressure results in a significant drop in pressure
intensity. This sudden and significant change in pressure can
be detected by a simple thresholding technique that keeps track
of the difference between local maxima and minima over a
sliding window and reporting a movement if the difference
drops significantly. Our algorithm reports a movement if there
is a change of more than an order of magnitude in this
peak-to-peak amplitude. The detected movements are validated
against the posture information provided by the PSG system.
Our thresholding algorithm correctly detects 96.5% of the
whole-body movement events.

5) Posture and Body Orientation Features: In addition to
the biophysical features described above, we also extracted
some geometric features from the pressure images. The geo-
metric features are motivated by the fact that the orientation
of the body during sleep as well as sleep posture can affect
sleep stages. This is mainly because we are likely to go into
NREM and the deeper stages of sleep if our bodies are situated
in a comfortable position, especially when the body is in a
“mid-line” position, where both the head and neck are kept
straight.

Furthermore, according to the British Snoring and Sleep
Apnoea Association [2], patients who sleep in the side posi-
tions often demonstrate a decrease in the amount of NREM
and an increase in the amount of REM sleep.

We used 32 geometric features including body symmetry,
balance, hip location and shoulder location. These features
summarize posture and body orientation and are explained in
more detail in [22].

B. Sleep Stage Identification Using Two-Phase
Classification

To perform sleep stage identification, the pressure images
from a full-night sleep are divided into groups of 30 frames.
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Fig. 10. This figure shows the steps of the sleep stage identification process.
The pressure images of a whole night are split into 30-second epochs from
which biophysical signals are extracted. Phase I classification groups epochs
into NREM and Wake+REM. In Phase II, the Wake+REM epochs are then
classified separately based on the extracted movement information.

Since the sampling rate for the bed sheet is 1 Hz, 30 frames
corresponds to 30 seconds of sleep. It is common in
polysomnography analysis to split the night into 30-second
epochs, so the same practice was followed in this work. For
each 30-second epoch, the amplitude and frequency variability
of the respiratory signal, the respiration rate, the leg movement
events as well as the geometric features described in Section
4.1 are extracted. Since those features mostly distinguish the
NREM stage from the rest of the stages, these features are
used for phase I classification into NREM and Wake + REM.
Phase I, therefore, acts as a filter for the NREM sleep stage. In
phase 2, the algorithm tries to distinguish between the Wake
and REM stages. Since body movement cannot occur in the
REM stage, as mentioned before, it can be used as a feature to
distinguish between Wake and REM. For all the epochs that
were classified as Wake + REM in phase I of the algorithm,
body movement events are extracted and used to determine if a
given epoch should finally be classified as Wake or REM. The
decision tree for the described process is shown in Fig. 10.

V. EXPERIMENTS AND RESULTS

In this section, we describe our experimental setup and show
the results of our sleep stage identification process.

A. Experimental Setup

Seven subjects participated in the sleep study. Three of the
subjects were female, four were male. Their ages ranged from
21 to 60 years and their weights from 93 to 190 pounds.
Each subject underwent a full-night PSG study and had all
the sensors described in Section 3.2 attached to him/her. At
the same time, each subject slept on the e-textile bed sheet and
his/her pressure images were continuously recorded overnight.
The 504 hours of PSG recordings from the seven subjects
were scored by SOMNOmedic’s Domino software. The thorax
effort signal, leg EMG signal, sleep posture and sleep stage

IEEE SENSORS JOURNAL, VOL. 14, NO. 7, JULY 2014

Fig. 11. A male patient lying on the bed sheet with all PSG sensors attached
to his body shortly before the lights were turned off.

information provided by the software served as ground truth
for all extracted features. The experiments for all 7 subjects
were conducted under similar conditions. To ensure the setting
was comfortable for sleeping, the light was turned off, the
air in the room was in circulation and nearby noise sources
were eliminated. The room temperature was set to 68 degrees
Fahrenheit which is a comfortable temperature for sleeping.
Fig. 11 shows a subject wearing the PSG sensors and laying
down on the bed sheet shortly before the lights were turned
off.

Once the patient got in bed and before starting the overnight
recording, the so-called bio-calibrations were performed. Bio-
calibrations are short tests whose purpose is to discover any
poor PSG signals or incorrect hookups prior to the start of
the study. The subjects were asked to blink 5 times in order
to test the EOG signal. They were then asked to point their
toes towards their nose. This bio-cal tests the EMG electrodes
placed on the legs. Clenching the teeth verifies the accuracy
of the chin EMG signal, and breathing through the nose and
mouth verifies the flow, pressure and effort signals. To test
the microphone, the patient was asked to make a snoring
sound and to verify the posture detection provided by the PSG
system, the subject was asked to change the sleeping position.
In the morning and before disconnecting the sensors, the same
bio-calibrations are repeated to ensure that all the sensors
remained in place throughout the night. One out of the 7 all-
night PSG recordings had a problem with the morning bio-
calibrations; the thorax effort belt loosened during the night,
resulting in a poor respiration signal. That recording had to be
repeated the following night.

The pressure images obtained from the bed sheet were
labelled using the sleep stage information provided by the
PSG software. Testing was done using Leave One Out Cross
Validation (LOOCYV). One subject’s pressure images are left
out for testing and the other subjects’ images are used for
training.

B. Results

Figure 12 shows the performance results of our sleep stage
identification process based on signals derived from the bed
sheet. The results of three different classifiers after phase I
and phase II, as well as the overall results, are shown.



SAMY et al.: UNOBTRUSIVE SLEEP STAGE IDENTIFICATION

2099

Classifier Precision Recall Phase | Accuracy | Phase Il Accuracy | Total Accuracy
K-Nearest Neighbor 55.9% 56.9% 68.75% 65.67% 67.12%
Support Vector Machines 67.7% 68.6% 73.10% 68.50% 70.33%
Naive Bayes 70.3% 71.1% 75.23% 69.20% 72.20%

Fig. 12.
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Fig. 13. This figure shows the respiration signal during three different epochs:
one epoch during the N3 stage of NREM (top), another epoch during REM
(middle) and yet another during Wake (bottom).

It is noteworthy to mention that the Naive Bayes classifier
outperforms both SVM and KNN in terms of precision, recall
and accuracy despite the oversimplified assumptions it makes
about the underlying probability model of the data. This is
likely the case because in each of the two phases of classifica-
tion, the correct class is more probable than the other class. In
phase I, for example, where we try to separate the NREM stage
from the other stages, classifying more samples as NREM than
REM-+Wake is likely to produce good results since the NREM
stage constitutes 75% - 80% of the night and is therefore more
probable. The same argument can be made for phase II.

Another point to observe is that the performance of phase II
is significantly worse than the performance of phase I.
This performance degradation is expected since the physical
changes that occur during REM sleep are very similar to the
ones that occur during the Wake stage, making the task of
separating REM and Wake epochs in phase II a challenging
task. Because of the similarity between the REM and Wake
stages, the REM sleep stage is sometimes referred to as
paradoxical sleep. Even though it is one of the stages of
sleep, it is characterized by a brain wave pattern and physical
signals that are similar to that of wakefulness. Fig. 13 visually
shows the similarity between REM and Wake, as well as the
dissimilarity between those two stages and the NREM stage.
The figure shows the respiratory signal acquired by the PSG
system during three epochs of the N3 stage of NREM (top),
REM (middle) and Wake (bottom) of a single patient. As
can be seen, the respiratory signal in the NREM stage is
regular with very little variation in amplitude and frequency.
Both the REM and Wake stages, on the other hand, show the
same irregularity with clear variations in the amplitude and
frequency of the respiratory signal.

Fig. 14 shows the hypnogram of one of the seven subjects.
A hypnogram is a graph commonly used in polysomnography
that represents the stages of sleep as a function of time,
specifically as a function of epochs. In a clinical setting, a

Comparison of different classifiers in terms of precision, recall, phase I performance, phase II performance, and overall accuracy.
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Fig. 14. The top hypnogram shows sleep stages over time as provided by the
PSG system. (Wake: 68 epochs, REM: 153 epochs, and NREM:880 epochs).
The bottom hypnogram shows the hypnogram as obtained by the two-phase
classification procedure. (Wake: 218 epochs, REM: 110 epochs, and NREM:
773 epochs, Agreement: 77.48%).
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polysomnography record is usually scored by more than one
sleep technician and the hypnogram provides a visual way
to show the agreement between the scoring of the different
technicians. Here, we use a hypnogram to visually show the
agreement between the sleep stages obtained from the PSG
system (top) and the ones obtained from the bed sheet after
feature extraction and classification (bottom). The classifier
used in the creation of this hypnogram is SVM. The hypno-
gram from the bed sheet shows 77.48% agreement with the
gold-standard hypnogram. It can be observed from the figure
that a significant majority of the NREM epochs are classified
correctly as indicated by the matching NREM portions of the
hypnograms. It can also be observed that the REM and Wake
stages are often misclassified. The red bolded lines in the
bottom hypnogram show the epochs that were incorrectly clas-
sified as Wake as a result of our classification algorithm. The
red bolded lines in the top hypnogram show that these misclas-
sified epochs were scored as REM epochs by the PSG system.

Finally, Fig. 15 shows two confusion matrices for the same
patient as in the hypnograms. The top confusion matrix shows
the precision and recall values for the two-phase classification
algorithm described in section 4.2. Again, we can observe
that phase II of the classification performs poorly compared to
phase I due to the similarity of the REM and Wake stages. If no
body movements occur during the Wake stages then separating
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NREM REM Wake | Recall

NREM 773 38 69 87.8%
REM 0 42 111 27.5%
Wake 0 30 38 55.9%
Precision | 100% | 38.2% | 17.4% | 77.5%
NREM | REM Wake | Recall

NREM 729 76 113 79.4%
REM 2 12 139 7.8%
Wake 27 25 16 23.5%
Precision | 96.2% | 10.6% | 6.0% | 68.8%

Fig. 15. The top confusion matrix shows the results when the SVM classifier
is used in two-phase classification. The bottom confusion matrix shows the
results when the SVM classifier is used in one-phase classification on the
same data.

REM and Wake becomes even more difficult. The bottom
confusion matrix corresponds to a one-phase classification
procedure where we attempt to classify all three stages without
filtering out the NREM stage first. This one-phase procedure
leads to significantly worse precision and recall values because
it leaves more room for error between all three classes,
whereas the two-phase process eliminates the epochs that
are well distinguishable from the other ones first before it
proceeds to the more difficult task of separating the two similar
classes - REM and Wake.

VI. FUTURE WORK

In the future, we plan to find good biophysical signals that
can clearly separate the REM and Wake sleep stages to further
improve the precision and reliability of the system. We also
plan to develop a more fine-grained sleep stage identification
framework where we can classify sleep epochs not only into
Wake, REM and NREM but also into the different stages of
NREM. Such a comprehensive sleep stage analysis system
would enable a whole new range of applications. For hospital
patients, for example, a fine-grained sleep staging framework
can warn healthcare providers not to wake up sleeping patients,
especially the elderly, during deep sleep stages to give them
medication or for any other reasons. Waking up elderly people
during the N3 stage of NREM can result in drowsiness and a
greater likelihood for falls which are major causes of injury
and mortality among elderly people [19]. This would require
analyzing the pressure images in real time.

We would also like to study the effect of external stimuli,
like sound, light, temperature and humidity on the sleep stage
structure.

VII. CONCLUSION

In this paper, we proposed an unobtrusive, completely
wireless and contact-free sleep stage identification system.
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We extracted a set of sleep-related biophysical features as well
as geometric features from pressure images obtained from an
e-textile bed sheet. These features were used as part of a two-
phase classification procedure that first separates NREM from
REM and Wake and then separates the two latter classes.
The superiority of the two-phase procedure over the one-
phase procedure was shown. The system achieved up to 70.3%
precision and 71.1% recall on average.

The proposed unobtrusive system opens the way to a cheap
contact-free sleep diagnosis solution, eliminating some of the
drawbacks that the traditional PSG method presents. The
combination of a flexible and noninvasive bed sheet system
with simple signal processing and classification makes the
described system a portable sleep screening solution that can
be used in a clinical as well as a home environment. The
affordability of the system can make sleep screening accessible
to a bigger population which could lead to early diagnoses of
sleep disorders and chronic diseases.
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