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Abstract— Gait analysis is an important process to gauge
human motion. Recently, longitudinal gait analysis received
much attention from the medical and healthcare domains. The
challenge in studies over extended time periods is the battery
life. Due to the continuous sensing and computing, wearable
gait devices cannot fulfill a full-day work schedule. In this
paper, we present an energy-efficient adaptive sensing frame-
work to address this problem. Through presampling for content
understanding, a selective sensing and sparsity-based signal
reconstruction method is proposed. In particular, we develop
and implement the new sensing scheme in a smart insole system
to reduce the number of samples, while still preserving the
information integrity of gait parameters. Experimental results
show the effectiveness of our method in data point reduction.
Our proposed method improves the battery life to 10.47 h, while
normalized mean square error is within 10%.

Index Terms— Gait analysis, pressure sensors, smart insole,
sparse representation, selective sampling, image reconstruction.

I. INTRODUCTION AND BACKGROUND

GAIT is one of the important characteristics of human
locomotion, and gait analysis has been applied in diverse

applications in the medical and healthcare domains [1].
Specifically, in elderly healthcare, gait analysis is an important
tool to assess fall risk and fall prevention [2], [3]. As an
example, Baker used Brand’s four reasons to confirm that gait
analysis is a useful method for clinical rehabilitation [4], [5].
In addition, gait parameters of post-stroke patients were ana-
lyzed to evaluate their rehabilitation status [6]. In the fields of
orthopedics and prosthetics, gait analysis is essential to quan-
tify gait conditions and assess the applications of orthopedic
assistive devices [7].

Gait labs are the traditional environments where medical
practitioners observe human gait motions. These controlled
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systems are equipped with high-speed cameras, pressure
sensitive carpets and lighting facilities. In a gait study, the
subject will walk with reflective markers on the body, and
these devices will capture the motion and allow extraction
of the subject’s gait parameters. With the development of
wearable sensor systems, it makes sense to move the mon-
itoring outside the lab, where longitudinal gait monitoring
can be done in a more comfortable and realistic setting.
Mobiles systems with 3-axis accelerometers and gyroscopes
are suitable devices for data collection and analysis [8];
Bae et al. [9] presented a Force Sensing Resistive (FSR) sensor
array based system for gait analysis; and Chen et al. [10]
used inertial sensors on cerebral palsy patients for longitudinal
motion assessment. Martínez-Martí et al. [11] uses a pair
of instrumented insoles which can measure pressure from
different points of the foot. The insoles have four commercial
piezoresistive pressure sensors and a three-axis accelerometer
to determine foot forces during stance and swing phases.
Flexible conductive textiles can be integrated with many kinds
of wearable devices to collect detailed information on com-
plex user activities. Through adjusting E-field frequency and
positions of sensors, analyzable signal range and sensitivity
of conductive textiles can be improved [12]. A physiological
parameters monitoring system with Zigbee based devices can
help patients live on their own and minimize the danger of
falls or stroke. When emergency events happen, other people
can receive notifications to provide help immediately [13].
Measuring human joint movement with fiber-optic curvature
sensors can be used for the medical and sport application.
These sensors can be put on wearable devices and are non-
invasive and safe [14].

In this paper, we present our recent work on designing a
gait monitoring system, called Smart Insole. In extending prior
work [15], this platform consists of a 52 × 20 pressure sensor
array. The system can offer high spatial-resolution sensing of
plantar pressure from which gait features can be extracted.
However, power consumption is the main challenge because of
the concentration of sensors. In general, there are two options:
either reduce the sampling rate or reduce the sampling density.
To this end, we propose a new adaptive sensing scheme to
reduce the sampling density, as well as control the locality
of samples, while preserving information fidelity. To gauge
the sparsity of spatial sensor data, we effectively reduce the
number of sample points needed in the system. Compared to
the previous compressed sensing technology [16], our method
can be implemented with the traditional ADC modeling rather
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Fig. 1. Smart Insole system for gait monitoring. There is a 52 × 20 pressure
sensor array in the device. The embedded microcontroler randomly samples
from the dense pressure sensor array and only these pixels what have been
processed by ADC are used for reconstruction. (a) Smart Insole. (b) System
Structure.

than requiring special ADC components. In the reconstruction
of the high density image, we claim that our proposed method
of sparse representation is better than simple interpolation
especially for low number of samples, as illustrated in our
experimental results.

The remainder of the paper is structured as follows.
Section II describes the design and implementation of the
Smart Insole system. Then we present the adaptive sensing
framework which reduces the number of selected samples and
reconstructs data in Section III. In Section IV, we discuss the
experimental results. We conclude in Section V and outline
the future research direction and related clinical applications.

II. SMART INSOLE

A. System Description

In this section, we introduce the Smart Insole system we
developed. As illustrated in Fig. 1(a), Smart Insole looks like
a normal insole equipped with 52 × 20 pressure sensors.
Fig. 1(b) illustrates the schematic structure of the Smart

Insole system. A microcontroller controls a random sensor
access unit that reads the target sensor. The sensor signal
is quantified by an ADC module and then saved in a data
storage unit, such as an SD card. The entire electronic system
is powered by a 400m Ah lithium battery. The pressure sensor
is implemented with e-Textile which is a fiber-based yarn
coated with piezoelectric polymer, e-Textile has large process
variation and can be designed as a high-density and low-cost
pressure sensor array. The dense pressure sensor array homo-
geneously covers the surface of insole and is implemented
with flexible print-circuit board. The details are given in our
related work [17]. Using this device will not cause discomfort
which enables longitudinal gait monitoring in everyday life,
i.e. in uncontrolled environments.

B. Energy Challenge

The main challenge in using Smart Insole for longitudinal
gait monitoring is energy consumption. Due to the limitation
of size and weight, there is only room to fit a 400m Ah
lithium battery. To ensure the fidelity of gait information,
the sample rate of the pressure sensor array in gait analysis
is 30H z. A prior study shows that the system can last for
2 hours, which is not sufficient to support a full-day’s worth
of longitudinal monitoring. The most effective way to save
energy for longer battery life is to reduce the number of sample
points. In the next section, we will present an energy-efficient
adaptive sensing method.

III. OUR FRAMEWORK

In this section, we introduce our proposed energy-efficient
adaptive sensing framework in Smart Insole. Fig. 2 shows
the scheme overview. More specifically, there are three main
components in this framework: pre-sampling and real-time gait
analysis, selective sensing, and sparsity-based signal recon-
struction. The first two components occur in the Smart Insole
device, while the third component runs in the host system. The
sensed data is recorded locally on an SD card or transmitted
to the remote host for reconstruction and gait feature analysis.
We will elaborate on these components in the following
sub-sections.

The general idea of adaptive sensing is to change the number
of samples for each frame according to the pressure image
content. For example, there are four different gait stages in
one gait cycle: swing (S), contact (C), midstance (M) and
propulsive (P) stage [18]. Fig. 3 shows the pressure image in
each stage. We can see that the pressure distribution on each
stage is different, and it can use selected pressure sensors to
determine the gait phase. For instance, there is no pressure
under the foot in the swing stage, and there is no need to
sample the pressure image.

A. Pre-Sampling and Real-Time Gait Cycle Analysis

The first part is to analyze the gait stage. There are two
considerations here. First, the analysis procedure should run
in real-time for the sake of high speed sampling. Second, the
analysis should be accurate to ensure the correctness of gait
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Fig. 2. Overview of energy-efficient adaptive sensing framework in Smart Insole. The components in the client end are pre-sampling and real-time gait
analysis, selective sensing, and sparsity-based signal reconstruction. The sensing data can be transmitted to the cloud end for reconstruction and gait feature
analysis.

Fig. 3. Four stages in one gait cycle: contact, midstance, propulsive and
swing. The corresponding pressure images are under each.

Fig. 4. Three pre-sampling points: Front point (FP), Middle point (MP) and
Back point (BP).

cycle analysis. In this work, we pre-sample three prominent
points in the pressure sensor array to recognize the gait phases.
As shown in Fig. 4, three positions are at the front, middle and
back, respectively. In this way, we can use three easily sampled
sensor values to gauge the stage phase using the process as
described in Algorithm 1. We estimate the gait stage according
to the pressure threshold (Th). Specifically, if the pressure of
Front point (FP) is larger than threshold, at the same time the
pressure of Back point (BP) and Middle point (MP) is less
than threshold, then gait stage is Propulsive; if the pressure of
FP and MP is less than threshold, at the same time the pressure
of BP is larger than threshold, then gait stage is Contact; if the
pressure of FP, MP and BP is larger than threshold, then gait
stage is Midstance; if the pressure of FP, MP and BP is less
than threshold, then gait stage is Swing.

Algorithm 1 Gait Cycle Analysis via Pre-Sampling
Th: Threshold;
S: Swing, C: Contact, M: Midstance, P: Propulsive;
Input: FP, MP, BP, Th;
Output: S, C, M, P;
/* Detect if it is at Propulsive Stage */
if F P > T h and M P < T h and B P < T h then

Output ⇐ P , Return;
end if
/* Detect if it is at Contact Stage */
if F P < T h and M P < T h and B P > T h then

Output ⇐ C , Return;
end if
/* Detect if it is at Midstance Stage */
if F P > T h and M P > T h and B P > T h then

Output ⇐ M , Return;
end if
/* Detect if it is at Swing Stage */
if F P < T h and M P < T h and B P < T h then

Output ⇐ S, Return;
end if

B. Local Randomized Selective Sensing

The second step is selective sampling for dense pressure
image. The goal of selective sampling is to reduce the sample
number per frame; however, the system still can estimate and
reconstruct the entire pressure image by these limited sensor
measurement points. With support from our preliminary study
(shown in the experimental part), the structure of pressure
image varies in different gait stages. Given that the system
identifies which gait stage the subject is in by Algorithm 1 in
the previous subsection, we are able to apply a two-fold sam-
pling strategy. Firstly, the samples are selected randomly and
sparsely. Secondly, the sparse sampling is limited to regions
around predefined locales. The process is described here.

For one pressure image frame, we consider an image x as a
N pixel vector in R

N, i.e. the two dimension image is unfolded
into a single column vector. This image x can be represented
as a matrix form:

x = I x, (1)

and where I is the N × N identity matrix.
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We perform row-wise swaps on the identity matrix to
convert I to A so that A is a randomized permuted version
of I :

AN×N =

⎡
⎢⎢⎣

0 · · · · · · · · · 1 · · · 0
0 · · · 1 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 · · · · · · 0

⎤
⎥⎥⎦, (2)

Now y is informatively equivalent to x in

y = Ax . (3)

When the top k rows, Ak , of A are selected to construct y,
denoted as yk , we have:

yk = Ak×N x . (4)

We can see that yk is not informatively equivalent to
original x since N-k sensor values are missing. We call Ak×N

a selective sensing matrix, and yk is the selective sensing
output. This process describes how the random selection of
samples is made. The only update that is needed to restrict
the sampling to localized regions is to predefine the allowable
permutations of rows of A, i.e. only certain rows of A are
allowed to be swapped. This ensures that the top k rows will
be sampled from the specific regions. Note that the value of k
will be set according to the different gait stages. The results
will be presented in Section IV.

C. Sparsity-Based Reconstruction

In this subsection, we will discuss how to use yk to
reconstruct image x . Our reconstruction method is based on
the theory of sparse representation (SR). Sparse presenta-
tion has been successfully applied to signal reconstruction,
i.e. in Compressed Sensing [19]. In Compressed Sensing,
x ∈ R

N is a vector of unknown variables, and y ∈ R
k is

the limited measurements through A ∈ R
k×N. A is typically

either a random Gaussian or Bernoulli matrix. Then, we have:

y = Ax, (5)

Since k is less N , Eq. (5) becomes an underdetermined
system, and x can not be uniquely reconstructed. However,
if x is a structural signal, it should be sparse under some
transformation � , i.e. x = �z, where z ∈ R

N is sparse.
In this way, we can reconstruct x with the l0 minimization
formulation:

min
z

||z||0
s.t . y = A�z. (6)

With Eq. (6), there are two questions here. The first question
is how to find the transformation � such that z is sparse. In our
application, considering x is a pressure image measurement,
we employ the direct cosine transform (DCT) to represent the
unknown x .

The second question is how to solve this formulation.
Eq. (6) is a determined system and has stable solution.
However, Eq. (6) is an intractable N P-hard problem [20].

Algorithm 2 The Orthogonal Matching Pursuit Algorithm

Input: y ∈ R
k , A ∈ R

k×N , � ∈ R
N×N ;

Output: x ∈ R
N ;

/* Initialization */
Step 1: � = A� , r0 = y, �0 = ∅, t = 1.
/* Iteration */
Step 2: θt = arg maxθ j |rt−1.θ j |, j = 1..N .
Step 3: �t = �t−1 ∪ θt .
Step 4: zt = arg minz ||y − �t z||2.
Step 5: rt = y − �t zt .
Step 6: if ‖rt‖2 < ε, stop,

otherwise t = t + 1, go to Step 2.
/* Output */
Step 7: x = �zt .

There are two ways to estimate Eq. (6). One is to covexify
the formulation with the l1 minimization [16]:

min
z

||z||1
s.t . y = A�z. (7)

However, solving the l1 minimization is time-consuming and
not scalable [16]. The other method uses heuristic algorithms
to approximate the solution of l0 directly. One of the pop-
ular methods is Orthogonal Matching Pursuit (OMP) [21].
OMP, being a greedy algorithm, has advantages in speed and
ease of implementation [22]. If we consider A� as a matrix �,
then we want to find the sparsest solution z that combines
with the columns of � to give y. Another way to view this
is that the sparse solution is the same solution that would
result from a reduced set of columns, say �t . OMP finds
these columns, or bases, in order by choosing a column of �
that most closely resembles y and subtracts off its contribution
from y for the next iteration. The details of OMP are described
in Algorithm 2.

For more details, the initialization step sets a residual
r0 = y − �t zt = y for time t = 0. At iteration t , Step 2 finds
the column θt that maximizes its inner product with rt−1 for
j = 1..N . This column is the most similar to the residual rt−1.
Step 3 adds this column vector θt to a matrix of chosen
bases �t , where �0 was initialized as an empty matrix. Step 4
finds a t element solution of the system using only t columns.
Since t is less than k, the solution can be found by least
squares. Step 5 calculates new approximations of the residual.
zt is the solution of z with the most representative columns
of �. The residual is always orthogonal to the chosen bases �t

which results in a zero correlation between residual and any
of these bases, and so future iterations will never choose a
previously selected column. This continues until a stopping
criterion is met. Finally, Step 7 gives the reconstructed solution
for x where zt is transformed by � .

IV. EXPERIMENTS AND DISCUSSION

In this section, we discuss the evaluation of our proposed
method. For the sake of the comprehensive study, we develop
the experiments and validate the system performance on these
aspects, including (A) Evaluation of signal reconstruction
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with variation in sampling sparsity, (B) Energy efficiency
improvement, and (C) Information integrity of gait features.
The experimental results and discussion will be elaborated in
the following sub-sections.

Firstly, we introduce two metrics to quantitatively measure
the reconstruction errors:

• NMSE: Normalized Mean Square Error is given by

||x − x̂ ||22
||x ||22

,

where x represents the original signal, and x̂ is the
reconstructed image of x . NMSE is between 0 to 100%,
and it has been widely applied to error quantization in
various signals, such as time series [23], images [24] and
videos [25].

• SSIM: Structural SIMilarity (SSIM) is often considered
a better visual estimator of spatially structural signal
similarity, such as images, than NMSE [24]. The main
premise is that structural information of image pixels
have strong inter-dependencies especially when they
are spatially close. The SSIM metric ranges between
[−1.0,+1.0] where +1.0 means tested images are
identical. In our work, we use the definition and imple-
mentation detail from [24].

A. Evaluation of Signal Reconstruction

We firstly look at the performance on a single pressure
image. Fig. 5(a) is the original pressure image from the
midstance stage, and Fig. 5(b) is the reconstructed image
from 25% of sensor values randomly selected. The DCT
coefficients of the original and the reconstructed are shown
in Fig. 5(c) and Fig. 5(d), respectively. The results indicates
that the reconstructed image is visually close to the original.
It is because the pressure image is intrinsically very sparse
under some transform domain (such as DCT in this case),
and it is possible to reconstruct the information with limited
measurements.

To validate that the method of image reconstruction using
Sparse Representation, we compare it with simple image
interpolation. Figure 6 shows the comparison of reconstruction
error for these methods over 500 image frames for selected
samples k between 5–35%. Image interpolation calculates the
unsampled pixels by taking the average values of horizon-
tal and vertical linear interpolations. For high sparsity (low
number of samples), this result shows that the Sparse Repre-
sentation method can reconstruct the images better than pixel
interpolation. Furthermore, localized sampling with Sparse
Representation reduces the reconstruction error compared to
the global version of this method.

We are interested in the method performance on contin-
uous sensing signal of gait cycle. In this part, we use the
data of 5 steps of the right foot, including 500 sequential
pressure images. The sample rate of Smart Insole is 30H z.
Figure 7 shows SSIM results in this experiment. The results
consist of three curves, which corresponds to the sensing
percentage (k) 25%, 50% and 75%, respectively. It is not
surprising that the high sensing percentage leads to higher

Fig. 5. Original image versus Reconstructed with k = 25%. Lower graphs
show direct cosine transform coefficients. (a) Original. (b) Reconstructed.
(c) DCT coefficients original. (d) DCT coefficients reconstructed.

SSIM values. Furthermore, we also see under the constant
sensing setup, the reconstruction quality follows some pattern
and varies a lot according to different gait stages. More
specifically, at the Contact stage, i.e. as the heel touches down,
the structural similarity between original and reconstructed
images is relatively low (see Fig. 7). It rises through the
Midstance to a peak SSIM, then lowers until the Propulsive
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Fig. 6. Reconstruction error for various k-selective sensing schemes over
500 sequential reconstructed images for selected sample K between 5%–
35%. Local sparse representation method can reconstruct the images better
than pixel interpolation and sparse representation method.

Fig. 7. SSIM for various k-selective sensing schemes over 500 sequential
reconstructed images.

stage, i.e. as the foot pushes off its ball and toes. In the mean
while, we can see that the reconstruction quality in the swing
stage is better and more stable than stages in the stance phase.
Also, a significant periodicity pattern of SSIM among different
sensing setups can be observed in Fig. 7.

Furthermore, we would like to closely look at sample num-
ber reduction. We fix the setup of SSIM values and investigate
how many samples are required to keep the SSIM values
constant. In this experiment, we set up SSIM with four
different values, including 0.4, 0.5, 0.6 and 0.7. For the clarity
of presentation, we use the data of the stance phase from
10 gait cycles and partition the whole phase into ten segments.
The results are shown in Fig. 8, which illustrates how the value
of k-selective sensing setup varies when structural similarity
requirement is constant throughout the step cycle. From the
mean value curve, we can see that the higher SSIM, the more
required samples. Also, the variation pattern of k-selective
sensing setup follows the similar trend. More specifically,
at the beginning of the step, the value of k is high in order to
achieve the required structural similarity to the original image.

Fig. 8. k selected samples versus phase cycle for various values of SSIM.
Error bars indicate range of k values within 0.01 SSIM.

TABLE I

SENSING ENERGY SAVINGS ESTIMATE

Toward the middle of the step, the k value can decrease as
reconstruction ability improves due to more plantar pressure.
Then the k value rises to the end of the step cycle, meaning
that more selected samples are required to reach the same
level of reconstruction quality. The start and end phases of
the step have less structural information in the visual image
and so a higher number of selected samples are needed. Note
that the standard deviation at the beginning stage is large, and
progressively becomes smaller. The observation indicates the
large variation of pressure distribution on the heel strike, which
can be considered in our future work.

B. Energy Analysis

The important piece of evaluation is the energy efficiency
improvement that this method provides. Table I shows the
estimated battery life extension for variations in the reconstruc-
tion error. This is based on an initial estimate of 2hrs battery
life of a 400m Ah battery. The energy savings is calculated
from the expected sparsity for each reconstructed frame at a
certain error value for NMSE.

To further quantify the impact of k-selective sensing on
different gait stages and its effect on power consumption,
we investigate the pressure images from Contact, Midstance
and Propulsive stages. Fig. 9 shows the NMSE values of these
three images along with different k values (k is the selected
sampling percentage). We can see that the information quality
varies a lot with the change of sensing percentage in all three
gait stages. Specifically, the image of Midstance always has
low reconstruction error compared to the other two stages.
It is because the foot pressure in Midstance is more widely
distributed and forms a more structural shape. Also, we notice
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Fig. 9. NMSE versus k selected samples for frames at Contact, Midstance
and Propulsive stages. Error bars indicate variance across 500 frames.

Fig. 10. Trajectories of calculated center of mass of pressure image sequence
with different SSIM values using Local Randomized Selective Sensing.
(a) Original SSIM 1.0. (b) Reconstructed SSIM 0.7. (c) Reconstructed
SSIM 0.6.

that the performance on Contact and Propulsive is close to
each other in the entire k-selective sensing test. The result
indicates that given a threshold of NMSE, we can reduce
a fairly large number of samples according to different gait
stages. For example, only 20% of sensor measurements are
needed to reach 0.05 of NMSE in Midstance, but correspond-
ingly 50% of sensor measurements are required in Contact and
Propulsive. Accordingly, this gives evidence that the value of k
can be adjusted through the gait cycle to allow a good trade
off between reconstruction accuracy and power consumption
of sensing.

C. Information Integrity on Gait Features

Finally, we would like to investigate the impact of
k-selective sensing on gait features. In this experiment, we
use the pressure image data of one gait cycle with SSIM
1.0, 0.7 and 0.6. For simplicity, we choose one important gait
feature, center of mass trajectory also known as gait-line [26],
for the evaluation. Figure 10 shows representative results of
the center of mass trajectory calculated from the reconstructed
images. Specifically, the red circle is the center of mass
position in each pressure image, and the red curve is the
trajectory formed by center of mass positions in the sequential
pressure images. We can see that although the calculated

Fig. 11. Measure of Center of Mass (Gait-line) error. This gait feature
maintains a low error with variation in sparsity.

TABLE II

ESTIMATED GAIT FEATURE ACCURACY

trajectories among different k-selective sensing setups are
slightly different, it can preserve the important information
in the feature, such as trajectory direction, transition and
curvature. The result indicates that, in the case that algorithm
SSIM is not high (such as 0.6), the features from reconstructed
images are still good for gait analysis.

Figure 11 gives a quantitative measure on the error between
the calculated trajectory and that of the original data. In many
instances, the center of mass is within 1.5 pixels throughout
all phases of the step and even for very sparse sampling. This
result shows that reconstruction through sparse representation
sufficiently maintains the integrity of this gait feature.

Table II shows a summary of gait feature integrity. These
results show that the extraction of gait features from recon-
structed plantar pressure images do not degrade even with
changes in the sampling sparsity.

V. CONCLUSION AND FUTURE WORK

We proposed an energy-efficient adaptive sensing
framework in this paper, and implemented the method
in Smart Insole for gait analysis. The method is based on
gait cycle analysis, and employ a k-selective sensing scheme
to reduce the samples. The experimental result shows that
our method can effectively reduce the number of samples
required per frame and still keep good signal quality and
gait parameters after reconstruction. In the future, we will
perform the longitudinal study and see how our method
can extend the battery life in Smart Insole. We will try
to improve and evaluate the method. For example, we can
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consider to recognize the gait stages with finer granularity for
further energy-saving. We will also consider the evaluation
with different application scenarios and human activities.
Furthermore, medical conditions affect the normal gait
patterns and the current method would need to be reviewed to
handle specific motor cases, such as inverted gait sequences.
Moreover, besides gait analysis, our proposed sensing scheme
can be applied to other healthcare applications [27], [28] for
the longitudinal studies.
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