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Abstract—With the growth of sensing technologies, the
sensors are applied to diversified fields including health care,
elderly protection, human activity abnormal detection, and
surveillance. The advanced sensors embedded in mobile
devices generate a large amount of valuable data. In recent
years, to deal with the massive volumes of data, representa-
tion learning emerged as an alternative approach to extract
the features without manual feature extraction. In this paper,
we develop an unsupervised representation learning sys-
tem for mining features across multiple sensors placed on
different parts of the human body for recognizing human
daily activities. The unsupervised representation learning
approach allows models to learn the feature representation
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among a large number of unlabeled data samples collected from different parts of the human body. In order to demonstrate
the feasibility of our system, extensive experiments on human daily activities recognition are carried out to evaluate the

effectiveness of the learned representations.

Index Terms— Representation learning, transfer learning, deep learning, body sensor network.

I. INTRODUCTION

HE growing availability of the data collected from smart
mobile devices is changing the way of data analysis [1].
The sensors are widely used in body sensor networks (BSNs)
technology. As sensing technologies develop, the emerging
advanced sensors are embedded and extensively applied to
the mobile devices for a wide range of applications such
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as health care [2], [3], elderly protection [4], [S], human
activity abnormal detection [6], surveillance [7], and eating
detection [8]. The advanced sensors embedded in mobile
devices generate a large amount of valuable data. It provides
information on human physical activities, evaluation on indi-
vidual’s independence, and health status [9], [10].

Convolutional neural networks (CNN) based systems have
been widely recognized as the efficient way to detect human
activities with human-annotated labels [5]. Millions of labeled
training data are the foundations of great success. However,
collecting the massive volumes of labeled data requires manual
annotation, which is time-consuming and expensive. It is
crucial to train the model from a large number of unlabeled
data for human activities recognition. Besides, the unlabeled
data can be complicated due to the data are acquired from
different mobile devices and from various parts of the human
body. The signal waveform generated from different mobile
device positions can be dissimilar [11]. A person while jogging
holding the smartphone in hand is expected to wave the device
more than placing it in the pocket. Besides, the orientation
of mobile devices can be different. Those differences in data
increase the difficulty of using the data collected from different
positioning directly.

Learning reusable discriminative representations across dif-
ferent sensors has become an active research domain [12].
There is an emerging paradigm named representation learning
based on the deep learning approach, which converts the
republication/redistribution requires IEEE permission.
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data into relevant critical features and can be further utilized
for activity recognition or classification [13]. While the deep
learning-based approaches have led to significant performance
improvement, the model’s depth and complexity are limited
by the quantity and quality of well-annotated data [14]. It is
typically straightforward to get large quantities of unlabeled
data directly from mobile devices. The deep learning-based
unsupervised representation learning algorithms relieve the
burden of massive manual annotation [15]. Specifically, most
of the self-supervised methods are proposed for learning
representations by solving the “pretext” tasks from the data
itself, which significantly reduces the need of domain expertise
and the substantial effort to manually annotate the training
data.

In this paper, we aim to extract the signal representations of
the sensor data collected from the mobile devices placed on
different human body parts. The learned representations can
be transferred across the mobile devices in different positions.
To further demonstrate our system, we apply the framework for
learning representations on both self-collected public bench-
mark datasets including fall detection (FD) and Activities of
Daily Living (ADLs). Extensive experiments are implemented
and validated to demonstrate the feasibility and effectiveness
of the systems that are aided by learned representations.
We summarize the following contributions. First, we build
an unsupervised representation learning system to extract the
generalizable features through multiple sensor positions and
analyze two different representation learning frameworks, the
multi-task self-learning and Contrastive Predictive Coding
(CPC). Second, we analyze the effectiveness of applied learned
representations on human daily activities recognition (HAR)
including fall detection and activities of daily living. Third,
we demonstrate that fine-tuning the pre-trained model with
limited available well-annotated data improves the model
accuracy significantly compared to the direct training from
those annotated data.

Il. RELATED WORK

As the revolution of intelligence devices with sophisticated
hardware progresses, a large amount of valuable data are gen-
erated from mobile devices. Mobile-based machine learning
has been one important area of research in recent years [16].
The mobile sensing enables applications to quantify the user’s
exercise patterns [17], [18], monitor the elderly people’s falls
[11], and Human daily activities recognition [19]. With the
increasing computation and storage capabilities of mobile
devices, the utilization of mobile devices with sensors for
those applications has become an effective approach. Recently,
CNNs have been successfully applied in sensor-based human
activities detection systems [5]. However, it is expensive and
time-consuming to get a large amount of well-curated or
human-annotated data for learning. An alternative approach
to model learning is self-supervised representation learning,
where the models extract the deep feature without the require-
ment of a large number of well-curated or human-annotated
data.

A. Representation Learning

One of the fundamental data mining methods is to develop
models to extract a meaningful set of features from the data.
The extracted features are utilized within machine learning
algorithms to learn the mapping with those features [20].
Representation learning has been widely applied for the com-
puter vision and natural language processing problems, such as
learning the representations from colorization [21], predicting
image rotations [22], and context-based self-supervised learn-
ing [23]. The role of the representations in activity recognition
is investigated by applying divergent features to train the
model [24].

B. Self-Supervised Representation Learning of HAR

Due to the ease of collection and set up [25], as well
as the protection of privacy [26], the sensor-based HAR
approaches have become more prevalent and are widely used
all over the world [27]. The common sensor modalities include
accelerometers, gyroscopes, and magnetometers [28], [29].
Traditional approaches have made tremendous progress on
HAR by applying data-driven machine learning algorithms
including decision tree [30], support vector machine [31],
naive Bayes [32], and hidden Markov models [33]. It is neces-
sary to apply the feature extraction algorithms before building
machine learning models to extract proper and important
features for subsequent modeling procedure [34]. However,
the process to extract the features from the data of complex
correlations and non-linearity is complicated [35]. The feature
extraction of the HAR system highly relies on domain-specific
knowledge, which is time-consuming and expensive. In most
daily HAR tasks, the methods highly rely on hand-crafted
extracted features, which requires proficient knowledge in that
domain.

Representation learning is typically extracting features from
the input data [35]. Most of the methods find compact
representations for the sensor data. The representations can
be extracted through time and frequency domain [36]. The
representation learning approaches such as principal com-
ponent analysis (PCA) have been developed to extract the
features from the sensor signal [37]. Other representation
learning models based on deep learning are formed by the
composition of multiple nonlinear transformations. The mod-
els include deep belief network (DBN) [38] and stacked
auto-encoder (SAE) [39]. Recently, self-supervised learning
approaches have been implemented by defining a “pretext”
task from the data itself. Those approaches have been widely
applied in computer vision and natural language processing
problems. Multi-task self-supervised representation learning
can learn the shared representations across various tasks by
collaboratively optimizing multiple objectives. Biologically,
multitask learning can be regarded as exploiting relations
among tasks and applying the knowledge that has been
acquired by the surrogate or auxiliary tasks to the new tasks.
Peng et al. [10] applied the multitask learning on ADLs for
exploring the relations between simple activity and complex
activity. Saeed et al. [12] applied multi-task learning to find
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Fig. 1. The figure illustrates the work flow of the system. The representation are learning from the unlabeled data collected from sensors placed on
different body parts. The learned representations are applied to human daily activities recognition and fine-tuning the model with annotated data.

the representative relations of accelerometer signals. Con-
trastive predictive coding (CPC) [40] is a self-supervised
approach and encodes high-level temporal information from
the time-series data. The data are mapped to a latent space
followed by the auto-regressive network for the subsequently
encoded context representations.

[1l. SYSTEM
In this paper, we apply the representation learning, the
multi-task self-supervised learning and the CPC framework,
to extract the representations across the sensor data collected
from different body parts. The system framework is illustrated
in Fig. 1.

A. Multi-Task Self-Supervised Learning

To learn the information from a large amount of the unla-
beled data from different sensors that are placed on different
human body parts, the “pretext” tasks are defined in order to
perform unsupervised representation learning. The tasks are
designed to recognize the signal transformations motivated
by references [12], [41]. All the data from different sensor
positions are collected together and applied to the signal
transformations before feeding into the representation learning
network (RLN). The RLN contains three 5*1 convolutional
layers with 32, 64, 96 feature maps. The dropout layer is used
after each of the convolutional layers. The distinct task-specific
layers for each task are implemented by applying multilayer
perceptron with 2-hidden layers including 1728 and 512 neural
nodes and are followed by the LeakyReLu activation functions.
Additionally, we apply the early-stopping if the network
fully converges to avoid over-fitting. The L2 regularization
is applied with a rate of 0.0003. The model consists of shared
layers transferred from the RLN and the distinct last two layers
with 1728 and 512 units. The RLN learns the representations
of sensor data and the feature mappings through the signal
transformations classification. The multi-task learning (MTL)
framework is applied to distinguish the signal transformations.
The common trunk (shallow layers) neural network of the

MTL model is able to learn the generic representation and
extract the representations of multiple sensor data. We define
multiple T tasks according to detecting whether the sensor data
has been transformed and classifying which transformations
have taken place. The whole network is divided into two parts
by commonly shared trunk and task-specify distinct layers.
The design enables the learning process to push extracted
task-specific features to the last distinct layer and let the shared
layers extract generic representations through recognizing the
signal transformations for all sensor data collected from dif-
ferent human body parts. The learned representations can be
further transferred to perform HAR with different body-part
sensor models.

The signal transformations including noising, scaling, rotat-
ing, cropping, permuting, time-warping, magnitude-warping,
and the combination of permuting and time-warping are imple-
mented. More specifically, the random noise transformation
(or jitter) adds noise to the original signal. The model can
capture the features of minor signal changes through noise
transformation. The scaling transformation enables the model
to learn the features of amplitude and offset in-variances from
changing the magnitude of the signals. Besides, the rotation
transformation enables the model to learn the orientation
in-variances through implementing the inversion to the signals.
The time-warping transformation makes the model learn the
features of temporal location by distorting the time intervals
between samples in the windows. The magnitude-warping
transformation involves the data window with a smooth curve
around 1. What is more, the magnitude transformation facili-
tates the model to learn the features of convolution changing
around the samples. In addition, the random sampling and
the permutation transformation perturb the signal waveforms
by removing and permuting some data points in the signal
waveforms respectively, which allows the model to learn the
features of the relative sampling rate between the raw signal
and transformed signal.

Each data signal collected from the different positioning
mobile devices e € E are transformed J(x;) before feeding
into the representation learning neural network, where the
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signal transformations are defined as J(.). The model is
feed-forwarding to process the different tasks simultaneously.
where the loss function for signal transformation recognition
tasks is defined in equation 1. We define the y, to be the output
of the model with a set of n training instances.

Lw) =" ¢i(—

teT

> (illog(y))
! i=1

1
n &
+(1 = yp)log(1 — yo)) + Bllwll*) (1)

The weights of RLN are updated according to equation 2.
1
Wi = ' — ¢ [_vw(”"‘)L(w)} 2)
m Wi

In equation 2, m is the mini-batch data size, a is the learning
rate.

When the training converges, the shallow common trunk of
the RLN model can be transferred to any HAR models trained
with different sensor data collected from different human body
parts. The last task-specific layers can be fine-tuned according
to the needs of the task.

B. Contrastive Predictive Coding

The key of contrastive predictive coding (CPC) is to predict
future time-steps in the latent space using auto-regressive
modeling [40]. The assumption behind doing such a task is to
extract high-level features by predicting the future time-steps,
which is an established approach in signal processing [42]. The
framework of CPC is illustrated in Fig. 1. The encoder model
is defined as gen. and transforms the signal to a sequence
of latent representations. Besides, an auto-regressive model
gar 1s designed to extract the context of latent representations
of the output of encoder model z; = genc(x;). The noise
contrastive estimation (NCE) loss is utilized to update the
model parameters according to Equation 4.

Lyce = —Ex |:108—Zf(xr;k(,xc.t)c ):|
x;eX RN

where f(x;4k, c;) is the density ratio to preserves the mutual
information between the x;4; (the signal at time 7 + k),
and the ¢;, the context latent representations learned by the
auto-regressive model ¢; = gur(z</).

3)

f g ) oc L) 4)
P (Xe+k)

After training the representation learning model, the para-
meters of the g, and genc are frozen and to be transferred
to the classification model to extract the signal representations
on HAR.

C. Representations Transferring

In the above section, the representation learning frame-
works are introduced. The subsequent procedure is to do the
classification based on those learned representations. When
the training process of the representation learning becomes
convergence, the parameters of the model are transferred to the

Algorithm 1 Representation Learning Across Sensors

Placed on Different Body Parts
Input: Unlabeled dataset and labeled dataset: Ny, NV
Output: Human activity recognition model

1 /*Initialization for representation learning*/

2 Establish the representation learning model by defining
the “pretext” tasks.

3 /*Training™*/

4 for each traning instance x; in N, do

5 | for each taskt € T do

6 L Learning the representations through a CPC-based

model or through a multi-task-based model.

7 /*Transferring the learned representations to the HAR*/
8 The representation learning network is transferred to the
HAR model by freezing the parameters.
9 while labeled sensor data e € E do
10 | for each mini-batch input n € N; do
11 L Fine-tune the last layers of human activity
recognition.

classification model with the frozen parameters. The classifica-
tion backend includes batch normalization layer, LeakyReLU
activation layer, and dropout layer with p = 0.1. Generally,
the representation learning model is to learn the generic
representations from the abundant unlabeled sensor data. The
classification model is transferred from the representation
learning model, and then fine-tuning the last task-specific
layers with labeled sensor data. The summary of system
workflow is concluded in Algorithm 1.

IV. EXPERIMENT AND RESULTS
A. Datasets and Evaluation Metrics

The experiments are conducted to validate the representa-
tions learned from different body-part sensor datasets. The
system is evaluated with a self-collected dataset and a publicly
available dataset. The HHAR dataset [43] collects 36 smart-
phones and smartwatches, consisting of 13 different device
models. Two embedded sensors including the accelerometer
and gyroscope signals are used to recognize the activities
of daily living (ADLs) including biking, sitting, standing,
walking, stair up, and stair down. To further evaluate the
system, more data are self-collected. 10 ADLs on 10 subjects
are collected including sitting down, sitting (sitting on the chair
and sitting on the sofa), walking (walking upstairs, walking
downstairs, and walking on the ground), bending, bending
to pick up items, standing, lying, squatting and squatting
to pick up items and a group of falls containing backward
falls, forward hard falls, forward soft falls, left falls and
right falls as described in [44]. All the data is collected
from the accelerometer and gyroscope placed in the trouser’s
pocket (thigh), on the arm, and on the chest. All signals
are re-sampled to 50 Hz before training according to the
literature [45] and adopted the segmentation technique around
founded peak [46] into fixed windows with 200 samples and
50% overlap for human activity recognition and fall detection.
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TABLE |
COMPARING THE PERFORMANCE OF MODELS TRANSFERRED FROM REPRESENTATION LEARNING AND SUPERVISED LEARNING WITH TwO
DIFFERENT ACCELEROMETER SENSOR P0OSITIONS ON PuBLIC HHAR DATASETS

Algorithms Sensor Positions | Labeled Data Per Class | Accuracy | Precision | Recall | Fl-Score
50 0.4918 0.4487 0.4686 0.4464
Thigh 100 0.5843 0.5630 0.5647 0.5486
Supervised Learning 500 0.7735 0.7775 0.7593 0.7614
50 0.6003 0.5878 0.6047 0.5890
Arm 100 0.6752 0.6682 0.6851 0.6682
500 0.7620 0.7615 0.7639 0.7559
50 0.7404 0.7206 0.7239 0.7187
Thigh 100 0.7926 0.7813 0.7797 0.7791
. . . 500 0.8799 0.8743 0.8709 0.8716
Multi-task Self-supervised Learning 30 06772 06745 06311 06755
Arm 100 0.7098 0.7103 0.7152 0.7106
500 0.8032 0.8013 0.8058 0.8032
50 0.7328 0.7132 0.7167 0.7115
Thigh 100 0.7861 0.7745 0.7732 0.7745
. . 500 0.8744 0.8688 0.8655 0.8661
CPC Representation Learning 50 06475 | 06439 | 0.6512 | 0.6458
Arm 100 0.7002 0.7005 0.7056 0.7009
500 0.7820 0.7828 0.7873 0.7847

The same sampling rate and the fixed-length sliding window
enable the model to learn the features related to the location
and make it more feasible to transfer between different devices.
Other than the public dataset, the number of self-collected data
samples is 3380 and a total of 30420 samples after applying
the signal transformations.

To better evaluate and assess the performance of the
multi-classification in the experiments, the metric of overall
accuracy, Macro-precision, Macro-recall, and Macro-F1 [47],
[48] is used. Assume there is a C classes:

TP.+TN,

Accuracy = 5
uracy ZTPC—i—FNC—i—FPC—i—TNC %)
. 1 TP,
Macro — precision = — - (6)
C TP.+ FP,
eC
1 TP,
Macro —recall = — - 7
C TP.+ FN,
ceC
1 2T P,
Macro—Fl:—Z < (8)
CceC 2TP.+ FN. + FP.

B. Results

1) Demonstrate the Effectiveness of the Learned Sensor
Representations: To evaluate the effectiveness of the learned
representations across the sensors placed on different body
parts, the experiments are conducted on two HAR datasets
including the public benchmark dataset HHAR and self-
collected dataset.

As shown in Table I, representation learning increases the
performance of activity recognition, especially under the sce-
nario that the available labeled data are limited per class
compared to using supervised learning. A S5-folder cross-
validation is implemented for each dataset. Both representation
learning architectures have a better performance than the
system trained from scratch on the HHAR dataset with the
number of available labeled data per class equal to 50, 100,
and 500. Transferring the representation model to the HAR

model can improve the performance of human daily activities
with the smartphone (placed on the thigh), even the available
label is limited. The accuracy of the multi-task self-supervised
learning on 50 available labeled data per class is 74.04%, the
100 labeled data per class is 79.26%, and 500 labeled data
per class, which is increased 24.86%, 20.83% and 10.64%
to the accuracy than the supervised learning, respectively.
The representation learning achieves attractive performance
on the HHAR dataset. In addition, the model trans-
ferred from learned representation has a better convergence
rate.

As shown in Table II, the learned representations are applied
to HAR. The representations learning can improve the system
performance on human daily activities recognition. We get
the impressive results that learning the representations from
sensors increases the system accuracy, especially when the
available data are limited. The representation learning based
on CPC can increase 22% of accuracy compared to train model
from scratch. The consistently improved performance over
training from scratch makes a compelling indicator that the
representation learning algorithm extracts important features
across sensor data collected from different body parts and
makes a significant improvement in performance over random
weights of the neural network.

2) Validating Representation Learning on Gyroscope: In this
section, we apply the representation learning on gyroscope
data collected from different human body parts to validate the
effectiveness of the representation learning on the gyroscope
sensor. The experiments on HHAR dataset demonstrate that
the learned representations can still improve the performance
of gyroscope data. As shown in Table III, where the ACC, P,
R, and F1 refer to Accuracy, Macro-Precision, Macro-Recall,
and Macro F1-Score. Despite the improvement of gyroscope
performance, accuracy, precision, recall, and Fl-score are not
as significant as the accelerometer, the results demonstrate
that the beneficial representations can be extracted from both
gyroscope and accelerometer sensor data.
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TABLE Il
COMPARING THE PERFORMANCE OF MODELS TRANSFERRED FROM REPRESENTATION LEARNING AND SUPERVISED LEARNING WITH TwO
DIFFERENT ACCELEROMETER SENSOR POSITIONS ON SELF-COLLECTED DATASETS

Algorithms Sensor Positions | Labeled Data Per Class | Accuracy | Precision | Recall | F1-Score
10 0.6263 0.5986 0.6776 0.5715
Thigh 30 0.7858 0.7256 0.8381 0.7421
100 0.9167 0.8437 0.8475 0.8417
10 0.4272 0.5268 0.5518 0.4298
Supervised Learning Arm 30 0.7598 0.7015 0.7974 0.7203
100 0.8504 0.7997 0.7710 0.7745
10 0.5571 0.5068 0.6604 0.5299
Waist 30 0.6949 0.6333 0.7839 0.6689
100 0.8740 0.7835 0.8074 0.7645
10 0.7146 0.6548 0.7324 0.6560
Thigh 30 0.8366 0.7927 0.8547 0.8090
100 0.9198 0.8713 0.8482 0.8409
10 0.6378 0.5844 0.6566 0.5760
Multi-task Self-supervised Learning Arm 30 0.7677 0.7050 0.7936 0.7254
100 0.8740 0.8129 0.7720 0.7751
10 0.6634 0.6031 0.6966 0.6169
Waist 30 0.7527 0.6714 0.7998 0.6976
100 0.8858 0.8123 0.8137 0.7902
10 0.8473 0.7765 0.7841 0.7696
Thigh 30 0.8675 0.7811 0.8194 0.7763
100 0.9148 0.8689 0.8614 0.8429
50 0.6475 0.6439 0.6512 0.6458
CPC Representation Learning Arm 30 0.7002 0.7005 0.7056 0.7009
100 0.8669 0.8336 0.8738 0.8409
10 0.7284 0.8087 0.6718 0.6936
Waist 30 0.8355 0.7979 0.8361 0.8093
100 0.8669 0.8336 0.8738 0.8409

TABLE IlI
REPRESENTATION LEARNING FOR HHAR GYROSCOPE DATA

Arm Acc P R F1
Supervised: 50 labeled 0.4700 | 0.4565 | 0.4712 | 0.4304
Representations: 50 labeled 0.4980 | 0.5004 | 0.4963 | 0.4905
Supervised: 100 labeled 0.5035 | 0.4998 | 0.4981 | 0.4726
Representations: 100 labeled | 0.5447 | 0.5398 | 0.5401 | 0.5376

Thigh Acc P R Fl1
Supervised: 50 labeled 0.5311 | 0.5267 | 0.5179 | 0.5159
Representations: 50 labeled 0.5251 | 0.5189 | 0.5143 | 0.5055
Supervised: 100 labeled 0.5611 | 0.5609 | 0.5404 | 0.4883
Representations: 100 labeled | 0.5971 | 0.5850 | 0.5874 | 0.5496

V. DISCUSSION

A. The Influence of Accurate Learned Representation on
Classification Model

We have demonstrated the effectiveness of the representa-
tion learning on the classification task under realistic, chal-
lenging requirements. In this section, the influence of accurate
learned representation on the classification model is discussed.
Weather more accurate representations lead to a better perfor-
mance of the classification task? Will there be an over-fitting
problem? As shown in Figure 2, which illustrates the tendency
of the accuracy of each signal transformation task along with
the training iterations on the self-collected dataset. As shown
in the figure, model-60 refers to the RLN network trained
by 60 iterations and model-100 refers to the RLN network
trained by 100 iterations. Apparently, model-100 has better
performance on recognizing the signal transformations than
model-60. We further evaluate whether a better representation
learning model can result in a better performance.

As shown in Fig. 3, as expected, the performance of model-
100 is better than both model-60 and supervised learning

Accuracy of each task over Training Iteration

11 Model-60, Model-100,
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Fig. 2. This figure shows the accuracy of each signal transformation
tasks during the representation learning based on multi-task learning
with our dataset.

models. Better performance of representation learning leads
to higher accuracy of the classification task, especially with
the limited available labeled data. At the same time, we found
that the more accurate the representation learned, the better
performance with a higher convergence rate on the classifica-
tion model.

B. Could the Learned Representation Applied to
Different Users?

To further evaluate the effectiveness of the representations
learned from sensors, we evaluate the model for the new
incoming client (leave-one-out cross-validation). As shown in
the Fig. 4, the learned representation significantly improves
the performance of the HAR model even for a new incoming
user. In particular, the representation learning model has
better performance, which increases the accuracy of 12%, the
precision of 20%, improves the recall of 16%, and the F1 score
of 18% than the supervised learning with limited available
private user sensor data.
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Fig. 3. The results of the representation learning. The representation learning model is pre-trained on an entire dataset from different location

sensor data with 5, 10, 15, 20, 30, and 100 labeled instances per class.
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Fig. 4. Evaluate the performance of representation learning across
different user.

TABLE IV
COMPUTATION COMPLEXITY FOR REPRESENTATION
LEARNING MODELS

Model FLOPs Parameters
CPC 214982 MB | 3.7478 MB
Multi-task 29.649 MB 0.605 MB

C. Computation Complexity

As shown in the Table IV, the computation complexity
is summarized. The float point operations (FLOPs) of CPC
representation learning and multi-task learning models are
calculated. Besides, the task-specific layers (last layers) take
about 3.9 MB FLOPs.

VI. CONCLUSION

In this paper, we applied representation learning for dif-
ferent body-part sensors. The representation learning system
is proposed to learn the representations from a large amount
of unlabeled data collected from sensors placed on different
body parts. Collecting the data from all different body parts
make it easier to get a large quantity of sensor data. The
collective data across sensors has a potential value not only
can improve the system, but also has business value. With
representation learning, the model learned from the unlabeled
data can improve the system performance especially when the
available well-curated data are limited to a specific body part.

We found that learning the representations from the data can
facilitate different body-part sensor models and significantly
improve the learning efficiency and effectiveness. The system
is validated through both public and self-collected datasets.
As expected, the performance of the proposed system has a
great advantage over using traditional supervised learning.
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