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Abstract—Vital signs (i.e., heartbeat and respiration) are cru-
cial physiological signals that are useful in numerous medical
applications. The process of measuring these signals should be
simple, reliable, and comfortable for patients. In this paper, a
noncontact self-calibrating vital signs monitoring system based on
the Doppler radar is presented. The system hardware and soft-
ware were designed with a four-tiered layer structure. To enable
accurate vital signs measurement, baseband signals in the radar
sensor were modeled and a framework for signal demodulation
was proposed. Specifically, a signal model identification method
was formulated into a quadratically constrained minimization
problem and solved using the upper bound and linear matrix
inequality (LMI) relaxations. The performance of the proposed
system was comprehensively evaluated using three experimental
sets, and the results indicated that this system can be used to
effectively measure human vital signs.

Index Terms—Calibration, Doppler radar, vital sign measure-
ment.

I. INTRODUCTION

A MONG the various medical signals, vital signs (e.g., heart
rate and respiratory rate) are the most crucial measures

used to assess bodily functions and monitor illness progression
to determine the effective treatments that should be adminis-
tered [14]. Furthermore, vital signs measurement is helpful in
predicting potential clinical events. For example, the variation
in respiratory rate is a marker for cardiac arrest or admission to
an intensive care unit [13].
Several off-the-shelf home devices are used measuring vital

signs [20], [35]. They require users to follow the instrument in-
structions strictly and to perform the measurement under con-
trolled conditions. For example, when a person uses an elec-
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trocardiography (ECG) device to measure heartbeat, the elec-
trode should be attached on the correct parts of the body and
the person should not move while conducting the measurement.
Therefore, consistently obtaining valid vital signs measurement
without the assistance of medical personnel is difficult. More-
over, because using these devices is inconvenient, patients are
unlikely to perform vital signs measurement by themselves.
For years, the research community has investigated unobtru-

sive methods for vital signs measurement. Generally, existing
work can be classified into three categories. The first category
is based on direct skin contact. During measurement, a device
must be in direct physical contact with the body of the user.
Valchinov et al. developed a dry skin electrode that reduced con-
tact impedance and variation and motion artifacts [43]. Huang
et al. [27] designed a portable ECG acquisition system using
multiple dry skin electrodes. The second category is based on
indirect contact (i.e., sensors that do not require direct phys-
ical skin contact). Under-bed mattress sensors have been used
to measure heartbeat, respiration, and body movements using
thin, air-sealed [44], film [2], hydraulic [26], e-textile [46] pres-
sure sensors. Liu et al. [33] introduced a dense e-textile pressure
sensor array to estimate the sleep postures and stages. Steffen et
al. [40] designed magnetic bio-impedance monitoring and ca-
pacitive electrocardiogram (ECG) recording systems for heart
and lung activity monitoring. Chi et al. [12] developed a capac-
itive electrode to measure heart rate that can function through
clothing. The third category is based on noncontact techniques.
Noncontact techniques enable monitoring vital signs remotely
and seem appealing for users. Aoki et al. [1] discussed a non-
restrictive visual sensing method for detecting respiration pat-
terns by using a fiber grating camera and processor unit. Zhu
et al. [49] developed an infrared-camera-based system to mon-
itor respiration and infer the associated heart rate. Zito et al.
[51] designed UWB pulse radar sensor for contactless respi-
ratory rate monitoring. Chekmenev et al. [10] used a thermal
camera consisting of a focal plane array for a long-wave in-
frared sensor to extract heart rate and respiration from temper-
ature changes. However, all of the aforementioned noncontact
methods involve using sensors that are sensitive to changes in
environmental factors such as light or temperature, and no ro-
bust calibration methods for compensating for these changes
have been developed.
In this paper, a low-cost microwave Doppler radar-based

system complementary to existing noncontact techniques is
presented. According to Doppler theory [5], signals reflected
by objects exhibit a quantitative phase change, called Doppler
shift, because of the movement of the objects. The magnitude
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Fig. 1. The Doppler radar block diagram for non-contact vital signs
monitoring.

of the phase change is sufficiently large for measuring heartbeat
and chest wall movement. A novel framework based on the
Doppler radar structure and signal model was proposed to auto-
matically demodulate the Doppler radar signals and extract the
heart and respiratory rates without precalibration. Therefore,
this method is a low-cost, reliable solution for noncontact vital
signs measurement that is easy to set up.
The remainder of the paper is organized as follows. In Sec-

tion II, the background of Doppler radar and related studies on
radar signal processing are briefly introduced. The layered ar-
chitecture of the Doppler radar motion-sensing system is de-
scribed in Section III. In Section IV the challenges and frame-
work of vital signs measurement are addressed. The experi-
mental design, performance evaluation and analyses are dis-
cussed in Section V. Finally, the future work is outlined and a
conclusion is provided in Section VI.

II. DOPPLER RADAR PRELIMINARIES

The Doppler effect was proposed by Christian Doppler in
1842 and has since been widely applied in motion detection.Mi-
crowave Doppler radar was first applied to measure respiratory
rate and detect sleep apnea in 1975 [32]. A Doppler radar trans-
mits a continuous-wave signal, which is reflected by a target
and then received and demodulated by a receiver. According
to Doppler theory, the position-varying information is propor-
tionally demodulated in the reflected signal when the net ve-
locity is zero. Therefore, the chest wall movement caused by
volume change during respiration can be detected using the
Doppler radar motion-sensing system. Because of the advances
in wireless transmission and electronic devices, using in-phase
and quadrature ( ) Doppler radar for heartbeat detection is
feasible [11], [17].

A. In-phase/Quadrature (I/Q) Doppler Radar
Fig. 1 shows the operation theory and block diagram of an

Doppler radar for non-contact vital signs measurement.
The Doppler radar system transmits the continuous-wave signal

(1)

where is the amplitude of the carrier signal,
denotes the angular velocity (carrier frequency), and rep-

resents the time-varying phase information of the transmitted
signal.
The subject is at a distance from the radar and the total

traversal distance of microwave signal is ,
where is the time-varying displacement caused by heart
beat and respiration.
The transmission wave is reflected by the subject and re-

ceived at Doppler radar as

(2)

where is the amplitude of the received signal, is
the wavelength of the carrier signal, and is the speed of light
[17], [31].We can see that the time-varying displacement is
modulated in the phase change of the received signal. As shown
in Fig. 1, is down-converted by and then generates
two baseband signals. One is the in-phase signal, denoted by

(3)
and the other is the quadrature signal, denoted by

(4)
where is the amplitude of in-phase signal, the amplitude
of quadrature signal, and is the phase offset between
and . and are the DC offsets in channels,
respectively. The ratio between and is called gain im-
balance, and is called phase imbalance. Both gain imbalance
and phase imbalance are caused by multiple factors such as cir-
cuit imperfection.

and are then digitized by the data acquisition block
(DAQ), and the phase change, , is demodulated for heart
beat and respiration measurement. For the simplicity of presen-
tation, we neglect the constant phase offset,

, in the receiver and use the following equations to
describe the baseband signals.

(5)

and

(6)

B. The Challenge
As shown in Fig. 1, the demodulation module processes the

baseband signals, and , for heartbeat and respiration
information extraction. It is critical to minimize the effect of
gain and phase imbalance in practice (i.e., in (5) is equal to

in (6), and in (6) is equal to zero).
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Based on these ideal-case assumptions, several techniques
have been proposed in the extant literature for demodulating
Doppler radar signals to extract vital signs. Droitcour et al. ap-
proximated signals as linear formulas when the responding
phase was small, and then extracted vital signs by using the
tuning carrier frequency [17]. Tao et al. converted transmission
waves to a set of pulse signals and detected the phase change
according to its peaks [42], whereas Lee et al. proposed a re-
assigned joint time-frequency transform to track the heart rate
[29].
Lubecke et al. presented various demodulation methods in-

volving the precalibration of DC offsets [6], [34], [36]. Li and
Lin formulated signals into a complex vector to perform
Fourier analysis, and the phase change was calculated using it-
erative spectrum comparison [30].
These existing demodulation methods have two main draw-

backs. First, these methods require either approximating
signals [17], [42] or accurately precalibrating the DC offsets
[30], [36]. Both the electronic components and multichannel
transmission and reflection, which is related to the environment,
produce DC offset. Therefore, the DC offsets in the chan-
nels must be recalibrated whenever the environment changes,
which is not applicable in practice. Fletcher and Han used dual
beams to target various locations; one location was used as a ref-
erence [19]. Second, these methods involve the assumption that
circuit components are perfect in that the gain and phase imbal-
ances are minimal. In real radar systems, the effect of gain and
phase imbalance is considerable. Park et al. [37] measured the
imbalance factors in a direct-conversion quadrature radar cir-
cuit and reported that imbalance is unavoidable. In their exper-
iments, the gain imbalance was 4.7 and the average phase im-
balance was 18.5 degrees. Thus, phase imbalance has a severe
negative effect on the error rate of signal demodulation [50].
Therefore, developing an accurate and robust signal-processing
technique for signal demodulation in Doppler radar systems is
necessary. Associated research challenges are listed below.
1) Accuracy: the demodulation method should account for

all parameters (i.e., , , , , and ) in the
signal model and directly extract the motion component

accurately from the signals;
2) Self-calibration: external environment might change

during sensor measurements. The proposed demodu-
lation method allows signal model recalculation and
tolerates possible parameters variance, without manual
intervention.

III. SYSTEM OVERVIEW

In this section, the proposed Doppler radar system for non-
contact self-calibrating vital signs measurement is introduced.
Fig. 2 shows an overview of the structure of this system, which
comprises four layers: the sensor, preprocessing, modeling, and
information layers. The sensor layer and preprocessing layer
were built on the hardware, whereas the modeling layer and
information layer were designed using software. Each of the
layers are described in the following subsections. A hardware
prototype of the radar sensor is shown in Fig. 3 with its main
functional components. After preprocessing the sensed base-
band radar signal, an elliptic phase model was constructed and

Fig. 2. The layered structure of non-contact self-calibrating vital signs
measurement system, including sensor layer, pre-processing layer, modeling
layer and information layer.

Fig. 3. The hardware prototype of the Doppler radar vital signs measurement
system.

the model parameters were calculated based on the proposed
min- -based fitting (self-calibration). In the information layer,
these self-calibrated elliptic parameters were identified to re-
construct baseband signals, perform demodulation to identify
the corresponding chest wall movement, and extract respiration
and heartbeat signals using spectrum analysis. The framework
of self-calibration (modeling layer) and vital signs extraction
(information layer) is shown in Fig. 4.

A. Sensor Layer

The sensor layer generated a single-tone carrier signal that
was transmitted to the target to gather the desired phase infor-
mation [24], [32]. The key building blocks used in the sensor
system are shown in Table I. The radar sensor system was
designed using a homodyne transceiver architecture integrated
on a Rogers 4350 laminate for enhanced radio frequency (RF)
performance. In this design, the sensor layer was implemented
using a voltage-controlled oscillator (VCO). The single-tone
signal produced by the VCO was divided by a balun into two
components. One component was transmitted through a trans-
mitter antenna to the target, and the second component served
as the local oscillator (LO) signal sent to the demodulator.
If the target was moving (e.g., the chest wall of the subject),
then the single-tone carrier signal was modulated in the phase
containing the movement information of the target, which is a
process called nonlinear phase modulation [22], [23]. Although
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Fig. 4. The framework of signal demodulation in non-contact vital signs monitoring systems.

TABLE I
BUILDING BLOCKS OF THE RADAR-SENSING SYSTEM

a free-running VCO was used in this design, coherent demodu-
lation was achieved. The transmit signal and the LO signal used
for down-conversion are from the same oscillator. Since the
two signals are from the same signal source, their phase noises
are closely correlated. The reflected signal is subjected to phase
delay, which would be down-converted at mixer to become
DC offset that would be canceled by baseband ac-coupling
circuitry. The radar sensor baseband circuit is custom-designed
with an operational amplifier having a less than 500 KHz
cut-off frequency. The added high frequency noises from the
environment are uncorrelated, but they have limited impact
on radar measured signals because they would be filtered out
at radar baseband [17]. The phase noise of the VCO does not
affect sensitivity in noncontact vital signs measurement, be-
cause of the range correlation effect [16]. Two patch antennas
were specifically designed for use in this radar sensor system.
The total transmission power was 10 dBm (0.1 mW). In this
study, we set the sampling rate of the signal as 100 Hz.

B. Pre-Processing Layer
The preprocessing layer was an RF receiver that received the

signal from the sensor layer and down-converted it to baseband
signals. A low-noise amplifier (LNA) was placed at the

front end of the preprocessing layer to ensure a favorable noise
figure for the receiver chain. The LNA also provided a 19-dB
gain to boost the weak signal reflected from the moving target.
A ceramic band-pass filter (BPF), as shown in Table I, followed
the LNA to block the out-of-band interference. This is critical
because an abundance of strong interference is present in the
air (e.g., 900-MHz cellular signals and 5.8-GHz WiFi signals).
The filtered signal was further boosted by a gain block to reach
a sufficient power level for powering the RF port of the demod-
ulator. A quadrature demodulator converted the received signal

to baseband signals, which were amplified by the baseband
operational amplifier (Op Amp). The Op Amp was configured
with a differential input structure and the baseband gain was de-
termined using the feedback of the amplifier. The Op Amp had
a gain bandwidth product of only 3 MHz. Therefore, the Op
Amp also served as a low-pass filter that preserved the low-fre-
quency vital signs signals and blocked any interference. The
baseband output was digitized using a 10-bit analog-to-digital
converter integrated in a microcontroller. After collection using
an on-board data acquisition module, the digital baseband
signals were transmitted to a computer for phase demodulation.

C. Modeling Layer
In the and domain, samples of the signals lie

on an ellipse. Therefore, the proposed modeling layer formu-
lates the sampled signals as an elliptic curve fitting problem
and reconstruct radar signal by finding six parameters to repre-
sent the ellipse, , , , , , 1. An ellipse is a special case
in conic curves which can be described by (7)

(7)

with one constraint

(8)

where are simplified representative coordinates in
and space.
To solve the elliptic curve fitting problem from samples

of the signals, we propose minimization with LMI
relaxation. This will be described in the next section. The
radar signal parameters (i.e. , , , and ) that
describe the transmitted and received signals are derived from
the six elliptic parameters. The full derivation from elliptic
formulation to radar signal parameters is given in the Appendix.
After solving LMI problem and finding six elliptic parameters,
the five radar signal parameters ( , , , and )
can be calculated using the following equivalences:

(9)

1For simplicity, we will use to represent , , , , ,
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(10)

(11)

(12)

and

(13)

D. Information Layer
The transmitted signal and received signal models

were recovered with , , , , and to increase
the accuracy of respiration and heartbeat signal extraction.
Chest wall displacement was identified using the infor-
mation of gain imbalance ( ) and phase imbalance ( )
derived from the aforementioned signals. The Gram-Schmit
procedure [4] was used to reconstruct ( ) input

(14)

The reconstructed baseband signal is ( )

(15)

(16)

Then we can demodulate heart beat and respiration related in-
formation, , by the arctangent formula directly

(17)

Spectral analysis of the demodulated time-variant chest wall
movement was performed to extract two prominent spikes:
respiration (low frequency but high amplitude in chest wall
movement), and heartbeat (high frequency but low amplitude
in chest wall movement). Two band-pass filters with known
knowledge of the normal respiration and heartbeat frequency
distributions were applied to extract both signals simulta-
neously (for respiration detection, the BPF was set between
0.05 Hz and 0.5 Hz, and for heartbeat detection, the frequency
range was set between 0.5 Hz and 2.5 Hz). Therefore, these
BPFs covered ranges of 3–30 respirations per minute (RPM)
and 30–150 beats per minute (BPM). The breath and heart rates
were determined based on the maximal peak derived from fast
Fourier transform by using the Hamming window, and were
rounded to the nearest integer to represent the estimated breath
and heart rates.

IV. MINIMIZATION WITH LMI RELAXATION TO SOLVE THE
ELLIPTIC FITTING PROBLEM

A. Preliminary: Model Parameter Identification
There are five unknowns in the radar signal model, ( , ,
, and ). There are two potential methods to iden-

tify these unknowns. The first method is based on statistical ma-
chine learning [3]. Given a set of labeled inputs, , statistical
learning can build up the relationship between unknowns in the
model and input signals. When the relationship model is estab-
lished, it can estimate the values of unknowns with any arbitrary
input, . Unfortunately, this method will fail in this applica-
tion because the Doppler radar signal model is time-varying and
non-stationary, which conflicts with the precondition of most of
machine learning methods [39]. The second method estimates
model parameters based on the signal model (5) and (6) with
partial pre-calibration. It is assumed that a prior calibration can
be performed on the system such that gain imbalance (the ratio
of and ) is 1 and phase imbalance ( ) is 0. Therefore,
the channel signals will become (18) and (19)

(18)

and

(19)

In this form, there are only three parameters, , and
. Note that pairwise samples, and , will stay on

a circle whose center is ( , ) and radius is

(20)

It is feasible to fit all samples on a circle via least squares opti-
mization [48] and then identify these three unknowns. However,
this method is not suitable for automated monitoring applica-
tions since it requires calibration of gain/phase imbalance. It is
impossible to have a pre-fixed calibration for perfect imbalance
compensation in practice.

B. Minimization Based Fitting
In this work, we attempt to build up the signal model

directly from (5) and (6) and demodulate the phase accurately
without precalibration. Given a set of measurements ,

, , , an ellipse can be formed as the fol-
lowing formulation:

(21)

where the function is defined as the algebraic
distance of a point to an ellipse parameterized by .
With the result from (21), we can use (9)–(13) to calculate the

five parameters in the signal model from the values of .
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We can see that (21) is in a form of quadratically constrained
least squares (min- ). In general, it is a NP-hard problem [7]
and intractable to obtain the global optimal solution within poly-
nomial time. Fitzgibbon et al. [18] transferred the quadratic in-
equality constraint, , into an equality constraint,

, under the assumption that all the points
are close to an ellipse and all distances are close to zeros

(22)

In this way, the formulation in (22) is well-posed and can be
solved by Lagrange regularization and eigenvalue decomposi-
tion [18]. There are also some research work under the similar
assumption above [25], [41]. However, this method will suffer
from the actual scattered data for two reasons. Firstly, when data
is noisy and is relatively large, the equality con-
straint in (22) will not be equivalent to the inequality constraint
in (21). Secondly, it is well-known that minimization based
fitting is sensitive to outlier or sparse measurement errors.
According to compressed sensing theory [15] developed in

recent years, there are miscellaneous applications indicating that
min- based fitting is more robust to outliers or errors than
min- based fitting [8], [45], [47]. Inspired by this, we consider
using min- for signal model identification as follows:

(23)

where denotes the radar measure . (23) is an mini-
mization problem with a non-linear constraint and even harder
than the quadratically constrained least square problems in (21).

C. Lower-Bound and Linear Matrix Inequality (LMI)
Relaxation

In this section, we introduce the method to solve (23) by
lower-bound and linear matrix inequality (LMI) relaxation.
There are two relaxation steps to solve (23). Firstly, we use the
upper bound relaxation to change the objective function. By
defining an upper bound distance for each sample ,
(i.e., ), we can have the problem with
a linear objective function

(24)

By now, the new problem formulation in (24) is still a non-
convex problem and unsolvable. Here we apply LMI relaxation
by adding a couple of lifting variables and constraints. More

specifically, let be a basis to build a
moment matric, , by .

(25)

where

(26)

Note that a 48 1 unknown, , and a linear matrix inequality
constraint, , are introduced here. As a consequence, we
can reformulate (24) as follows:

(27)

Note that the moment matrix is symmetric and positive
semidefinite, and the formulation in (27) is convex and can be
solved by semi-definite programming [7]. Therefore, we have
a feasible solution to identify the signal model with the five
unknown parameters.

V. EVALUATION
Experimental sets were designed to validate the performance

of the system. First, minimization with LMI relaxation was
confirmed to be more robust than minimization with environ-
mental noise when using simulated data as a test bench. Second,
an actuator was employed as a controlled subject for a move-
ment measurement test. Third, a pilot study was conducted on
15 subjects to measure vital signs, including heart and respira-
tory rates.

A. Empirical Comparison Between Minimization with LMI
Relaxation and Elliptic Fitting
A simulated data set was developed to quantify the perfor-

mance of the proposed demodulation method. The data set was
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Fig. 5. An example of fitting results on outlier dataset for two algorithms. The
outlier percentage is 15% and . (a) based method. (b) based
method.

simulated using known ellipses with noise and outliers. Specif-
ically, the simulated dataset was divided into two classes. One
class comprised the simulated data with outliers, and the dis-
tance from the outliers to the ellipse ranged up to 50% of the
semimajor axis. The other class comprised simulated data with
noise, for which the signal-to-noise ratio (SNR) varied from
0.01 to 0.5. In the experiment, the proposed algorithm was ap-
plied to perform ellipse fitting on the test bench. The Fitzgibbon

minimization method [18] was used for comparison.
First, the performance of the algorithm when using the out-

lier data set was evaluated. Fig. 5(a) and (b) show an example of
ellipse fitting using the traditional minimization method and
the proposed minimization method, respectively. The blue
dots represent the clean data (zero offset), the red dots repre-
sent the outliers, the black curve is the fitting result, and the red
dashed curve is the ground truth. Based on this example (15%
outliers), the based algorithm was robust to the red outliers,
and the fitted ellipse matched the clean data [Fig. 5(b)]. By con-
trast, the based method was affected by the outlier points, and
an obvious mismatch existed between the fitted ellipse and the
ground truth [Fig. 5(a)].
Both methods with different outlier percentages, ranging

from 5% to 40%, were also evaluated. For simplicity, the
overlap area between the fitted ellipse and ground-truth el-
lipse was used to evaluate the matching accuracy [28]. Fig. 7
illustrates two accuracy curves corresponding to these two
strategies, and shows that the based method was sensitive to
outliers, whereas the based method tolerated up to 20% of
the outliers.
Second, the performance of the proposed system was tested

using a set of data containing Gaussian noise. Fig. 6 illustrates
the stability of the and algorithms with noise. The SNR
ranged from 10 to 100. As the noise levels increased, the devia-
tion from the ground truth for both the algorithms increased (the
red ellipse). However, was still more favorable than at all
SNR levels.

B. Evaluation of the Self-Calibration Function in a Controlled
Environment
The performance of the noncontact radar sensing system

was tested in this experiment. To evaluate the accuracy of
the proposed system, a programmable actuator was used to
provide controlled motions. As shown in Fig. 8, a linear ac-
tuator (ZABER TNA08A50) and a linear translational stage
(ZABER TSB28-1) were placed 1 m from the Doppler radar

motion-sensing system. The actuator was programmed to per-
form a series of standard sinusoidal movements, and the radar
system measured and demodulated the actuator motion. To
mimic the chest wall movement (by imitating the respiration
and heartbeat of humans), an actuator was programmed to
perform a simple harmonic back-and-forth motion toward the
fixed position radar. The minimal and maximal displacement
was set from 0.1 cm to 4 cm, and the movement frequency
changed from 0.2 Hz to 2 Hz [21], [38]. The normalized root
mean squared (NRMS) error was used to quantify the measure-
ment error.

(28)

where is the distance from the measured point to the
sinusoidal curve, and is the amplitude of movements.
The measured motion was consistent with the presetup har-

monic motion of the linear actuator, and the NRMS error was
less than 1%. To clearly represent the residual change that oc-
curred when using different magnitudes and frequencies, the re-
sults are plotted in Fig. 10. Based on this figure, the average
measurement error of the Doppler radar sensing system was less
than 3%. This indicates that the measurement error was uncor-
related with movement frequency (in this frequency range) but
strongly associated with the movement magnitude. The larger
the amplitude of motion, the smaller the measurement error was.
To demonstrate the benefits of self-calibration, the same ex-

periment was conducted in three environments: a lab environ-
ment (results presented previously), an outdoor environment,
and a corridor on campus. The radar system was initially set
up in the lab environment and then moved to the other two lo-
cations. These two locations were randomly chosen to demon-
strate the portability of a self-calibrating radar. The results in
Table II demonstrate the superiority of this proposed modeling
layer process. Without enabling self-calibration, when the oper-
ating environment changed from the initial location, the NRMS
error increased. However, when enabling self-calibration, the
NRMS error remained less than 1%. The highest error occurred
in the corridor environment because numerous factors cause
multipath radar transmission in the long, narrow hallway. Al-
though the proposed methods can be used to calculate radar pa-
rameters in real time, manual calibration performed more favor-
ably. According to Table II, manually precalibrating the radar
in a lab environment was more effective than using the pro-
posed method. This is because self-calibrated parameters al-
ways override a preset default and manual calibration is typ-
ically more efficient than fitting-based methods. For the vital
signs monitoring application, we are interested in extracting pe-
riodic changes from radar signals resulting from relatively slow
and periodic respiration and heartbeat events. Therefore, high
accuracy chest wall displacement measurement is not required.
To measure high accuracy chest wall displacement, manual cal-
ibration is still required.

C. Human Vital Signs Measurement with 15 Subjects
Human vital signs derived from radar modulated signals were

measured in this experiment. Fifteen subjects were recruited and
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Fig. 6. Fitting results on noisy dataset for two algorithms. SNR ranges from 10 to 100. The first row [from (a) to (f)] is the fitting results of the based method,
and the second row [from (g) to (l)] is the fitting results of the based method. In each figure, the red dashed curve is the ground truth and the black solid curve
is the fitted curve.

Fig. 7. Two matching accuracy changing curves with different outlier
percentages using based method versus based method.

Fig. 8. Experimental setup for measuring the movement of a controlled
actuator.

each subject sat in front of the Doppler radar sensor in a lab en-
vironment, as shown in Fig. 11. The distance between the sub-
ject and the radar sensor varied according to the person. When
using the self-calibrating mechanism, tuning the radar for each
subject was unnecessary. Each measurement lasted for 120 s,
and each subject was tested 3 times. To obtain the breath rate
ground truth, a video camera was used to record the chest wall
movement (i.e., respiration), and QPS ECG sensor [9] was used

to record the waveform of heartbeats. The number of breaths and
heartbeats were counted manually within 120 s. Fig. 9 shows the
radar measurements and demodulation results for one subject
analyzed using the noncontact vital signs measurement system.
Both the raw and demodulated data were visualized. A substan-
tial gain imbalance in signals was observed. Spectral anal-
ysis was applied to extract respiration and heartbeat signals. To
validate the necessity of the signal-processing method, spectral
analysis of the raw radar signal was conducted. In this figure,
the channel with a phase similar to the demodulated chest
wall displacement was chosen. The frequency components of
respiration and heartbeat were prominent in the demodulated
data spectrum. The demodulated signals were compared with
the respiration and heartbeat movements of the subject and were
determined to be matched with the ground truth data. The de-
tailed characteristics of the 15 subjects are presented in Table III.
Respiration was measured using respiration per minute (RPM),
and heartbeat was measured using beat per minute (BPM).
Both respiration and heartbeat signals were extracted and

identified using spectral analysis. As shown in Fig. 9, extracting
these signals from raw data is difficult. Although respiration
can be identified within a range of frequencies (the largest
peak in the figure is wider than the other peaks), the heartbeat
signal was barely identifiable. In addition, the amplitude of
the peak of respiration was much smaller than the spectrum of
the demodulated displacement. Voltage rather than centimeters
was used to represent the displacement because the radar was
not used to measure precise chest wall displacement; instead,
the periodic phenomenon of the displacement was identified.

VI. CONCLUSION AND FUTURE WORK

In this paper, a noncontact, self-calibrating vital signs
measuring system that comprises four layers and is based
on Doppler radar was presented. Because this system is
self-calibrating, it does not require tuning for each subject.
The baseband signals were considered in quadrature and a
framework was proposed to automatically analyze
signals, including direct signal modeling, model parameter
identification, and demodulation. In this study, signal model
identification was formulated into a quadratically constrained

minimization problem and solved using upper-bound and
LMI relaxation.
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Fig. 9. Comparison of Raw and Demodulated Signals and their respective spectrum analysis for extracting respiration and heartbeat signals.

Fig. 10. The residual surface of sinusoidal actuator movement measurement
with variations in amplitude and frequency.

TABLE II
ERROR ESTIMATION OF RADAR MEASUREMENT UNDER

THREE DIFFERENT ENVIRONMENTS

Fig. 11. The Doppler radar is measuring vital signs from one subject.

Three sets of experiments were conducted to evaluate the
performance of the system. The accuracy and stability of the
proposed demodulation framework was demonstrated and the
end-to-end performance was examined using real-life scenarios.
The results indicated that the system can effectively measure
human vital signs without calibrating for each subject.
In the future, the authors will conduct additional compre-

hensive studies on noninvasive vital signs measurement using
larger subject groups. Moreover, the authors will improve the
demodulation method for use in more complex application sce-
narios, such as performing accurate vital signs measurement
when subjects are moving quickly.

APPENDIX

In this section, we show that the samples from channels
stay on an ellipse. Given samples ( )

(29)

and

(30)

based on product-to-sum/sum-to-product formulas, we can
transform (30) to (32)

(31)

and

(32)
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TABLE III
15 SUBJECTS RESPIRATION AND HEARTBEAT EXTRACTION COMPARED WITH GROUND TRUTH (RESP./HEART RATE)

According to trigonometric identities

(33)

we can eliminate from (31), (32), and (33)

(34)

Remember that is
a conic curve, and it is an ellipse if and only if .
From (34)

(35)

Therefore, we shown that (34) is an ellipse when phase imbal-
ance is not . In the case where ,
(34) will degenerate into a line.
Furthermore, if the fitted ellipse is determined,

the parameters in signal model can be calculated.

(36)

(37)

(38)

(39)

and

(40)
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