
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 10, NO. 3, JUNE 2016 579

Ultra-Low Power Dynamic Knob in Adaptive
Compressed Sensing Towards Biosignal Dynamics

Aosen Wang, Student Member, IEEE, Feng Lin, Member, IEEE, Zhanpeng Jin, Member, IEEE, and
Wenyao Xu, Member, IEEE

Abstract—Compressed sensing (CS) is an emerging sampling
paradigm in data acquisition. Its integrated analog-to-information
structure can perform simultaneous data sensing and compression
with low-complexity hardware. To date, most of the existing CS
implementations have a fixed architectural setup, which lacks
flexibility and adaptivity for efficient dynamic data sensing. In
this paper, we propose a dynamic knob (DK) design to effectively
reconfigure the CS architecture by recognizing the biosignals.
Specifically, the dynamic knob design is a template-based struc-
ture that comprises a supervised learning module and a look-up
table module. We model the DK performance in a closed ana-
lytic form and optimize the design via a dynamic programming
formulation. We present the design on a 130 nm process, with a
0.058 mm fingerprint and a 187.88 nJ/event energy-consumption.
Furthermore, we benchmark the design performance using a
publicly available dataset. Given the energy constraint in wireless
sensing, the adaptive CS architecture can consistently improve
the signal reconstruction quality by more than 70%, compared
with the traditional CS. The experimental results indicate that the
ultra-low power dynamic knob can provide an effective adaptivity
and improve the signal quality in compressed sensing towards
biosignal dynamics.

Index Terms—Biosignal dynamics, compressed sensing, dy-
namic knob, dynamic programming.

I. INTRODUCTION

C OMPRESSED SENSING (CS) is a rapidly growing
field that has attracted considerable attention in diverse

domains. Since its initial introduction [1], [2] in 2006, an
avalanche of results have been obtained, both of theoretical
and practical nature. CS offers a framework for simultaneous
sensing and compression of analog front-end design for en-
ergy-efficient wireless sensing. Specifically, CS exploits signal
structure and samples the information in the signal, namely
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analog-to-information conversion. The CS-based analog-to-in-
formation convertor usually has a low hardware complexity,
and can provide sub-Nyquist sampling rate. Currently, CS has
been widely applied to diverse and energy-constrained wire-
less sensing-involved applications from large-scale networks
to personal implantable and wearable devices [3]–[6]. The
ultra-low power sensing technique also provides a promising
way to promote the new self-powered medical devices [7], [8].
Biosignals from the human body tend to change dynamically,

and these signals are governed by the physics of the human
body. These properties endow the time-varying sparsity nature
of biosiganls, also known as biosignal dynamics. Therefore, it
seems promising to obtain a significant gain (such as a better
sensing efficiency in CS architecture) if the sensing mechanism
is coherent with the dynamic wave and self-adapts to the setup.
However, there is no sophisticated research yet on CS towards
biosignal dynamics, and the state-of-the-art CS structure is rigid
and lacks adaptivity, which considerably degrades the energy-
efficiency in structure-variational signal acquisition.
In this paper, we propose a dynamic knob (DK) in CS to

improve the adaptivity towards biosignal dynamics. We first
analyze the design of the DK, which requires an effective con-
figuration control and an ultra-low power design. According to
these design aims, we develop a template-based structure of the
DK based on a supervised learning algorithm. Specifically, we
design a support vector machine (SVM)-based cascaded signal
analyzer to recognize the signal among different categories
and configure CS architecture via a pre-defined configuration
look-up table. For circuit-level implementation of the DK,
we model the design performance in closed form and formu-
late it into a dynamic programming problem. We present our
design at a 130nm standard cell library which consumes the
energy of 187.88 nJ/event, with a 0.058 mm footprint. We
benchmark the performance of the adaptive CS architecture
with the dataset from Physionet [9], in which signals include
electroencephalography (EEG), electrocardiography (ECG)
and electrooculography (EOG). The evaluation results indicate
that compared with the traditional CS, our CS architecture with
the proposed DK can improve signal reconstruction quality by
more than 70% with dynamic data sampling under the given
energy constraint of wireless sensing.
In this paper, our main contribution is four-fold:
• We propose and design a dynamic knob structure to en-
able the adaptivity in CS towards biosignal dynamics. The
dynamic knob is a template-based structure that includes
a supervised learning model and a configuration look-up
table.
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• We model the design performance in the circuit level and
formulate it into a dynamic programming problem. The de-
sign optimization can be accomplished within polynomial
time.

• We present the designand implementation of dynamic knob
in 130nm standard cells. This design is ultra-low power
with high efficiency.

• We conduct a comprehensive evaluation of the adaptive CS
architecture that reveals the necessity and feasibility of the
new CS architecture in dynamic data sensing.

The remaining of the paper is organized as follows: Section II
describes prior work of adaptive sensing and CS. The basics
of the conventional CS theory and its architecture in wireless
sensing are described in Section III. Our proposed efficient dy-
namic knob design towards biosignal dynamics is introduced
in Section IV. Section V presents the implementation of the dy-
namic knob on an application-specific integrated circuit (ASIC),
with its problem formulation and corresponding solution. Eval-
uations and experimental results are discussed in Section VI.
Section VII is the conclusion of our paper and the plan for fu-
ture work.

II. RELATED WORK

Traditional CS theory is a non-adaptive sampling scheme.
The reconstruction algorithms are mostly referring to the spar-
sity assumption, such as the -based approach [10] and orthog-
onal matching pursuit (OMP) [11]. They can give a good per-
formance according to the prior knowledge. However, to deal
with the data dynamics, time-varying sparsity, the condition be-
comes more complex.
Prior research has proposed several methods to deal with

the data dynamics. Their adaptivity assumptions are mainly
based on two aspects: sensing matrix and compression ratio,
also known as the compressive measurement number. For the
sensing matrix, Malloy and Nowak proposed a compressive
adaptive sense and search (CASS) [12] method to update the
matrix on each iteration. Although it gains better performance,
it needs to obtain the signal sparsity ahead of time. The research
work of [13] presented an algorithm called adaptive com-
pressed sensing (ACS) to optimize the measurement number.
This method traverses possible measurement dimensions to
compare the reconstruction signal qualities and determine the
optimal compression ratio, which is computationally intensive.
To address this challenge, Wang et al. [14] presented another
algorithm with similar concerns of ACS, called adaptive mea-
surement adjustment (AMA). The measurement dimensions
are changed through an approach similar to the bisection
method, and reconcile the inner contradiction between the
interval and the accuracy. There is also some work dealing
with these two factors together. Zahedi et al. [15] developed
a multi-step look-ahead design to simultaneously consider the
sensing matrix and compression ratio. Experiments verify its
significant advantage over non-adaptive designs. These works
are all simulation-based without referring to the circuit-level
details. Also, they do not provide any specific scheme towards
the data dynamics.

III. BACKGROUND AND PRELIMINARY

A. Compressed Sensing Theory
CS theory is a newly emerging analog-to-information sam-

pling scheme for the signals that are known to be sparse or
compressible under certain basis. We assume lies in an -di-
mension vector space and is sampled using -measurement
vector

(1)

where is the sensing array, which models the linear
encoding, and is defined as the sampling rate in -dimen-
sional CS. The elements in are either Gaussian random vari-
ables or Bernoulli random variables [16]. Because of ,
the formulation in (1) is undetermined, and signal cannot be
uniquely retrieved from the sensing array and measurements
. However, under certain sparsity-inducing basis ,

the signal can be represented by a set of sparse coefficients

(2)

that is, the coefficient vector , under the transformation , has
few non-zero elements. Therefore, based on (1) and (2), , can
be represented as follows:

(3)

where is an array, called the measuring
matrix. Due to the prior knowledge that the unknown vector,
, is sparse, it is possible to estimate the value, , using the

minimization formulation as follows:

(4)

where is the reconstruction error margin. The formulation in
(4) is a determined system with a unique solution. However,
the minimization is an NP-hard problem [17]. One of the
methods to solve (4) is to approximate the minimization for-
mulation to the minimization formulation

(5)

Under the condition of restricted isometry property (RIP) [18],
the problem has been theoretically proven equivalent to min-
imizing the problem. The minimization is convex and can
be solved within a polynomial time.
However, the above theory did not take the quantization into

account. In the practical applications, original signals are analog
in nature and need to be quantized before transmission and pro-
cessing. Therefore, the compressed signal, , should be pro-
cessed by a quantization model formulated as follows:

(6)
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Fig. 1. The conventional configurable quantized CS architecture.

where is the quantization function [19], and is the
quantized representation of with bits. When considering the
quantization process into the CS architecture, the formulation
can be reformulated

(7)

By solving the formulation in (7), we can obtain , the sparse
representation in the quantized measure . Therefore, the recon-
structed signal, , is retrieved by

(8)

B. Quantized Compressed Sensing Architecture

The entire sensing framework based on the formulation in
(8) is named quantized compressed sensing (QCS) architecture,
which is illustrated as Fig. 1.
We can see that the QCS architecture consists of random-

ized encoding, quantization and signal reconstruction modules.
Original analog signals, which usually denote the raw analog
data, , coming from sensors, are encoded into the -di-
mensional vector, , by linear encoding . Through
the quantization scheme , every measurement becomes
a certain -bit digital representation, . A wireless transmitter
streams thesemeasurements data to the receiver.When thewire-
less receiver gets the data extracted from the bit stream, it per-
forms reconstruction algorithms to recover the -dimension
original input signal from the quantized -dimension com-
pressed measurements . The reconstructed signal is sent to
the data post-processing module for specific applications.
In this part, we also introduce the models of energy and

performance [20], [21] in traditional QCS architecture. For
distributed nodes, the power consumption is dominated by the
volume of the data stream in wireless communication. So the
energy model can be formulated as follows:

(9)

where is the sampling rate, is the bit resolution in quanti-
zation, and is the energy per bit which is determined by the
wireless communication protocol and usually a constant.We use
the signal reconstruction error as the performance metric in the

data center. Therefore, the performance model in the architec-
ture can be defined as follows:

% (10)

where denotes the performance metric involving the
sampling rate and the resolution bit . denotes the recon-
structed signal, and is the original input signal.

IV. DYNAMIC KNOB IN QUANTIZED COMPRESSED
SENSING ARCHITECTURE

In this section, we discuss the dynamic knob design for the
QCS architecture. We first discuss the significance and design
consideration for the dynamic knob. Then we elaborate the
entire dynamic knob architecture structure considering these
concerns.

A. Design Consideration
Adaptive Control: The CS theory is a prevalent sampling

scheme to acquire the signals by a rate proportional to their
intrinsic information. However, in practice, the volume of
intrinsic information in biomedical signals always varies. We
name itData Dynamics. The biosignal dynamics is a significant
factor for an efficient biomedical sensing task. Thus, dynamic
parameter adjustment of CS architecture, such as the sampling
rate and bit resolution in quantization described in the prelim-
inary section, is in great demand to accommodate biosignal
dynamics. For the characteristics of streaming data processing,
the knob design needs to make the parameter judgement by high
accuracy of the optimal configuration parameters estimation,
which directly determines the final performance of the entire
CS architecture.
Ultra-Low Power Design: To collaborate with other compo-

nents in the CS architecture, the dynamic knob functions as the
central control. The sensor node in wireless sensing is powered
by limited-life battery, so the knob should be an ultra-low power
design to maintain the long-term data acquisition. Thus, our dy-
namic knob design should reduce the energy consumption from
both hardware and algorithm levels. We need to choose hard-
ware with low energy consumption, such as an ASIC platform.
For the algorithm level, our dynamic knob design should search
for a perfect trade-off between power and accuracy.

B. Dynamic Knob Framework
Towards biosignal dynamics in wireless sensing, we propose

a template-based supervised learning dynamic knob framework
to configure parameters in randomized encoding module and
quantization module. The entire framework consists of two
key components, the signal structure analyzer module and the
parameter look-up table module. The signal structure analyzer
identifies the input signal based on supervised learning algo-
rithm. By identifying the input signal, the optimal parameter
estimation can be queried from the look-up table module ac-
cording to the pre-defined templates. The entire block diagram
of the framework is shown in Fig. 2.
We can see that the dynamic knob controls the other two

functional modules, randomized encoding and quantization, by



582 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 10, NO. 3, JUNE 2016

Fig. 2. The block diagram of dynamic knob including circuit-level details of
randomized encoding and quantization.

analyzing the input signal waveform. We provide the circuit-
level details of these two modules in Fig. 2 for the sake of in-
dicating how our knob works. The analog -dimension raw
sensor signal is compressed into -dimension in the ran-
domized encodingmodule. It consists of many branches to com-
press the signal, each of which completes a linear combination
of input signals. Every branch includes a multiplier, a column
vector in the sensing array , and an integrator to accumulate
the intermediate results. The logic control module controls the
switches before the multipliers, which enables the branch when
they are closed. These switches decide how many branches to
participate in the compression calculation. Thus, the sampling
rate can be configured dynamically by this control logic.
Consequently, the compressed signal must be quantified for
wireless transmission which can only communicate the digital-
ized signal.
The quantization module comprises a successive approxima-

tion register (SAR) [22] logic, a -bit register, a digital-to-analog
converter (DAC) and a comparator. When the compressed mea-
surements come, the SAR logic sets the valid bit for the -bit
register. Then the digital register is transformed to analog value
by DAC and compared with the analog input signal by the com-
parator. The comparing result provides feedbacks for SAR logic
for next-round bit setting. This procedure iteratively continues
from the MSB to LSB of the -bit register to approximate the
analog input signal. We also add another control logic to enable
modifications of bit width in the SAR logic and its register.
Thus, the quantization bit resolution can be reconfigurable
by this control logic. Therefore, to manipulate the randomized
encoding module and the quantization module, our dynamic
knob directly configures their control logics. After the input
signal waveform comes to the dynamic knob, the signal struc-
ture analyzer judges its category information based on super-
vised learning algorithms. Once obtaining the signal category
information, the optimal parameter estimation can be queried
from the parameter look-up table module to configure the cor-
responding components.
It is noted that the most significant part in dynamic knob de-

sign is the signal structure analyzer module. The more accurate
the parameter configuration is, the better system performance
can be obtained. For the dynamic knob design, the performance
of look-up table module is directly related to the memory man-
agement techniques, which can be very low-power. Therefore,

our biggest challenge in this framework is how to implement an
ultra-low power consumption, as well as a fast, and high accu-
racy signal structure analyzer.

V. ENERGY-AWARE DESIGN AND OPTIMIZATION OF
DYNAMIC KNOB

In this section, we present the SVM-based primitive model
of the signal structure analyzer in dynamic knob. For optimal
design under this primitivemodel, we formulate an optimization
problem, taking accuracy and energy consumption into account,
and solve it by a polynomial-time algorithm.

A. Support Vector Machine

SVM [23] is one of the most widely applied supervised
machine learning algorithms. It divides high-dimension feature
space into two subspaces and classifies the data by searching
for the optimal hyperplane as the decision plane. The SVM
is widely researched and used in many fields for its fewer
tuning parameters yet high recognition rate. The formulation
of training phase of SVM is a standard quadratic programming
problem, whose form is as the following:

(11)

where is the perpendicular vector to the hyperplane’s direc-
tion, is the training data, is the label of the training data

is the kernel function and is the offset to the origin.
The training task is to calculate the perpendicular vector .
There are many methods presented for this problem. The se-
quential minimal optimization (SMO) algorithm [24] is one of
the most favored methods for its robust performance and fast
speed. After finishing training the SVMmodel, the classification
task on new testing data can be implemented by the following:

(12)

where, is the sign function, is the new input testing fea-
ture vector, is the supporting vector, is its corresponding
label, and is the weight of the supporting vector. Therefore,
the testing phase can give its binary decision for the classifica-
tion of new testing data.

B. Signal Structure Analyzer

Our signal structure analyzer model takes binary SVM as
the basic supervised learning algorithm. However, the analyzer
is faced with the multi-class classification problem. We adopt
a cascade binary SVM classifier to accomplish the multi-class
task. There are four popular strategies to solve multi-class clas-
sification problems based on the SVM algorithm, one-to-one
SVM, one-to-all SVM, directed acyclic graph (DAG) SVM, and
binary-tree SVM. The one-to-one scheme [25], [26] indicates to
build SVM classifier between any two categories in the training
data. In the testing phase, every classifier gives its classifica-
tion decision and the winner is the one with the most votes. The
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Fig. 3. The data flow of SVM testing phase on the circuit level.

one-to-all SVM [25], [26] identifies one class for each classi-
fier until all the classes are classified. DAG SVM scheme [27]
first trains all the one-to-one SVM classifiers, and then builds a
directed acyclic graph by these classifiers for multi-class classi-
fication. The binary-tree SVM organizes all the basic SVMs by
the form of binary tree and makes decisions hierarchically.
In this paper, we provide a design of a cascade SVM scheme

for our signal structure analyzer, whose primitive element is a
binary SVM classifier. For the analyzer design, low energy is a
compulsory requirement and our goal is different with the pre-
vious binary tree SVM [28]. We explore the optimal binary clas-
sifier combination, not the direct connection of all the basic clas-
sifiers. We need to take two factors, i.e., accuracy and energy
consumption, into consideration simultaneously. The accuracy
can be calculated by recognizing the training data using the cor-
responding classifier. For the energy consumption, we design a
circuit-level implementation for the basic binary SVM classifier
to simulate its energy consumption.
We first illustrate our circuit-level implementation of binary

SVM. Because the main task of dynamic knob is to deal with the
multi-class classification problem, we only need to implement
the testing phase of SVM according to the formulation in (12).
In addition, we need to specify a kernel function for the SVM
classifier. The radial basis function (RBF) [29] is a good alter-
nate, which has a robust performance in the usual classification
problem. Its formulation is as follows:

(13)

where is a penalty parameter, is the input feature vector and
is the feature vector of support vectors. It is computation-

ally complicated to calculate exponential value on a hardware
platform. Here, we adopt Cordic algorithm [30] to compute the
kernel function. Specifically, the Cordic method transforms the
complex computation into some basic operations, such as addi-
tion, shift, and look-up table. These computations have efficient
implementation in hardware design. Therefore, the circuit-level
details of the binary SVM implementation is illustrated in Fig. 3.
From Fig. 3, when an input feature vector comes, we first cal-

culate the substraction values between two feature vectors, re-
spectively. Then a square operation is executed by a multiplier
for individual components in the feature vector. Subsequent ad-
dition operation sums all the squared values together to a scalar
value and prepares for multiplicationwith the parameter . Then
the data go through the exponential calculation module (exp)
which applies the Cordic algorithm. Finally, the sum result of
the multiplication between exponential value and paras can be

Fig. 4. SVM classification tree: tree-shaped organization of the SVM
classification nodes.

taken as the indicator for final binary decision. We can pre-com-
pute the paras as the following:

(14)

Based on the above circuit-level design, we can obtain the
energy consumption of each trained binary SVM classifier.
Our biggest challenge becomes how to find the optimal binary
SVM cascades under the constraint of accuracy and energy
consumption.

C. Problem Formulation

We have a set of trained binary SVM classifiers, each of
which aims to do a binary division for the input data categories.
Also, each binary SVM has two key attributes, i.e., classifica-
tion accuracy and energy consumption. The key question is how
to find an optimal SVM-cascade classifier from all elementary
binary SVM combined. This is a challenging combinatorial op-
timization problem [31], which cannot be efficiently solved by
the brute force [32] or Monte Carlo [33] methods. In this work,
we propose a tree-based method and formalize the problem into
a solvable form within polynomial time. First, we would like to
provide some basic definitions in our problem:
Definition 1: An SVM classification node is a binary

SVM classifier with its seven attributes, Parent_cate-
gory, LChild_category, RChild_category, LChild_domain,
RChild_domain, Accuracy and Energy.
In Definition 1, we emphasize that each SVM classification

node has two child domains (left and right), and each child do-
main can connect to other arbitrary SVM nodes, as shown in the
dashed rectangle in Fig. 4. Another emphasis is that the attribute

indicates the average energy consumption for a single
classification event. To symplify the original unit nJ/event, we
directly use nJ as SVM node’s energy unit. The detailed attribu-
tion description is illustrated in Table I.
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TABLE I
DESCRIPTION OF SEVEN ATTRIBUTES IN SVM CLASSIFICATION NODE

Definition 2: An SVM classification tree is a tree consisting
of the SVM classification nodes, with its leaf node indivis-
ible. The connectivity between two nodes is built only when
the Parent_category attribute in child node is equal to the
LChild_category or RChild_category attribute in parent node.
According to Definition 2, we can know that an SVM clas-

sification tree divides the data set until the data set cannot be
divided, and only one category is left. We provide an example
of building a four-class SVM classification tree in Fig. 4. There
are four classes in the figure, referred as , and . Each
dashed rectangle indicates an SVM classification node. In the
SVM classification node, the top ellipse represents the data
needed to be classified, the parent_category, and the rectangle
represents the SVM classifier. After the decision of SVM
classifier, we obtain two category subsets, LChild_category
and RChild_category. For example, the top SVM node is
designed to classify category from all other three classes,
thus its parent_category is , LChild_category is and
RChild_category is . Since LChild_category is indivisible
with only category, we continue to proceed the classification
for the right child set. Here, we have three choices of how
to classify RChild_category into two groups. We list all the
possible binary classifiers, and and and .
We connect all these three classifiers to the right child domain
of the previous top node. So the LChild_domain attribute of
the top node is , and RChild_domain includes all the three
nodes dividing set. There are still three groups with two
categories needed to be divided further. We continue to train
the subsequent classifiers until there is no node to be split.
Therefore, we finished an SVM classification tree building.
If the purpose is to solve the four-class classification problem,

there are still six other SVM classification trees to be built
by this rule. For a global optimal solution, we define a super
dummy root node to connect all these SVM classification
trees into its left child.
Definition 3: A complete SVM classification tree is a tree

with a super dummy node connecting all the possible SVM clas-
sification trees for a specific multi-class classification problem.
Based on Definition 3, we can build a complete SVM classifi-

cation tree, including all the possible SVM classification nodes
as its tree node, as illustrated in Fig. 5. In this complete tree, we
define a new delimiter “ ” to simplify the symbol of our SVM
classification node. This is a binary relation symbol, with the
variables before the delimiter classified as left child and the el-
ements after the delimiter identified as right child. The union of

Fig. 5. The complete SVM classification tree.

both children is the entire input data set. For example, we have
shown two detailed SVM classifier for the and
nodes as the dashed rectangles in Fig. 5. Therefore, the problem
changes to how we search for the optimal SVM cascade classi-
fier on the complete SVM classification tree.

D. Problem Solution

Before we discuss the solution of this optimization problem,
we first have a look at some properties of the complete SVM
classification tree.
Lemma 1: If an SVM classification node subset from the

complete SVM classification tree can form a tree, whose root
is the super dummy node and leaves are unique and indivisible,
this SVM node subset is a solution for the multi-class classifi-
cation problem.

Proof: According to Definition 3 about the complete SVM
classification tree, any child of the super dummy node includes
all the categories for the multi-classification problem. In addi-
tion, the SVM classification node subset is with the unique and
indivisible leaves of the new tree. That is to say that each leaf
holds a unique category for the classification problem. There-
fore, such SVM node subset forms a solution for multi-classifi-
cation task.
According to Lemma 1, we can find some cascade classi-

fier solutions for a 4-class problem as shown in Fig. 5, such as
the cascade of and the combination of

. So the solution may be a single path from
root to specific leaf. It is also possible that the multi-path com-
bination, as the case, which needs multiple paths to
construct the solution. We can see from the above lemma that
the set of classifiers, located on a single path from root node to
leaf node, is the minimal structural unit to construct the solution
for the multi-class classification problem.
Lemma 2: The complete SVM classification tree is a com-

plete solution space for the multi-class classification problem.
Proof: According to Definition 3 about the complete SVM

classification tree, the super dummy node connects all the pos-
sibilities of the first binary division of the original classification
problem. Subsequently, based on Definition 2, the building pro-
cedure of the SVM classification tree traverses all the possible
binary divisions for the current classification problem. If we iter-
atively build the tree according to this rule, we will cover all the
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Fig. 6. An example of dynamic programming on the SVM classification tree. The former text is the of a specific SVM node and the latter text indicates the
intermediate result in dynamic programming.

solutions of multi-classification problem in the complete SVM
classification tree.
From Lemma 2, we know that the complete SVM tree is the

complete solution space of all the possible solutions of multi-
class classification. In addition to Lemma 1, with paths from
root to leaf node, we can conclude that the optimal cascade clas-
sifier must be a single path or multiple path combination on the
complete SVM classification tree.
Our purpose is to find the optimal cascade classifier to per-

fectly trade off the accuracy and energy consumption.We define
an accuracy density as the criterion to evaluate the relation-
ship between the accuracy and energy consumption

(15)

From the definition of (15), we can see that is actually an
indicator of how much accuracy gain can be obtained by con-
suming one unit energy for an event, which indicates to iden-
tify a single segment by the classifier. Under this situation, big

means that more accuracy can be reached by consuming the
same energy. Therefore, if we have the complete solution set

, our objective is to maximize the sum for the cascade
SVM classifiers from , as the following:

(16)

The most straight forward method is to traverse all the possible
paths from dummy node to leaf node. Then the brute force al-
gorithm can find the maximal sum of in the path set. The
time complexity of this method is , where is the node
number of the entire complete SVM classification tree. How-
ever, if multi-class tasks aim to solve larger category number
problems, the huge computation burden is intolerable.
If we examine the complete SVM classification tree, we

find that there are some same sub-trees between different SVM
classification trees connected to the super dummy root. Thus,
we don’t directly search for the specific traversing path. On
the contrary, we divide the complete SVM classification tree

into several levels according to the category number of nodes’
Parent_category attribute. Then the original combinatorial
optimization problem can be reformulated as the multi-stage
decision problem. We define as the max sum of at
the -th node on the -th level. We apply a dynamic program-
ming algorithm [34] on this complete SVM classification tree
to obtain the optimal solution, with its recursive formula as
follows:

(17)

From the formulation in (17), we can know that the program-
ming path is proceeding by the connectivity among nodes, not
trying to find a specific path. Each node updates its accuracy
density accumulation by the sum of the max of the left
child, the max of the right child and the in its own node.
The time complexity of dynamic programming on our complete
SVM tree is , where is the total number of all the SVM
classification nodes. After updating all the accuracy density ac-
cumulation of the SVM node, we can obtain the biggest ,
whose programming path is the optimal SVM cascade classifier
solution. Here, we provide an example of this dynamic program-
ming on the tree. In fact, our formulation can deal with multiple
tree branches. For simplicity, we take a two-branch tree in our
example, as illustrated in Fig. 6.
Due to the space limitation, only a tree with a super dummy

and three SVM classification trees are shown in Fig. 6. This tree
is not a real complete SVM tree, but we just use it to explain our
dynamic programming on the SVM tree. In Fig. 6, all the SVM
classification nodes are divided into four levels according to the
category number of their Parent_category attribute. The first
level has two categories and other levels are with an ascending
order of classes. The hierarchical framework ends by the top
super dummy root node. Each node has two values, one is the
accuracy density of this node, appearing to be the former
text, and the other is the accumulation value, shown as the
latter text, which is updated by dynamic programming. We take
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a bottom-up scheme to implement the dynamic programming
algorithm, according to (17). Here, we would like to emphasize
two detailed updating procedures. The first is to update node

on the level 3. Since this node does not have left chil-
dren, we calculate the max accumulation value among all
its right children on level 2. Then the node is chosen for
its highest value 3.36, compared with other two candidates.
Thus we update the node by the sum of the max contri-
bution of its right children and the of its own node. The other
procedure we need to explain is the updating of node .
As we can see, this node does not have children nodes on Level
2, but with left child and right child on Level 1. So this node
can be updated by the sum from its two children and its own

, because the two children are both with a single child node.
After we finish dynamic programming on this SVM tree, we

can find that the optimal cascade SVM classifier comes from
the sub-tree with as its root node. We can trace the
updating path, and find the optimal solution, as the large-pitch
dashed line shows in Fig. 6. Therefore, the cascade SVM clas-
sifier, including and , provides the optimal
solution in this SVM tree example.

VI. EXPERIMENTS

In this section, we verify the performance of our proposed dy-
namic knob framework. We elaborate on the characterization of
the dynamic knob itself, and then provide a comprehensive com-
parison between traditional CS and CS architecture with the dy-
namic knob on different biosignal benchmarks to demonstrate
its effect on the CS framework.

A. Experimental Setup and Dataset
We aim to demonstrate the characterization of the dynamic

knob and its impact on the energy efficiency of CS architec-
ture by the experiments. For the dynamic knob, we define the
multi-class classification problem based on the biosignal with
data dynamics. Then we illustrate the accuracy, area and energy
consumption of the optimal cascade SVM-based ASIC design.
For its impact on CS architecture, we provide a comprehensive
comparison between CS architecture with the dynamic knob to
reconfigure the parameters and traditional CS framework with
a static setup configuration in several aspects, such as signal re-
construction quality and the configuration deviation from the
optimal case.
Body sensor network is a prevalent field applying wireless

sensing technology. Monitoring the challenging biosignals is
very helpful for diagnosing human health conditions. These sig-
nals have strong data dynamics, because the human body is a
dynamically stable entity. In our experiments, we choose EEG,
ECG, and EOG signals from Physionet [9] as our test bench.
The waveforms of these three signals are shown in Fig. 7. We
use a continuous 120-segment signal for each signal category,
with 128 samples in each segment.We take the Libsvm tool [35]
in Matlab to train the basic binary SVM classifier by 10-fold
cross validation scheme [36], with 60 continuous segments as
the training set and the other 60 continuous segments as the
testing set.
In the ASIC implementation, we use Synopsys Design Suit

[37] to accomplish the dynamic knob design. We take TSMC

Fig. 7. The waveforms of ECG, EEG, and EOG signals.

130nm standard cell library [38]. We implement our dynamic
knob design by verilog in its Verilog Compile Simulator (VCS).
We also carry out logic simulation for our design and record
the logic toggles, the SAIF file, in the simulation of VCS to
achieve an accurate power estimation. Then we adopt Design
Compiler (DC) to synthesize our verilog design and report the
power consumption by the Power Compiler.

B. Dynamic Knob Characterization
In this part, we elaborate on the characterization of our dy-

namic knob design. First, we provide proofs to determine the
number of biosignal classification problems. Then, we illustrate
the detailed attributes of our dynamic knob, such as the area and
energy consumption of each component. For simplicity, we only
take the EEG benchmark as an example to describe the above
two procedures. The processing of other biosignals is similar to
the EEG case. At last, we provide a comparison of the three dy-
namic knobs from different biosignal types.
1) Classification Number Exploration: For our template-

based dynamic knob approach, we need to determine how many
categories, or templates, are in the training set. The common
method is to extract the feature of training data and cluster the
feature vector. However, the ultimate goal of our CS archi-
tecture is to improve the performance-energy trade-off for the
entire framework towards biosignal dynamics. Therefore, we
adopt the Pareto’s curve [39] as our input for the clustering, as
it indicates the optimal relationship between performance and
energy.
The Pareto’s curve always consists of arbitrary number

trade-off points. Directly implementing the clustering algo-
rithm on the Pareto’s curve is difficult, because there exists
the misalignment between different curves. We adopt B-Spline
plus K-means method [40] to cluster the Pareto’s curves from
the training set. We first fit each Pareto’s curve into the same
vector space using the B-spline method, whose parameters
with the same dimension are taken as the feature for clustering.
This step finishes the alignment operation of all the curves.
Then the K-means algorithm is applied to cluster the extracted
feature from the fitting step. Because of the randomness of
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Fig. 8. Clustering results of B-spline and K-means method. (a), (b), (c)
correspond to and 5, respectively, and (d) is the result of the testing
set. (a) . (b) . (c) . (d) Test Set: .

starting point in K-means, we may use manual correction to
the obvious error clustering segment. In this experiment, we
set and

for the B-spline fitting. We try three centroid
values, 3, 4 and 5, for the K-means algorithm. Related clus-
tering results are illustrated as Fig. 8(a)–(c).
In Fig. 8, we can see that the clustering results of

and are very clear to clarify each category. Every group
is close to another one, but they do not have severe overlap-
ping. However, for the case of , its result is a failure
clustering. There are different degrees of overlap among cate-
gories 1, 2, 4 and 5. Especially to category 2 and 5, they are al-
most blending into each other. In other words, these two clusters
should be merged into a bigger cluster. In our template-based
dynamic knob design, more templates mean better optimal pa-
rameter estimation accuracy. Therefore, we choose 4 as the cate-
gory number in the EEG training set to characterize the dynamic
knob design. Related clustering results are taken as the ground
truth of the classification problem.
2) Energy Consumption and Accuracy: In the dynamic knob,

the energy consumption of parameter look-up table depends on
a specific memory technique, usually a subtle amount of en-
ergy. Thus, our optimization focus of dynamic knob is the op-
timal SVM cascade classifier in the signal structure analyzer
module. Before we start to solve the optimization problem of
the optimal cascade classifier in the dynamic knob, we carry
out experiments to obtain the two significant attributes, accu-
racy and energy, for each SVM classification node. Based on
the experiment in the Classification Number Extraction, our dy-
namic knob is faced with a four-class classification problem for
the EEG signal.
We train the basic SVM classifiers by LibSVM tool on

Matlab. We train SVMs for each possible binary classification
category combination in the training set. In the experimental
setup, there are 25 category combinations in total of the
four-class classification. In all the SVM training phases, we
take RBF as the kernel function. We also apply a grid searching

TABLE II
CHARACTERIZATION OF BINARY SVM CLASSIFIER NODES

method [41] to find the optimal parameter setup for SVM,
such as cost variable and kernel function coefficient . After
completing the training phase, we use each training data for
binary SVM to verify the corresponding trained classifier,
taking the recognition rate as the accuracy, , of the trained
classifier. On the other hand, we use Synopsys design suit
with 130 nm TSMC cell library to measure the average energy
consumption, , of each binary SVM classifier to complete
the classification task of a specific segment. Table II lists the
accuracy and energy consumption of all the SVM classification
nodes in this four-class classification problem.
As shown in Table II, it is not such an obvious rule to describe

the accuracy or energy consumption for all the SVM classifica-
tion nodes. For accuracy, the recognition rate of two-category

, whose is between 20 and 25, ranges from 76.47% to
100%, while the accuracy of four-category , with from
1 to 7, is between 83.33% and 100%. The phenomenon seems
to be that SVM suffers poor performance when dealing with
two-category divisions, which contradicts with the advantage of
the SVM classifier. In fact, this accuracy is related to the charac-
teristics of data distribution. For example, the classifier with 12
as its is with the lowest recognition rate. We can find from
Fig. 8(b) that Category 1, with the squared marker, and Cate-
gory 2, with the star marker, have a little overlapping. Com-
pared with other clear boundaries among two-category nodes,
this small overlapping confuses the SVM classifier to find the
optimal hyperplane, resulting in a relatively lower accuracy.
Reducing energy consumption relates to the number of sup-

porting vectors in the SVM classifier. In a similar way, data dis-
tribution is a significant factor to influence the supporting vector
number. For example, the node whose is 1234, is 2,
and is 134, consumes little energy, 62.45 nJ. In contrast,
the node whose is 1234, is 14, and is 23, con-
sumes 124.72 nJ, more than two times than the previous node.
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TABLE III
NODES CHARACTERIZATION IN THE OPTIMAL CASCADE SOLUTION

Fig. 9. The structure of the optimal cascade SVM classifier. It consists of three
SVM classification nodes, NO. 2, 14, and 25.

Therefore, it is very difficult to directly obtain the optimal cas-
cade SVM classifier, while considering two orderless attributes,
accuracy and energy consumption, simultaneously.
3) Characterization of Signal Structure Analyzer: In this

part, we first solve the optimization problem and obtain the op-
timal cascade classifier solution for the dynamic knob. We also
show the post-layout and corresponding characterization of the
optimal cascade classifier on ASIC. Then we validate the per-
formance of the cascade classifier on all three biosignal testing
sets.
After obtaining the accuracy and energy attributes, we can

build seven SVM classification trees for the 4-class classifi-
cation problem, as from 1 to 7 as the root node shown in
Table II. Connecting all these SVM trees into the super dummy
node, we can build a complete SVM classification tree for
the optimal solution. We execute dynamic programming on
the complete SVM classification tree, and the programming
path corresponding to the largest sum value is the optimal
cascade classifier combination. The final optimal solution in-
cludes SVM nodes 2, 14 and 25, with the highest sum value
4.74 %/nJ. Related node characteristics and their relationship
are illustrated in Table III and Fig. 9, respectively.
From Fig. 9, we can see that the optimal classifier is a sequen-

tial cascade SVM for this EEG application. The input feature
vector first goes through the NO. 2 SVM node. If the decision
is Category 2, the recognition is terminated, labeling the input
signal as Category 2. For the contrasting decision, the input fea-
ture vector continues to be verified by NO. 14 SVM node, as the
arrow line shows. If the result is Category 1, the classification
task is over. Otherwise, the input feature needs to be identified
by the last SVM node, NO. 25. Based on its decision, the input
feature can be recognized as Category 3 or Category 4. If the
analyzing procedure involves all the three SVM nodes, the total
energy consumption is 187.88 nJ, as shown in Table III.
Next, we implement the above design on ASIC by Synopsys

IC Compiler with a physical library from the 130nm TSMC
standard cell library, whose post-layout is illustrated as Fig. 10.
The entire layout consists of four key parts, NO. 2 SVM node,
NO. 14 SVM node, NO. 25 SVM node and the control logic
to order these three SVM classifier nodes. The SVM nodes are

Fig. 10. Layout of the optimal cascade classifier on ASIC design.

TABLE IV
CHARACTERIZATION OF DYNAMIC KNOB POST-LAYOUT ON ASIC DESIGN

labeled in their own layout areas, and the squared rectangle re-
veals the combinational logic to organize this dynamic knob.We
also show the characterization of our post-layout in Table IV.
We detail the area and energy consumption utilization from the
resource type and component levels. We can see that three SVM
nodes are sharing the similar area and energy usage due to their
similar implementation only with the support vector difference.
The control logic to keep the dynamic knob in perfect order
takes up minor energy consumption, 0.8%, and area, 0.91%. It
is noted that this small resource occupation is the reason why
we use the energy estimation from logic simulation to find the
optimal solution, neglecting the cost from the control logic part.
4) Dynamic Knob Comparison of Different Biosignals: For

a comprehensive verification of biosignal sensing, we take all
three type of signals, EEG, ECG and EOG, to apply our dynamic
programming based design method. We take the same condition
as the EEG case for ECG and EOG signals. Here, EEG and
EOG are facing the 4-class classification problem, while ECG
needs to deal with the 3-class problem. We first calculate the
optimal design for each signal type via their 60-segment training
set. Then we use the implementation of the optimal design on
ASIC to recognize the new testing segments.We obtain the area,
energy consumption and testing set accuracy of three dynamic
knobs, which are shown in Fig. 11.
First, let us have a look at the accuracy comparison. The

recognition rate of three knobs are 83.3%, 88.3%, and 93.3%,
respectively. These results demonstrate the high performance
of our trained cascade classifier, whose solid capability can
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Fig. 11. Characterization of the optimal dynamic knob design of three
biosignals and corresponding accuracy in testing set.

improve the accuracy for parameter configuration in wireless
sensing. Then, if we take a closer look at the resource utiliza-
tion, we find that the energy consumption and area of EEG and
EOG are similar. These two cases both deal with the 4-class
problem, which needs three classifiers. For the ECG case, its
energy and area are obviously smaller than EEG and EOG,
because ECG completes its 3-class classification task only by
two classifiers. The waveform of ECG is more periodical than
EEG and EOG, so that EEG and EOG show stronger data
dynamics than ECG. Therefore, it is demonstrated that our
optimal dynamic knob design can achieve high accuracy over
all challenging biosignals in the experiment under low power
conditions.

C. CS With Dynamic Knob versus Traditional CS

After characterizing the dynamic knob, we check into the per-
formance improvement when CS architecture equips with our
dynamic knob. The dynamic knob can affect the reconstruction
error and configuration energy of the CS architecture for its dy-
namic reconfiguration. In this part, we investigate the impact on
performance and energy from the dynamic knob.Wemake com-
prehensive comparisons in several aspects, such as architecture
performance and energy deviation.
In this experiment, we simulate the CS architecture byMatlab

on PC with a 3.4 GHz 8-core processor and 8 GB RAM. The
dynamic knobs solved in the characterization section are taken,
which are simulated on ASIC design. For the CS architecture,
we take inverse discrete wavelet transform (IDWT) as its spar-
sity-inducing transformation basis, , [42]. All of our experi-
ments use Bernoulli random variables [16] as sensing array and
use a uniform quantization strategy. We also take the other 60
biosignal segments as our testing set. For the traditional CS ar-
chitecture, we set its bit resolution as 16 [43]–[45] for a better
reconstruction and range the sampling rate from 10 to 128.
For practical wireless sensing applications, we adopt an

IPv6-based communication model over Bluetooth Low Energy
(BLE) on real device [46] to model energy consumption of
wireless data transmission. The throughput of three biosignals
is 0.5 kBytes/s, and the 128-length segment can be transmitted

Fig. 12. Average reconstruction Error of some EEG segments under three
cases: 1) the traditional CS, 2) the CS with dynamic knob, and 3) the optimal
case.

in one packet. Thus, according to the experiment of connec-
tion mode of BLE, the energy consumption of this setup is
325 kBytes/J, that is, uJ/bit in the energy model.
1) Reconstruction Error Comparison: We carry out this ex-

periment to check the reconstruction accuracy improvement by
our proposed dynamic knob. We calculate the reconstruction er-
rors of both dynamic knob case and traditional CS case with
energy bound between 64 and 819. To the traditional CS archi-
tecture, we first brute force the Pareto’s curve under its constant
16-bit quantization setup. Then, the responsive CS architecture
with dynamic knob analyzes the input signal waveform and out-
puts the optimal parameter configuration estimation, sampling
rate and bit resolution . We adopt all the biosignals, EEG,
ECG and EOG, with the 60 segments in each testing set to go
through the two architectures. We also calculate the error from
the Pareto’s curve considering both parameters together, which
is the optimal solution in the entire performance-energy space.
We evaluate the entire reconstruction quality improvement

based on all the 60 testing segments. For simplicity of data
representation, we define an average reconstruction error ARE
to indicate the average reconstruction error on all the energy
bounds for a specific testing segment, as follows:

(18)

where EB is the energy bound set, is the total number of
the bounds and refers to the reconstruction error under
energy bound of segment . Based on (18), we can calculate
all the ARE values of all the biosignals. The related results of
the EEG testing segments are presented in Fig. 12.
As shown in Fig. 12, there are six groups of average recon-

struction errors, with traditional CS, dynamic knob and the op-
timal case from the brute force algorithm. In each group, the tra-
ditional CS suffers from the largest average reconstruction error,
and the Pareto’s case is with the least distortion rate, which is
also the lower bound of the reconstruction. Our dynamic knob is
between these two cases, approximating the reconstruction error
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Fig. 13. Reconstruction error enhancement over all biosignal segments with
the traditional CS, the CS with dynamic knob and the optimal case.

to the optimal case. From the Pareto’s curve, the average recon-
struction error of EEG signal fluctuates from less than 10% to
almost 40% as the segment number changes. This also demon-
strates the data dynamics of the EEG signal. To adjust to this
situation, our knob provides a reconfiguration strategy for dif-
ferent segments. From the results of comparison, our dynamic
knob can promote more than a half improvement towards the
optimal solution than the traditional CS case, which only has a
startup configuration.
To quantitatively evaluate the improvement by our dynamic

knob design, we define a relative enhancement indicator
, whose form is as the following:

(19)

where is the average reconstruction error of traditional
CS, and refer to the ARE from dynamic
knob case and the optimal case. Because the average recon-
struction error has its lower bound as the optimal case, the im-
provement should be a ratio by the distance in and

as the denominator, which is the maximum value
in theory, and the improvement contributed by our dynamic
knob, , as the numerator. Once we have
this metric, we can calculate the average and standard deviation
of for each biosignal over all their segments. The re-
lated results are shown in Fig. 13.
We can find from Fig. 13 that the three signals are with the av-

erage as 73.49%, 74.86% and 74.51%, respectively.
This demonstrates that our dynamic knob can greatly improve
the traditional CS to the optimal solution by more than 70%.
Also, if we examine the standard deviation, 8.02%, 8.86% and
3.43%, all the fluctuations are less than 10%, which indicates
that our dynamic knob has a very stable performance for the
signals with data dynamics. Therefore, this experiment indicates
that our dynamic knob framework is a critical module in the CS
architecture towards biosignal dynamics, with more than 70%
reconstructed signal fidelity promotion.
2) Energy Configuration Deviation Comparison: We carry

out this experiment to check the energy consumption by wire-
less communication in the CS architecture. Different from the

Fig. 14. Average energy configuration deviation of some EEG segments under
traditional CS and the CS with dynamic knob.

analysis of reconstruction error, which has the best value in its
optimal case, the energy consumption analysis focuses on the
deviation between current energy configuration and the optimal
energy configuration. We have the Pareto’s curve, retrieved by
the brute force algorithm, as our best performance-energy trade-
off. Thus, getting closer to the optimal energy configuration
means a larger chance to approximate to the optimal trade-off.
We define the variable to describe this significant devia-
tion as follows:

(20)

where stands for the optimal configuration and is the
current energy configuration. Consequently, we continue to de-
fine average energy deviation AED to describe the deviation de-
gree for a specific testing segment over all the energy bounds

(21)

According to the definition of AED, we can calculate the av-
erage energy deviation over all energy bounds. In this experi-
ment, we use all the biosignals with 60 segments as the testing
data and set all the energy bounds between 64 and 819. We cal-
culate the AED of CS with dynamic knob architecture and tra-
ditional CS. We also take some EEG segments to check the en-
ergy deviation of traditional CS and CS with dynamic knob, as
shown in Fig. 14.
We can find from Fig. 14 that the CS with dynamic knob has

less energy configuration deviation than the traditional CS ar-
chitecture, because traditional CS uses a one-pass configuration
strategy, which is rigid to data dynamics. However, our dynamic
knob can adjust the configuration parameter towards the optimal
case. Thus, it has less energy configuration deviation, which
means our dynamic knob approximates to the optimal solution
further than traditional CS, reflecting the flexibility of our dy-
namic knob to deal with biosignal dynamics. Consequently, we
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Fig. 15. Energy deviation enhancement over all biosignal segments under
traditional CS and the CS with dynamic knob.

define as the energy deviation enhancement between
our dynamic knob and the traditional CS architecture.

(22)

We can calculate the deviation enhancement of all
testing segments for each type of biosignals, i.e., EEG, ECG and
EOG. The average and standard deviation of this enhancement
are illustrated in Fig. 15.
In Fig. 15, the average energy deviation enhancements of

all three signals are similar, 32.44%, 25.21% and 23.26%. For
the standard deviation, ECG shows a larger fluctuation trend,
14.79%. For the entire template space, EEG and EOG divide
it into four areas, while ECG can only use three levels of the
parameter setting. So the ECG case is with larger energy devi-
ation enhancement fluctuations. This demonstrates that our dy-
namic knob can accurately configure the architecture parame-
ters to ensure a larger chance that the architecture will gain a
better performance-energy trade-off over several representative
biosignals.

VII. CONCLUSION AND FUTURE WORK

In this work, we introduced a dynamic knob design for wire-
less sensing architecture towards biosignal dynamics. We first
described the traditional CS architecture to solve the energy
consumption bottleneck of the sensor node design. Thenwe pro-
posed a dynamic knob framework to dynamically control other
components to achieve a better energy efficiency. We explained
our structure characters of dynamic knob for the designing con-
cerns of wireless sensing. Moreover, we discussed the imple-
mentation of our dynamic knob based on a supervised learning
algorithm on ASIC, and formulated a tree-based optimization
problem to search for the optimal dynamic knob design. Even-
tually, the optimization problem was solved by dynamic pro-
gramming. We also verified our proposed dynamic knob design
by experiments on continuous biosignals. We analyzed the char-
acterization of the dynamic knob and discussed its impact on CS
architecture. We demonstrated that our dynamic knob provides
a basis towards biosignal dynamics.
In the future work, we will consider integrating the specific

ADC optimization scheme, such as dynamic range in ADC [47],
to further improve the energy efficiency. Another direction is to

apply other design criterion to deeply optimize the signal re-
construction quality towards biosignal dynamics, e.g., rakeness
[48].
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