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Abstract—Human activity recognition with wearable body sen-
sors receives lots of attentions in both research and industrial com-
munities due to the significant role in ubiquitous and mobile health
monitoring. One of the most concerned issues related to this wear-
able technology is that the sensor signals significantly depends on
where the sensors are worn on the human body. Existing research
work either extracts location information from the activity signals
or takes advantage of the sensor location information as a priori
information to achieve better activity recognition performance. In
this paper, we present a sparse signal-based approach to corec-
ognize human activity and sensor location in a single framework.
Therefore, the wearable sensor is not necessarily constrained to
fixed body position and the deployment is much easier although the
recognition difficulty becomes much more challenging. To validate
the effectiveness of our approach, we run a pilot study in the lab,
which includes 14 human activities and seven on-body locations
to recognize. The experimental results show that our approach
achieves an 87.72% classification accuracy (the mean of precision
and recall), which outperforms classical classification methods.

Index Terms—Body sensor networks, human activity recogni-
tion, inertial sensor, sensor localization, sparse representation.

I. INTRODUCTION

DAILY activities and behaviors is a key indicator of human
health status. In recent years, a lot of clinical studies prove

that human activity and behaviors is highly related to medical
diseases, such as obesity [1], autism [2], and cerebral palsy [3].
Therefore, it is important to enable accurate human activity
measurements, and proven data can be used as evidence for
medical diagnosis and treatment.

Currently, there are two main methods to monitor human ac-
tivities. One is to deploy the remote sensors (such as camera,
radar, and infrared) in infrastructure such as parking lots, office
buildings, and airports. Park and Trivedi [4] presented a camera-
based tracking system for human movement analysis and pri-
vacy protection. Kim and Ling [5] investigated the feasibility of
classifying different human activities based on micro-Doppler
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signatures. Han and Bhanu [6] developed a hierarchical scheme
to automatically detect human movements via infrared sensors.
However, one commonly key drawback is that the sensing scope
of these remote sensors is immobile and limited due to fixed de-
ployment position. Information may be lost if people leave the
field of view of the sensors. Moreover, because of the privacy
issue, users will feel uncomfortable when their daily activities
are under monitor.

The other method is to attach the inertial sensors (accelerom-
eter, gyroscope, etc.) on the human body to sensor the motor
of body parts. Bouten et al. [7] described the development of a
triaxial accelerometer and a portable data processing unit for the
assessment of daily physical activity. Najafi et al. [8] introduced
a gyroscope-based ambulatory system to detect body postures
in elderly persons. With advances in microelectromechanical
system technologies, inertial sensors have become popular in
recent years for human activity sensing and tracking since they
are low cost, miniature, and easy to be integrated into personal
carry-on devices such as smart phones, watches, and apparel
(e.g., shoes, clothes, and hats). Fig. 1 illustrates a number of
examples of on-body sensing devices integrated with inertial
sensors. We can see that different devices will be deployed on
different locations on the human body accordingly. Therefore,
the activity signals captured by inertial sensors are highly de-
pendent on both the human activity and the location where the
sensors are worn. In other words, it is highly possible that the
signals may be totally different when a person performs the same
activity with sensors on different locations. Therefore, any mis-
placement or displacement might lose the sensing accuracy and
make the analysis completely incorrect [9].

Based on this observation, it is difficult to understand the
inertial sensor signal without any priori information. In fact,
researchers have been developing techniques to either extract
location information from the captured activity signals or take
advantage of the sensor location information as a priori infor-
mation to achieve better activity recognition performance. For
example, Vahdatpour et al. [10] developed a support vector ma-
chine (SVM)-based approach to identify the sensor location on
the human body when people walk. Long et al. [11] customized
the activity recognition algorithm to specific sensor locations
to improve the performance of the recognizer. Among all these
existing techniques, the common point is that they treat sensor
localization and activity recognition as two separate problems
assuming the other part information is known. Unfortunately,
either of them will be available in practical applications. In
this paper, we argue that the sensor location information and
the activity signals are intertwined and can be solved as one
problem.

0018-9294/$31.00 © 2012 IEEE
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Fig. 1. Examples of on-body inertial sensing devices for human activity mon-
itoring and recognition: 1) Nike+; 2) BodyMedia; 3) Healthset; 4) Basis band;
5) Fitbit.

We proposed the solution to corecognize human activity and
sensor location in a single framework, which is not necessary
to have any priori information about sensor and human activity.
Specifically, our framework uses sparse signal theory, which
enables us to reconstruct the signal with limited or incomplete
samples if the signal has sparsity in some transformation do-
main [12]. Here, we prove that human activity signals captured
by wearable inertial sensors are indeed sparse, and then take ad-
vantage of this sparsity information to classify activity signals
and recognize where the sensor is located on the human body
simultaneously. Based on our experiments, our method can rec-
ognize 14 activities and seven on-body locations with 87.72%
recognition accuracy on average.

The remainder of this paper is organized as follows. In Sec-
tion II, we briefly introduce the theory of sparse signals and
review some existing work on human activity recognition based
on the theory. Then, we describe our human activity and sensor
location corecognition framework in Section III. The experi-
mental results and analysis are presented in Section IV. Finally,
we outline the future work and conclude the paper in Section V.

II. PRELIMINARY AND RELATED WORK

A. Sparse Signals and �1 Minimization

Sparse signal processing (or compressed sensing) [12] is a
ground-breaking signal processing procedure developed in re-
cent years. It has been widely applied in many research do-
mains, such as communications, medical image processing, and
computer graphics, due to its capability of accurate signal recon-
struction with lower sampling rate claimed by Nyquist–Shannon
sampling theorem [13].

Suppose that x ∈ R
n is a vector of unknown variables, y ∈

R
m is the available measurements, and A ∈ R

m×n is the data

matrix to describe the relation between x and y. Then, we have

y = Ax. (1)

In many real-world applications, the number of unknowns n is
more than the number of measurements, m, i.e., n > m. In such
cases, (1) represents an underdetermined system, and x cannot
be uniquely reconstructed from the data matrix A and the mea-
surements y. However, in situations where x is sparse enough,
we can reconstruct x with the �0 sparsity formulation from

min
x∈Rn

‖ x ‖�0

s.t. y = Ax. (2)

Equation (2) is a determined system and has a stable solution.
However, (2) is intractable because it is an NP-hard problem
[14]. The traditional heuristic to approximate the sparsity �0 is
to use the minimal energy �2

min
x∈Rn

‖ x ‖�2

s.t. y = Ax. (3)

It is well known that �2 is a least square formation and can be
efficiently solved. However, the energy minimization �2 is not
necessarily equivalent to the sparsity �0 in most cases. In 2006,
the authors in [13] proved that the solution of (2) is highly the
same as the solution with the �1 minimization

min
x∈Rn

‖ x ‖�1

s.t. y = Ax. (4)

It has been proved that this �1 minimization can be formulated
as a convex problem [12]. In such case, the optimization problem
is well posed and can be solved in polynomial time.

B. Sparse Signals for Pattern Recognition

One important application of sparse signals is pattern recog-
nition and classification. In recent years, it has been applied
successfully to many pattern recognition problems including
face recognition [15], speech recognition [16], and iris recog-
nition [17]. The formulation of the sparse signal-based classifi-
cation strategy is relatively straightforward. Consider a pattern
recognition problem with K different classes. Each class k has
nk training samples, each having m attributes. In total, there are
n =

∑K
i=1 ni training samples. We can collect all these training

samples to form a matrix A with m rows and n columns as
follows:

A = [A1 , A2 , . . . , Ai, . . . , Ak ]

= [a11 , a12 , . . . , a1n1 , a21 , a22 , . . . , a2n2 , . . . ,

, . . . , ai1 , ai2 , . . . , aini
, . . . , ak1 , ak2 , . . . , aknk

] (5)

where aij is the jth training sample from class i.
Following (1), any given unknown input y ∈ R

m can be rep-
resented as a linear span of training sample matrix A ∈ R

m×n

as

y = x1a11 + x2a12 + · · · + xnaknk
(6)

where x1 , x2 , . . . , xn are a sparse set of weights.
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Fig. 2. Three important components of our sparse signal-based framework.

Under this formulation, the class membership of y, which is
encoded as the sparsest solution of the underdetermined system
given in (1), can be found by solving (4).

C. Related Work

There are some existing research work on using sparse repre-
sentation (SR) for human activity analysis. Yang et al. [18] used
eight motion sensing motes distributed on the human body to
recognize 12 different human activities. Liu et al. [19] adopted a
similar strategy to recognize human activities captured by cam-
era videos. Compared to these existing studies, our work differs
in the following aspects.

1) Sensing technology: Instead of using video cameras [19],
we use inertial sensors (accelerometer and gyroscope) at-
tached on the human body to collect human activity sig-
nals.

2) Sensing strategy: Rather than distributing multiple sensor
nodes to cover the entire body as in [18], we use only
one single sensor node on the body to recognize human
activity. We believe this sensing strategy is less intrusive
and can be applied to a much wider range of real-world
applications.

3) Sensor location: The work in [18] requires that the sensor
nodes are fixed in some specific locations. Any misplace-
ment of the sensor nodes will make the recognition fail. In
comparison, our method does not have this limitation and
enables the corecognition of human activity and sensor
location in one single step.

A preliminary version of this work has appeared [20]. Com-
pared to previous work, we include a further study and dis-
cussion of the algorithm performance in this paper. Specifically,
there are two new contributions. First, we investigated algorithm
robustness on feature dimension reduction. In this paper, we
evaluate the algorithm robustness from two aspects: classifica-
tion accuracy and classification stability. The detailed analysis
of this part is addressed in Section IV-D. Second, we com-
pared our algorithm with two most used classification methods,
nearest neighbor (NN) and nearest subspace (NS), to justify its
advantage. The comparison study includes three aspects: clas-
sification accuracy, classification stability, and robustness on
feature dimension reduction. The experimental results proved
the advantage of our method and discussed the applicable con-
ditions (see Section IV-F). Note that we use the same dataset on
evaluation for the sake of consistency with previous work.

III. OUR FRAMEWORK

In this section, we present our proposed framework for corec-
ognizing human activity and on-body sensor location. As shown
in Fig. 2, our framework consists of three important components:
feature extraction, SR via �1 minimization, and Bayesian sparse

signal-based classification. We will describe the details of all
these components in this section.

A. Feature Extraction

There are many existing studies focusing on exploring the
best features that can be extracted from human activity signals.
Following previous work [21], we extract statistical features in
motion signals, such as mean, standard deviation, and nonneg-
ative entropy, to represent human activities. These parameters
index a family of probability distribution and describe the char-
acteristics of a population. In this paper, we use 12 statistical
features listed in Table I because these features have been proven
to be useful in classifying human activities and other related
pattern recognition problems by existing studies [22]. All these
features are extracted from both accelerometer and gyroscope
signals. In total, 64 features for each segment are extracted and
denoted as x ∈ R

64 . Also, note that every feature in the vector
is independent of others.

B. SR via �1 Minimization

We follow the formulation described in Section II to construct
the data matrix A. Specifically, we collect n samples from activ-
ity i and sensor location j. For each sample, we extract features
described in the previous section to form a feature vector a.
Then, a feature matrix Aij can be constructed as

Aij = [a1 , a2 , . . . , an ]. (7)

In this way, we build the data matrix A covering all K activ-
ities and L locations as

A = [A11 , A12 , . . . , AK L ]. (8)

As described in Section II, any given test sample y from
unknown activity and location can be represented in terms of
the matrix A as

y = A11x11 + A12x12 + · · · + AK Lxkl (9)

where x = [x11 , x12 , . . . , xkl ] is the SR of y with respect to
matrix A, and the coefficient xij is referred as the feature index
for feature matrix Aij . In such case, x can be found via the �1
minimization formulated in (4).

C. Bayesian Sparse Signal-Based Classification

Given the SR x of the test sample y, we can identify its activity
class membership i and location class membership j altogether
by computing the residual values between y and each feature
matrix Aij defined as

residualij = ‖y − Aijxij‖2 (10)

the lower the residual value is, the more similar y is to feature
matrix Aij . Therefore, y is classified as the activity class C and
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TABLE I
SELECTED FEATURES AND THEIR DEFINITIONS

sensor location class S that produces the smallest residual

{C,S} = arg min
ij

residualij . (11)

Let P (i, j|C,S) be the probability that the test sample y
is classified as activity i and sensor location j when the true
activity class is C and true sensor location class is S. Since
the residual value is a measure of the similarity between y and
the feature matrix Aij , the lower the residual, the higher the
probability that the classified activity class i and location class
j will be the same as the true activity class C and true location
class S. Therefore, we can model the probability P (i, j|C,S)
using the residual values as

P (i, j|C,S) = 1 − residualij
∑K

i=1
∑L

j=1 residualij
. (12)

Based on the sum rule of probability theory, the probability of
y classified as activity i when the true activity class is C can be
derived by summing up the probability at each sensor location
from

P (i|C) = 1 −
∑L

j=1 residualij
∑K

i=1
∑L

j=1 residualij
(13)

and the test sample y is classified as activity class C∗ that has
the highest probability

C∗ = arg max
i

P (i|C) . (14)

Similarly, the probability of y classified as location j when
the true location class is S is calculated by summing up the
probability over all activity classes from

P (j|S) = 1 −
∑K

i=1 residualij
∑K

i=1
∑L

j=1 residualij
(15)

and the test sample y is classified as sensor location class S∗

that has the highest probability

S∗ = arg max
j

P (j|S) . (16)

Fig. 3. TelosB mote for human motion sensing.

IV. EXPERIMENTS AND EVALUATION

A. Experimental Setup and Dataset

We ran a pilot study in a laboratory environment to evaluate
the performance of our proposed approach. The dataset is col-
lected using an customized human motion sensing node, called
a TelosB mote [23]. As shown in Fig. 3, the size of the TelosB
mote is 1.267 in by 2.580 in, and it includes a triaxial accelerom-
eter and a biaxial gyroscope (i.e., five data channels). For each
channel, the signal sampling rate is 50 Hz, and all the samples
are stored in an on-board SD card.

We collected the data from three male subjects whose ages
are 25, 28, and 33, respectively. Each subject performed 14
different activities including: 1) stand to sit; 2) sit to stand; 3)
sit to lie; 4) lie to sit; 5) bend to grasp; 6) rising from bending;
7) kneeling right; 8) rising from kneeling; 9) look back; 10)
return from look back; 11) turn clockwise; 12) step forward; 13)
step backward; and 14) jumping. Meanwhile, the subjects were
asked to wear the sensing device at seven different locations
during their performance. These locations are a) waist; b) right
wrist; c) left wrist; d) right arm; e) left thigh; f) right ankle; and
g) left ankle. Therefore, we have 98 combinations of activity
and sensor location in total. For each location, each subject
performed each activity for ten trials.

After data collection, we extract features listed in Table I from
each data unit. Our sensor node has five data channels, and we
can extract 64 features from each data unit.

B. Sparsity of Human Activity

Based on the discussion in Section II-A, SR can perform
accurate recognition and classification based on one important



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 59, NO. 11, NOVEMBER 2012 3173

Fig. 4. Log-scale singular values of the sample matrix A1 , A2 , and A3 . We
also use Gaussian random matrix G for comparison.

prerequisite: the representation x of y should be a sparse vector
in the space spanned by the training samples A. Unfortunately,
few works prove the sparsity of their problems before using
this principle, either theoretically or empirically. For the sake of
avoiding blind decisions, we did the preliminary experiments to
investigate the sparsity of human activities.

Without the loss of generality, we randomly selected 30 sam-
ples from a single activity, and each sample has 30 randomly
selected features. In this way, we can form a sample matrix
A1 ∈ R

30×30 . We also built A2 ∈ R
30×30 with three human ac-

tivities and A3 ∈ R
30×30 with nine activities. Note that in all

these sample matrixes, column space consists of samples, and
the row space is based on the features. Similar to [24], we gen-
erated a Gaussian random matrix G ∈ R

30×30 and performed
singular value decomposition (SVD) [25] on A1 , A2 , A3 , and
G, respectively, to evaluate the sparsity of human activity. All
their singular value profiles are illustrated in Fig. 4. It indi-
cates that compared to G,A1 , A2 , and A3 are low rank since
their SVD profiles have significant downtrend compared to G.
Knowing that all features are statistically independent (see Sec-
tion III-A), low rank should be caused by column space, which
means that the sample space is overcomplete. This is an exper-
imental indication that the training samples A are a sparse set.
Specifically, comparing A1 with A2 and A3 , we can see that the
sample space from the same activity class (i.e., A1) has a higher
degree of sparsity.

C. Classification Performance Evaluation

For this part, we evaluate the classification performance of
our framework. Our evaluation is based on three metrics: 1) the
classification accuracy of corecognition of activity and sensor
location based on (11); 2) the classification accuracy of activity
based on (14); and (3) the classification accuracy of sensor
location based on (16). For evaluation, we adopt a tenfold cross-
validation strategy. Specifically, we divide the whole dataset into
ten sets. At one time, five sets are used to build the data matrix
A and the remaining five sets for testing. The whole procedure
iterates ten times.

There are two important aspects in algorithm evaluation. One
is the classification accuracy. Given large number of testing
inquiries, the algorithm should offer the correct responses with
high probability. The other aspect is the classification stability.
If the training and testing datasets are changed, the recognition
result should vary slightly from the average rate.

Table II shows the evaluation results in terms of the aforemen-
tioned three metrics. As shown, metric 1 achieves an 87.42%
precision value and an 87.93% recall value. For metrics 2 and 3,
it is interesting to see that with Bayesian fusion, the classifica-
tion accuracy is improved. Specifically, for activity recognition,
the precision and recall reach 88.79% and 89.21%. For location
recognition, both the precision and the recall are higher than
96%. For stability, we observe that the standard deviation of
metric 1 is as low as 1.26% (the mean of precision and recall
variation). After Bayesian fusion, both metrics 2 and 3 have bet-
ter robustness. As shown in Table II, the variation of metric 2 is
1.25% and 1.02% for precision and recall variation. For metric
3, the variation is always less than 0.5% in general.

To take a closer look at the classification results, Tables III
and IV show two confusion tables with respect to activity clas-
sification (metric 2) and sensor location classification (metric
3), respectively. In Table III, we notice that activity 7) kneel-
ing right and activity 8) rising from kneeling are most often
confused. Although these two activities are a pair of comple-
mentary processes and visibly different from each other in the
time domain, our algorithm describes the human activity sig-
nal in a statistical way and removes the temporal information
in the data. Therefore, complementary processes should share
many features in the space domain. As for sensor location clas-
sification, as illustrated in Table IV, most precision and recall
values are more than 98%. However, location e) Left Thigh and
location f) Right Ankle are confused with each other the most.
Specifically, the corresponding accuracy is around 92%. It indi-
cates that the selected features described in Section III cannot
reliably distinguish the two cases. We could consider this issue
to enhance the algorithm performance in future work.

D. Robustness on Feature Dimension Reduction

In this experiment, we investigate the impact of feature di-
mension on performance of our framework. As mentioned pre-
viously, in total we extract 64 features. We start from 60 features
and reduce the number of features by the decrement 5. Fig. 5
shows the averaged misclassification rates for each feature di-
mension in terms of the three classification metrics. We can see
that the misclassification rate of corecognition increases from
13% to 39%, while the feature dimension decreasing from 64
to 30. Furthermore, it indicates that 55 is the significant turning
point, where the misclassification rates increase greatly (more
than 10%) when the feature dimension is less than 55 (from 55
to 50).

In addition to the classification accuracy (see Fig. 5), we
also examined the classification stability of our framework with
feature dimension. For simplicity of the presentation, we in-
vestigated the performance on corecognition of human activity
and sensor location (metric 1). As shown in Fig. 6 (the blue
error bar), we observe that the variation of the misclassification
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TABLE II
CLASSIFICATION PERFORMANCE EVALUATED BY THREE METRICS

TABLE III
CONFUSION TABLE OF RECOGNITION ON 14 HUMAN ACTIVITIES

TABLE IV
CONFUSION TABLE OF RECOGNITION ON SEVEN ON-BODY SENSOR LOCATIONS

Fig. 5. Impact of feature dimension on classification accuracy.

rate also increases with a decrease of the number of features.
This implies that the feature number has significant impact not
only on the classification accuracy, but also on the classification
stability. Specifically, the variation increases to 5% when the
feature number drops to 35.

Fig. 6. Impact of feature selection on classification stability of metric 1.

More specifically, to examine the robustness of our framework
in terms of different features, we randomly selected 55 features
out of 64 as an example and evaluated the framework for ten
times. Table V shows the results. As shown, it is interesting to see
that our compressed sensing-based framework is not sensitive
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TABLE V
IMPACT OF FEATURES ON CLASSIFICATION PERFORMANCE

Fig. 7. Solutions of �1 and �2 optimization strategies.

to the specific features selected, with the standard deviation of
the performance less than 1.41% for all cases.

E. Comparison Between �1 and �2

As stated in Section II, �1 is a better heuristic for sparsity
optimization than �2 . In this section, we empirically validate
this point and compare the classification performance between
�1 and �2 optimization strategies. As an example, Fig. 7 shows
the solutions from both �1 and �2 optimization with one test
sample from activity 7 (kneeling right) at location d (right arm).
As illustrated, the solution from �1 is quite sparse and has few
significantly large components. Moreover, the maximal spike
marked by the red circle is associated with the training sam-
ples belonging to the same activity class and sensor location
class. In comparison, the solution from �2 has few significant
components and many small components. The spikes are dense
and distributed over all activity and sensor location classes (see
Fig. 7).

For clarity of the presentation, we augment this result in the
residual computation. Fig. 8 illustrates the corresponding resid-
ual values between the test sample and all 98 classes defined
by (10) for both �1 and �2 . As shown in the figure, the class
membership of the test sample can be easily found by the mini-
mal residual (pointed by the red arrow) for the �1 optimization
strategy. For �2 , although the minimal residual also corresponds
to the true class, the difference between the minimal residual
and the residual values of other classes is not significant in this
example.

Also, we compare the classification performance between �1
and �2 . Table VI shows the results in terms of the recognition
rates. As shown, �1 outperforms �2 across all three metrics con-
sistently in terms of both recognition accuracy and stability. It

Fig. 8. Residuals of 98 classes of �1 and �2 optimization strategies.

TABLE VI
CLASSIFICATION PERFORMANCE COMPARISON OF �1 AND �2

is worth emphasizing that the enhancement from �1 compared
to �2 has stronger scalability: the larger the scale, the greater is
the benefit. Based on the indication in Fig. 7, it is not surprised
that �1 outperforms �2 overwhelmingly in terms of both accu-
racy and stability. Specifically, the corecognition classification
accuracy could be improved by 20.75% with �1 optimization.
Correspondingly, the gain of stability from �1 optimization is
3.17X on average.

F. SR-Based Classifier Versus Two Classical Methods

As a last experiment, we show the advantage of our method
with respect to different feature dimensions compared to two
classical classification methods: NN-based classifier [26] and
NS-based classifier [27]. For simplicity of the presentation, we
only show the results on classification accuracy (the mean of
precision and recall) here. Fig. 9 illustrates the average classifi-
cation accuracy rates as a function of feature dimension. Each
curve represents one classification method, respectively. Simi-
lar to Section IV-D, features at each dimension are sequentially
selected, and the performance is based on the average.

As shown in the figure, all methods have better performance
with feature dimension scaling-up. We can see that the perfor-
mance of NN and NS is close, which follow the similar trend,
and the SR-based classifier is different from them. More specif-
ically, when the feature dimension is less than 40, NN and NS
are better than SR; when the feature dimension is more than
40, the SR-based classifier outperforms the other two methods.
This observation indicates that using only 40 features is not suf-
ficient to recover the human activity signal via �1 minimization.
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Fig. 9. Classification performance comparison between SR, NN, and NS.

However, when the feature dimension is equal or more than
45, the SR-based method can achieve a steady performance and
beats the other two classical classification methods, achieving a
maximum recognition rate of 87.72%.

V. CONCLUSION

Inspired by the sparsity of human activity signals, we adopted
and described a sparse signal representation technique to corec-
ognize human activity and sensor location in wearable sensor
networks. The experimental results showed that our method
can achieve greater than 87% recognition accuracy with 14 dif-
ferent activities and seven on-body locations. We also showed
that using the �1 norm is better than the �2 norm in terms of
both accuracy and stability. Moreover, we compared an SR-
based framework to two classical methods, NN-based method
and NS-based method, respectively. The results showed that SR
outperforms both of them when feature dimension is more than
a threshold. Considering the promising results in the pilot study,
we intend to run additional experiments with a larger scale group
and evaluate more activities and sensor location in future work.
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