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Abstract—The rapid development of Internet of Things is
yielding a huge volume of time series data, the real-time min-
ing of which becomes a major load for data centers. The
computation bottleneck in time series mining is the distance
measure, in which dynamic time warping (DTW) is one of
the most widely used distance measures. Recently, various soft-
ware optimization and hardware acceleration techniques have
been proposed for DTW acceleration. However, the throughput
and energy efficiency of DTW are still big concerns consider-
ing the ever-increasing volume of times series. In this paper, we
propose a high-throughput and efficient memristor-based DTW
architecture for real-time time series mining on data centers.
Specifically, memristors have been adopted for both compu-
tation and configuration of the computing architecture. The
computation flow in this architecture is fully presented in a con-
tinuous and asynchronous manner. To improve the computation
efficiency, we propose an early lower bound algorithm by exploit-
ing the predictability in the circuit characteristic. Experiments
are performed with module evaluation and end-to-end evalua-
tion including three popular applications: 1) similarity search;
2) classification; and 3) anomaly detection. Experimental results
indicate that, compared to existing approaches, the speedup and
energy efficiency improvement are 12×–43× and 51×–287×,
respectively.
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I. INTRODUCTION

ENERGY efficiency of data centers has been a primary
focus in the past a few years due to their excessive power

consumption. On the other hand, the load on data centers
keeps increasing with the explosion of information technolo-
gies. It has been predicted that a major portion of the load will
come from Internet of Things (IoT), which will yield over 4.4
zettabytes (5.5× 1021 Bytes) of time series data by 2020 [6].
These time series data are transmitted to data centers for real-
time mining [20]. It is therefore of utmost interest to explore
techniques that handle time series data in real-time with high
energy efficiency.

Distance measure between time series plays an important
role in time series mining, which is the foundation of higher
data mining tasks, such as classification and similarity search.
Dynamic time warping (DTW) is one of the best distance
measures according to a recent comparison study of several
distance measures with 44 datasets [13]. It is widely used in
different fields, such as speech recognition, financial analysis,
and network traffic monitoring [12]. However, DTW has a
quadratic time complexity, which is computation-expensive for
huge data processing in data centers.

DTW has been well optimized with software and hard-
ware methods to solve the obstacle of computation complexity.
Lower bound (LB) [14], [25] is a powerful optimization
method, which can prune a lot of sequences in many tasks
such as similarity search and classification. Early abandon [37]
is also very effective. Rakthanmanon et al. [37] cascaded
multiple stages of software optimizations, which is considered
as the most powerful software implementation for similarity
search to date. DTW in a streaming manner is proposed by
Sakurai et al. [41], which achieves a linear time complexity,
however, allows false dismissals. The majority of these tech-
niques achieve speedup by reducing the number of the invoked
times of DTW rather than accelerating DTW itself. However,
DTW calculation still accounts for about 80% of the total
executing time [48], [51].

Meanwhile, customized hardware is adopted for further
acceleration. Sart et al. [42] proposed a highly pipelined archi-
tecture for DTW on field-programmable gate arrays (FPGAs),
which can compute DTW in linear time. Wang et al. [48]
implemented a high-throughput DTW framework for similarity
search on FPGAs. The proposed structure of processing ele-
ment (PE) ring exploits the fine-grained parallelism of DTW
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and achieves a significant speedup. Hardware acceleration
of DTW has also been implemented on graphic processing
units (GPUs) [19], [42]. In order to improve energy efficiency,
Lotfian and Jafari [32] implemented an application specific
integrated circuit (ASIC) for DTW with a low performance
for energy-sensitive medical applications. Some researchers
have also implemented efficient DTW acceleration on embed-
ded platforms [45], [52]. However, the throughput and energy
efficiency of DTW are still big concerns considering the
ever-increasing volume of times series for data centers.

In this paper, we introduce a high-throughput and energy
efficient memristor-based DTW (mDTW) architecture for
real-time time series mining on data centers. In this new
architecture, we adopt memristors for both computation
and configuration, and the computation flow is in a con-
tinuous and asynchronous manner. To further improve the
throughput, we exploit the predictability in DTW comput-
ing process. Specifically, we develop an early LB (ELB)
algorithm and an effective early termination algorithm for
DTW calculation. Experiments are performed with module
evaluation and end-to-end evaluation including three popu-
lar applications: 1) similarity search; 2) classification; and
3) anomaly detection. Experimental results show that com-
pared to existing approaches, the proposed mDTW can achieve
a speedup and an energy efficiency improvement of 12×–43×
and 51×–287×, respectively.

The remainder of this paper is organized as follows.
Section II describes the backgrounds of DTW algorithm and
memristors. The proposed mDTW architecture is presented
in Section III. The experiment is discussed in Section IV.
Section V reviews the related works, and this paper concludes
in Section VI.

II. BACKGROUND AND PRELIMINARIES

A. Dynamic Time Warping

DTW is a robust distance measure for time series. Suppose
there are two sequences (or time series) as shown in Fig. 1(a),
a sequence P of length n as a candidate, and a sequence Q of
length m as a training template, where

P = P1, P2, . . . , Pi, . . . , Pn, Q = Q1, Q2, . . . , Qi, . . . , Qm.

(1)

Sequences must be normalized to make a meaningful compar-
isons [37]. Z-normalization is adapted in this paper to remove
offsets and amplitudes as

μT = 1

m

m∑

k=1

Pk, σ 2
T =

1

m

m∑

k=1

P2
k − μ2

T , P′k =
Pk − μT

σT
. (2)

To measure the similarity of these two sequences, DTW
creates an n-by-m matrix MT. The value of the (ith, jth) ele-
ment in MT represents the distance, d(P′i, Q′j), between points
Pi and Qj as

MT(i, j) = d
(

P′i, Q′j
)

(3)

which is called distance matrix calculation as shown in
Fig. 1(b). There are many effective distance metrics such

as Manhattan distance and Euclidean distance for distance
matrix calculation. We choose the widely used Manhattan dis-
tance as shown in (4), which is also adopted in recent FPGA
implementations [42], [48].

d
(

P′i, Q′j
)
=

∣∣∣P′i − Q′j
∣∣∣. (4)

With the distance matrix, the warping path can be derived.
There are three well-known constraints for the warping path
in DTW: 1) boundary conditions; 2) continuity condition; and
3) monotonic condition. Boundary conditions means that the
first/last point of P must correspond to the first/last point of Q.
Continuity condition means that each element of the warping
path in the matrix MT must have two elements of the warping
path around it except the first and the last points. Monotonic
condition requires that the extending direction of the warping
path is right or top or top-right. The shortest warping path
through the matrix is derived [38]

W(i, j) = wi,j
∣∣Pi − Qj

∣∣+min
{
Wi,j−1, Wi−1,j, Wi−1,j−1

}

W0,0 = 0 W0,j = Wi,0 = ∞1 ≤ i ≤ n; 1 ≤ j ≤ m

DTW(P, Q) = Wn,m (5)

where W is the cumulate distance in the warping path, m
and n are the length of Q and P, respectively. wi,j is for
weighted DTW [22], which is set to 1 for general DTW com-
putation. This procedure is called warping path calculation.
Usually the calculation combination of distance matrix cal-
culation and warping path calculation are regarded as DTW
matrix calculation. The time complexity of DTW is O(n2).

The Sakoe–Chiba [40] band is used as DTW constraint as
shown in Fig. 1(b). The DTW constraint, R, can reduce the
available DTW path thus achieve speedup, which is defined
as the rate of the warping length over the whole sequence and
varies from 0% to 100%. It can also avoid some unpractical
matchings, e.g., the first point of one sequence matches the
last point in another sequence. DTW constraint is effective
for many applications, and the choice of R depends on specific
applications and configurations.

LB method is one of the most powerful optimization meth-
ods for DTW computation, which can prune a lot of sequences.
The widely used LB method, LB_Keogh [37], is adopted in
this paper, and the definition is as follows:

Pi,upper = max{Pi−R, Pi−R+1, . . . , Pi+R−1, Pi+R} (6)

Pi,lower = min{Pi−R, Pi−R+1, . . . , Pi+R−1, Pi+R} (7)

Di =
⎧
⎨

⎩

Qi − Pi,upper, if Pi,upper < Qi

Pi,lower − Qi, if Pi,lower > Qi

0, else
(8)

LB(P, Q) =
∑

Di. (9)

The magical power of LB method is that if LB(P, Q) is
larger than the lowest DTW value so far (the most similar
one) for similarity search application [37], the following DTW
calculation can be aborted as the final DTW value must be
larger than the lowest DTW value. LB is also very effective for
other applications, e.g., classification and anomaly detection.
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(a) (b)

Fig. 1. (a) DTW matching indicated with lines. (b) DTW warping path based
on a DTW distance matrix.

(a) (b) (c)

Fig. 2. Memristor structure and filament formulation. (a) Memristor structure.
(b) Simple barrier memristor with nonlinear analog dynamics. (c) Filament
formulation with nondeterministic digital dynamics (Reprinted from [7]).

For simplicity of presentation, other optimization methods
(e.g., early abandon and reordering) are not presented here.
Readers can refer to [37] for details.

B. Memristor

Memristor is a two-terminal resistive switching device
which has nonlinear analog dynamics. The typical four-layer
structure of memristors is shown in Fig. 2(a) [44]. Two of
them are electrodes and the other two are TiO2 and TiO2−x

layers, respectively. The resistance of the TiO2 layer is high,
while the resistance of the TiO2−x layer is relatively low. Once
current flows through the two layers, the doping front of the
two layers gradually shifts, which makes the resistance of the
device varies between that of high resistance state (HRS) and
low resistance state (LRS) as shown in Fig. 2(b).

Recently studies show that memristors also have nondeter-
ministic digital dynamics [49]. In the subthreshold voltage, it is
probabilistic to form a single, dominant nanoscale filament as
shown in Fig. 2(c). Memristors will also experience an abrupt
resistance change. The nondeterminism will have a negative
influence on analog computation, which will be considered in
the context of DTW computation in this paper.

III. MEMRISTOR-BASED DTW ARCHITECTURE

In this section, we present the mDTW architecture. We
adopt memristors for high efficient computation in LB mod-
ules and reconfigurability in DTW calculation modules. Based
on the features of analog circuits, we propose a novel ELB
algorithm and an effective early termination algorithm for
DTW calculation. We also describe reconfigurability of DTW
with memristors. For the sake of convenience, we use the same
notation to present both a memristor and its resistance.

Fig. 3. Framework of the proposed DTW acceleration architecture.

Our design is to calculate the DTW distance in the analog
domain. Thus, the computing procedure is in a continuous
and asynchronous fashion. The DTW acceleration architecture
comprises four modules: 1) a digital analog convertor (DAC)
array; 2) an LB module; 3) a DTW calculation module; and
4) a control module as shown in Fig. 3.

In the architecture, the digital sequences are converted to
analog signals through a DAC array first. To increase the com-
putation efficiency, an LB module follows the DAC array to
prune the input sequences. The LB module is made up of sev-
eral LB elements (LBE) and one analog addition circuit. We
propose an ELB algorithm, which enables a higher throughput.

The DTW calculation module is comprised of memristor
PEs (MPEs), which performs calculation according to (5).
The DTW calculation module maps DTW calculation of two
sequences with length m and n to a m × n matrix of MPEs.
The connections between MPEs are defined according to (5).
The control module controls the data path among the above
modules.

A. Architecture Overview

Note that, for DTW calculation modules, the convergence
output is the DTW value. However, for LB modules, it mainly
works in the uncovergence state.

In analog circuits, memristors are used for computation due
to two reasons. First, using memristors as normal resistors
enables the fine-tuning of memristance, which helps miti-
gate the impact of process variation and parasitic resistance.
Second, by setting memristors to specific resistance, compu-
tation can be realized. For example, a widely used calculation
of multiply accumulate operation with memristors is shown
in the row structure in Fig. 3. Vout is the weighted sum of
the output of each PE, and the weight is determined by the
ratio of Mi (1 ≤ i ≤ k) and M0. For general computation of
DTW, the ratio of 1 is adopted, and only the HRS and LRS of
memristors are used. Recently, weighted DTW [22] has been
widely adopted for a variety of applications. In this situation,
different ratios between memristors are used, and memristors
need to be set to specific resistance other than HRS or LRS.
The calculation with memristors in the matrix structure fol-
lows the same principle. It should be pointed out that there is
no LB optimization for weighted DTW. Thus, when weighted
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Fig. 4. Circuit structure (the resistance of memristors change according
configurations) of LBE.

DTW is adopted, LB computation is not involved. Within ana-
log circuits, the computation is conducted in a parallel manner.
We discover that with identical circuit structures for inputs in
the LB module, the relations of outputs in converage state and
unconverage state are the same, which could be used for fur-
ther optimization. The details of implementations are discussed
in following sections.

Note that the nonlinear behavior of the memristor model
is only used for resistance tuning. It is strictly avoided
for accurate computation during normal operation [31],
which is achieved with a low load voltage as discussed in
Section IV-A. Thus, the polarity of memristors will not affect
the performance, which is not indicated in all the figures in
this paper.

B. Memristor-Based Lower Bound Module

1) Hardware Implementation: LBE realizes the function
of (8) as shown in Fig. 4. By combining multiple LBEs,
memristors, and one amplifier, the function in (9) is achieved.

LBE includes two modules: 1) a selecting module and
2) a computing module. The computing module has two ana-
log subtractors, which are responsible for Qi − Pi,upper and
Pi,lower−Qi, respectively. The selecting module with compara-
tors and transmission gates determines which result should be
connected to the output port. With the obtained Di from LBE,
Vout in LB modules as shown in Fig. 3 can be formulated as
follows:

Vout = M0 ×
∑ Di

Mi
=

∑ M0

Mi
× Di. (10)

Combining (9) and (10), it can be noted that by tuning
memristors to Mi = M0, Vout is exactly the expected output,
LB(P, Q). Note that the tuning processing is presented only
once for specific applications.

2) Algorithm Optimization: We propose an ELB algorithm
to accelerate LB computation. In the LB module, each input
has an equal position to each other, and the circuit structure

Fig. 5. Illustration of ELB algorithm. The relationship of the three LB
outputs are the same in unconvergence and convergence states.

Algorithm 1 ELB Algorithm
Require: Test, Template[n];
Ensure: The minimum DTW distance;

1: dtwbsf← INF;
2: elbnu← INF;elbbsf← INF;
3: lbnu← INF;lbbsf← INF;
4: for i = 1→ n do
5: elbi←FuncEarlyLowerBound(Test, Template[i]);
6: if elbi ← elbnu then
7: lbi←FuncLowerBound(Test, Template[i]);
8: if lbi ← dtwbsf then
9: dtwi←FuncDTW(Test, Template[i]);

10: if dtwi ← dtwbsf then
11: if lbbsf ← dtwi then
12: elbnu←elbbsf ; lbnu←lbbsf ;
13: end if
14: dtwbsf←dtwi; lbbsf←lbi; elbbsf←elbi;
15: end if
16: else
17: elbnu←elbbsf ; lbnu←lbbsf ;
18: end if
19: end if
20: end for
21: Return dtwbsf ;

for each input is identical. With this character, early decision
in LB modules can be achieved, which means LB modules
can process sequences with a shorter time rather than the con-
vergence time. The detail is illustrated in Fig. 5. It can be
noted that the relation of |V(lb1)|, |V(lb2)|, and |V(lb3)| in the
unconvergence state and the convergence state are the same.

Based on this phenomenon, we propose a novel ELB algo-
rithm shown in Algorithm 1. The general LB algorithm has
to wait for the convergence state of the circuit to obtain LB,
lb, for pruning. However, ELB algorithm prunes sequences
with the ELB, elb, when the circuit is in unconvergence state.
Thus, high throughput processing can be achieved. The sam-
pling point is defined as Early Point, and the interval between
the rising edge of the input and Early Point is defined as Early
Interval. ELB algorithm maintains the nearest upper lbnu to the
best DTW, dtwbsf, and its elbnu is also stored.

We provide an example to explain how ELB algorithm
works. As shown in Fig. 5, Early Point is set to 1.5 ns, and
Early Interval is 0.5 ns. In the following discussion, all vari-
ables are the absolute values of their corresponding voltages
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Fig. 6. Circuit structure of MPE (the resistance of memristors change
according configurations).

for simplification. The first sequence, S1, is calculated, and its
LB lb1 at 1.5 ns, elb1, is also obtained. Thus, dtwbsf = dtw1,
elbbsf = elb1, and lbbsf = lb1. By calculating the LB of
sequence, S2, it is pruned as its LB, lb2, is larger than dtwbsf.
The absolute value of the LB lb2 at 1.5 ns, elb2, can be
obtained. Then, elbnu = elb2 and lbnu = lb2. When calcu-
lating the LB of sequence, S3, waiting for the convergence
state is not needed. We can just obtain elb3, and comparison
is made between elb3 and elbnu. As elb3 is larger than lbnu,
it can be predicted that lb3 is larger than lb2 in the conver-
gence state. Thus, the LB and DTW calculation of S3 can
be aborted. Otherwise, elb3 will be bypassed and DTW com-
putation is needed. The nearest upper lbnu, can be updated
and it can be rather tight, which can prune a large number of
sequences.

C. DTW Calculation Module

1) Hardware Implementation: The DTW calculation mod-
ule is shown in Fig. 6, which includes three modules:
1) absolution module; 2) minimum module; and 3) addition
module. The absolution module calculates the absolute value
of (Pi − Qj). Two analog subtractors are used for calculating
(Pi−Qj) and (Qj−Pi), respectively. Two diodes are to output
the larger value of the two values. Thus, the output value is
the positive value, which is the absolute value of (Pi − Qj).
For conditions of Pi = Qj, the output is also correct.

The minimum module obtains the minimum value of
W(i, j − 1), W(i − 1, j), and W(i − 1, j − 1). As diodes are
perfect for maximum value calculation, we transform the min-
imum calculation to a maximum problem as shown in (11),
where Vcc is the supply voltage. In step 1 of (11), the min-
imum problem is converted to a maximum problem, which
can be easily calculated with diodes. However, there is a seri-
ous problem in the designs according to step 1. With diodes,
the input current for the analog subtracter is fixed to posi-
tive, which means there is no negative current. As a result,
the diode works in the cutoff region when the input is less
than Vcc/4, and there is no current for the input. Thus, the
maximum value of the output is Vcc/4, which is sufficient for
DTW calculation. Step 2 is introduced to tackle the problem.
The input and Vcc/2 switches their roles and are connected as
shown in Fig. 6. Then the output is the minimum value with a
negative sign, which can be easily solved by converting addi-
tion to subtraction. Weight factor wi,j supports weighted DTW,
which can be achieved by configure memristors M1 and M2
to M1/M2 = (2−wi,j)/wi,j. Other memristors are all with the
same resistance.

W(i, j) = wi,j
∣∣Pi − Qj

∣∣+min
(
Wi,j−1, Wi−1,j, Wi−1,j−1

)

= wi,j
∣∣Pi − Qj

∣∣+ {
Vcc/2−max

(
Vcc −Wi,j−1

× Vcc/2−Wi,j−1, Vcc/2−Wi,j−1
)}

Step 1

= wi,j
∣∣Pi − Qj

∣∣− {
max

(
Vcc/2−Wi,j−1, Vcc/2

− Wi,j−1, Vcc/2−Wi,j−1
)− Vcc/2

}
Step 2.

(11)

We take a more detailed discussion of the minimum module.
With the feature of diodes, the output voltage of each diode
in the minimum module must be above zero. Therefore, if
inputs W(i, j), W(i − 1, j), and W(i, j − 1) are all larger than
Vcc/2, the output voltages of A1, A2, and A3 are all below
zero, and the output voltages of the three diodes will be zero.
This will result in a smaller output voltage of the MPE than it
should be, which may cause a large relative error in the DTW
computation. However, we can make a reasonable assumption
here that MPEs with inputs W(i, j), W(i−1, j), and W(i, j−1)

all larger than Vcc/2 have no impact on the results from the
perspective of tasks. For tasks such as similarity search and
classification, only low distances between templates and the
test are considered, which has influence on the task results. If
this MPE is not in the shortest path, it has no impact in the
results and the assumption is verified. Otherwise, the output
voltage of the DTW computation must be larger than Vcc/2.
With proper voltage quantization, Vcc/2 corresponds to a very
large DTW value, and the actual DTW value is even larger.
Thus, the template with this DTW value has no impact on the
task results and the assumption is also valid.

2) Algorithm Optimization: In this section, we propose
an effective early termination algorithm to accelerate DTW
computation. Early abandon is a very effective method that
can further prune the DTW computations [37]. In this paper,
we propose an effective early termination algorithm, which
can achieve early abandon in DTW computation in the ana-
log domain. We observe that the voltage of DTW output is
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(a)

(b)

Fig. 7. Illustration of the effective early termination algorithm with DTW
calculation modules. (a) DTW distance matrix is presented for sequence
P = [0.1v, 0.1v, 0.1v, 0.1v, 0v] and Q = [0v, 0.1v, 0.1v, 0.1v, 0.1v]. (b) DTW
output increases with time.

Fig. 8. Circuit for effective early termination algorithm.

monotonous with time. This is due to the fact that the min-
imum module in MPE guarantees the minimum value of its
input as its output. Once the input of the minimum module
increases, the output can only be updated to a larger value.
To achieve such monotonicity, all the input should be zero in
the initial state. A step-by-step procedure in the analog DTW
calculation is shown in Fig. 7. The calculation is divided into
four phases, and we can see that the distances in DTW distance
matrix [1, 1] and [5, 5] contribute to the final DTW value of
0.2. As DTW distance matrix [5, 5] is near to the DTW out-
put, the distance of 0.1 is added to DTW output in phase 1
in a short time interval. In phase 2 and phase 3, few distance
matrixes can improve the DTW output, and the DTW output
is almost constant. In phase 4, the distance of 0.1 in DTW
distance matrix [1, 1] finally reaches the DTW output. The
rising time is larger than that in phase 1, which is because
that the propagation path is longer and the capacity of the
path is larger. In order to enable effective early termination,
a comparator is added as shown in Fig. 8. When the current
voltage of the DTW output (the circuit is in unconvergence
state) is larger than the Vbest−so−far, the signal reset becomes
active and the calculation can be aborted, which accelerates
the whole computation.

D. Implementation Details

1) Reconfigurability With DTW: Memristors is introduced
for the reconfigurability of Sakoe–Chiba band constraints.
Specifically, the constraint reconfigurability is supported by
configuring memristors connected with A1 in the minimum
module as shown in Fig. 6. As a subtractor, A1 works accord-
ing to (12). If no constraint is applied to the DTW cell, all

(a) (b)

Fig. 9. Resistance tuning circuit: (a) analog subtractor and (b) analog adder.

memristors have the same resistance. If DTW constraint is on,
the DTW cell needs to be shut down, and some memristors
need to be tuned. The HRS and LRS of memristors can have
the value difference by 2–3 orders of magnitude. By tuning
M2 and M4 to HRS and M1 and M3 to LRS, (12) is translated
as shown in (13), where δ is the resistance ratio of HRS and
LRS of memristors

Vout =
(

M4

M3
+ 1

)
×

(
M1

M1 +M2

)
× vin − M4

M3
× Vcc/2 (12)

Vout = vin − δ × Vcc/2. (13)

Thus, Vout is a large negative value, which is restricted to
−Vcc in practical circuits. With the addition module in DTW
calculation modules, the output is Vcc which will not update
the involved MPE.

2) Resistance Tuning: All the resistances in the DTW
acceleration architecture are memristors. Thus, resistance tun-
ing is required to make appropriate configurations for efficient
computation [30]. This is also useful to minimize the influence
of parasitic resistance. The process is presented as follows,
which includes two parts, analog subtractor and analog adder
as shown in Fig. 9. Note that we focus on the resistance tuning
process, and the detailed programming circuit can be adopted
from existing works [18], [24].

For analog subtractors as shown in Fig. 9(a), we set y1 = 0
and y2 = 0 in the first step. The four ports, x1, x2, x3, and
x4 are used to modulate M1, M2, M3, and M4, respectively. In
the second step, we verify the ratio of M1/M2 and M3/M4.
When verifying M1/M2 = k1, we set y2 = 0 and x1 = 0.1. By
measuring x2, the ratio k1 can be verified with x2 = −k1×0.1.
For example, for analog subtractors in LBE, M1 and M2 should
be set to LRS. Thus, if x2 = 0.1 V, M1/M2 = 1 is configured
successfully. When verifying M3/M4 = k2, we set y1 = 0.1
V and x3 = 0.1. By measuring x4, the ratio k2 can be verified
with x2 = −k2 × 0.1. If verification is not successful, the
first step will be applied to further modulate corresponding
memristors. The two steps can be iterated several times for
better precision.

For analog adders as shown in Fig. 9(b), we set n2 = 0 in
the first step. The k + 1 ports, m1, m2, . . . , mk and mk+1 are
adopted to modulate M1, M2, . . . , Mk and Mk+1, respectively.
In the second step, Mk+1 is regarded as the reference mem-
ristor, which is used to verify other memristors. We will set
m1 = 0.1 V and measure n1 to verify M1/Mk+1. If n1 = 0.1
V, the configuration of M1 is achieved. Otherwise, M1 will
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TABLE I
DTW ARCHITECTURE SETUP

be modulated according to the offset to the configuration.
The process of modulation and verification can be iterated
for higher precision. The above tuning process for M1 will be
applied to other memristors.

For situations where the threshold voltage of memristors is
larger than the supply voltage under some technology node,
dual power can be adopted to avoid the possible damage to
transistors by the large voltage for resistance tuning. With dual
power, one supply voltage is for normal operation and another
one is for memristor tuning. If memristor tuning is needed, the
normal supply voltage is off and the tuning supply voltage is
on. Each memristor need to be programmed individually, and
the two ports of it need to be connected to the programming
circuit.

3) Impact of Process Variation: Considering process vari-
ation, the actual resistance of memristors have a tolerance of
±20% to ±30%, which will degrade the solution quality. Two
steps are adopted to reduce the impact of process variation.
First, we can discover that the solution quality is only the ratio
of memristors. Thus, tolerance control technique [16] can be
used to restrict the tolerance between two memristors lower
than 1%. Second, post-fabrication resistance tuning can further
reduce the negative effects of process variation.

IV. PERFORMANCE SIMULATION

In this section, we perform module and end-to-end eval-
uations of the proposed mDTW architecture with respect
to accuracy, throughput, and energy efficiency. The three
widely used applications, similarity search, classification, and
anomaly detection are employed in the end-to-end evalua-
tion. Specifically, the performance of the mDTW architecture
obtained via simulations with SPICE [35] and MATLAB [21]
is compared with existing works on GPUs and FPGAs.

A. Module Evaluation

1) Experimental Setup: We implement the proposed design
in SPICE [35] with the 32 nm technology node, and the simu-
lation setup is presented in Table I. For the sake of generality,
the parameters of op-amps and diodes are set to typical values
according to [8] and [31]. Particularly, a parasitic capacitance
of 20fF is added to each circuit net to model the effect of
parasitic capacitance [31]. The stochastic Biolek’s model [7]
for memristor is adopted and the parameters of the model are
shown in Table II. All the parameters of the model are adopted
from [7].

The parameter voltage resolution is to translate sequence
values to voltages. We set the voltage resolution to a rela-
tively large value of 125 mV. Longer sequence length need

TABLE II
STOCHASTIC BIOLEK’S MODEL PARAMETERS

Fig. 10. Convergence time and relative error of LB module.

Fig. 11. Convergence time and relative error of DTW calculation module.

smaller voltage resolution. The translation process is as fol-
lows: after normalization, the sequence value 1 is translated
to 125 mV. Other values follow the same principle, e.g., 1.2
and −0.5 are translated to 150 mV and −62.5 mV, respec-
tively. In fact, it is still possible that the output voltage will
overflow. As discussed in Section III-C, we make a reasonable
assumption that overflowed outputs have no influence on data
mining tasks. For DTW configuration, warping constraint of
5% is adopted.

2) Module Performance Characterization: First, we present
performance evaluation for each module in the mDTW archi-
tecture. The convergence time which indicates how fast the
analog circuit can operate is discussed. The convergence time
is defined as the interval between the rising edge of the input
and the timestamp when the DTW output is within 0.1% of
the final value. We also analyze the relative error of the circuit
solution compared to the optimal solution.

We adopt three data sets (Beef, Symbols, and OSU Leaf)
from UCR Time Series Classification Archive [23]. For each
data set, we formalize the sequences with different lengths.
Note that two sequences for computation have the same length.
From each dataset, we select 21 sequences and select the first
sequence as the query, and LB and DTW computation are
performed with the query and the rest 20 sequences.

The maximum convergence time and relative error of LB
modules and DTW calculation modules are presented in
Figs. 10 and 11, respectively. We can observe that the conver-
gence time of both LB modules and DTW calculation modules
are almost linear to the sequence length. This is due to the fact
that both modules have a linear capacitance to the input size
in the current propagation path. Specifically, for LB modules,
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the capacitance of the combining point as shown in Fig. 3
increases linearly with the number of input or the sequence
length. It can be noted that the relative error of DTW calcula-
tion modules is larger than that of LB modules, which is due
to the fact that there exists zero drift in MPEs as shown in
Fig. 7. In the experiment, we also find that though there exists
relatively error, the magnitude relation of LB and DTW does
not change, which means the ranks of both LB and DTW val-
ues are not affected by analog computation. Therefore, analog
computation has no influence on the actual accuracy. However,
analog computation has a relatively low data accuracy (usually
8 bits), which may degrade the accuracy. This data accuracy
issue will be discussed in Section IV-B.

We can see that LB and DTW calculation modules operate
with a high speed of about 0.1 ns and 0.18 ns per element.
Compared with the state-of-the-art acceleration of DTW cal-
culation modules (240 MHz, 4.17 ns per element) [42], we
achieve a speedup of 23.3×. However, the state-of-the-art LB
modules (150 MHz, 6.67 ns per sequence) [48] can fulfill
one LB calculation per cycle with an adder tree, which out-
performs our LB module when the sequence length is larger
than 6.67 ns/0.01 ns = 667 (for LB modules, one-tenth con-
vergence time is set as Early Interval). In Section IV-B, we
will show that though the current LB module [48] have bet-
ter performance with longer sequences, our mDTW can still
have a better overall performance as the calculation time of
LB module is far less than that of DTW module.

In the module performance experiment, all the results have
low relative errors and are not influenced by the nondeter-
minism of the stochastic Biolek’s model. This is due to the
following two reasons. First, all memristors are under a volt-
age far less than the threshold voltage of memristors. It should
be noted that only in the subthreshold voltage, it is probabilis-
tic to form a single filament for stochastic resistance change.
For LBEs, all inputs for analog subtractors are voltage values
from sequence values. With a high voltage resolution, these
input voltages are around several hundreds of millivolts which
is far lower than the threshold voltage of 3.0 V. For analog
adders in the LB module, the input voltage is small. The out-
put voltage is usually very small, and there is a relatively very
low possibility for M0 to have a high voltage drop. For MPEs,
the input voltages in the absolution module are very small,
which is the same with the situations for LBEs. In the min-
imum module, the output voltage of diodes cannot be below
zero, which makes the input voltages have a value less than or
equal to Vcc/2. Thus, the voltage drop of all the memristors
in the minimum module and the addition module is less than
or equal to Vcc/4 = 0.25 V, which is also far lower than the
threshold voltage of 3.0 V. Second, the computation time is
far less than the transition time of about 1 μs for memristors.
However, the running time for LB modules and DTW modules
are about several nanoseconds. Considering the above two con-
ditions, the nondeterminism of the stochastic Biolek’s model
has almost no influence on the LB and DTW computation in
the analog domain.

However, if the computation time for LB modules and the
experiment number both increase, the possibility of stochastic
resistance change will also increase, which will decrease the

computation accuracy. This can be tackled in two ways. First,
triply redundant [15] can be applied for LB modules. Second,
the circuit of the analog adder in the LB module needs to be
improved to reduce the voltage drop of memristors. The above
refinement will be our future work.

B. End-to-End Evaluation and Comparison

Second, we present end-to-end evaluations with three appli-
cations: 1) similarity search; 2) classification; and 3) anomaly
detection with comparisons with state-of-the-art DTW acceler-
ations. Accuracy, speedup, and energy efficiency are discussed
in the experiments.

1) Experiment Setup: The experiment setup is as follows:
1) the LB module has 128 LBEs, and the DTW module has
1282 × R(2 − R) MPEs, and the DTW constraint of 5% is
used; 2) for LB modules, one-tenth convergence time is set
as Early Interval; and 3) effective early termination algorithm
in DTW calculation module is not implemented as its pruning
power is much weaker than that of LB. We perform the same
process with the DTW accelerations with FPGAs [42], and
the runtime is calculated with the ideal maximum through-
put. Note that the FPGA implementation [48] for similarity
search application is not considered here, which allows false
dismissals [42]. The low-power DTW implementation with
ASICs [32] is not considered here either as its performance is
low. Parallel computation is not involved, and one LB module
and one DTW calculation modules are taken into consider-
ation for fair comparison. As the existing implementations
do not support variable weighting factors, the weighting fac-
tor, σi, is set to 1. The experiment is simulated with SPICE
and MATLAB, and MATLAB is responsible for simulating
accuracy and the process of LB pruning.

Considering accuracy, data length of 8 bits is adopted
for mDTW, which is the same with the FPGA implementa-
tion [42]. The reason for setting data length to 8 bits is that the
highest data accuracy analog circuit can support is 8 bits [39].
However, for DTW computation if the data length of input data
is 8 bits, the output will have a high possibility to be overflow.
In order to tackle the overflow problem, we make a reason-
able assumption here that the final result of DTW applications
(usually with the lowest DTW value) will be in twice of the
range of the input data. Thus, the input data is set to 7 bits
and the output data is set to 8 bits. Note that as discussed in
Section IV-A2, analog calculation produces no error about the
relations of the DTW values between sequences. Therefore,
we adopt MATLAB to simulate the accuracy of mDTW and
FPGA with data length of 7 bits and 8 bits, respectively.

Energy efficiency is associated with runtime and power
consumption as

Eefficiency = N

E
(14)

where N is the total sequence number, and E is the total con-
suming energy. A power estimation tool Power Estimator [1]
is used to estimate the power consumption of FPGA. The
power consumption of the FPGA implementation [42] with
one LB module (8 stage adder tree with totally 255 adders)
and one DTW module (128 process element for DTW size of
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TABLE III
RESULTS OF SIMILARITY SEARCH

128 × 128) is estimated to 3.742 W. We analytically model
the power consumption of mDTW for energy efficiency dis-
cussion. The power for a recently popular op-amp with a
gain-bandwidth product 303 GHz is 197 μW [53] under
0.35 μm technology node, and the power for the 32 nm
technology node is projected to 18 μW with ideal scaling
for capacitance. The same procedure goes for a recent 8-bit
1.6 Gsample/s DAC [46] in 90 nm technology node, and the
projected power for the adopted DAC is 32 mW. A recent
35 mW 8.8 GSample/s ADC in 32 nm technology node [26] is
adopted. The number of PEs in each column and row is set to
128. For sequence length larger than 128, tiling technique can
be applied. For DTW configuration, the power consumption
of the distance accelerator includes three parts: 1) op-amps;
2) ADCs/DACs; and 3) memristors around op-amps. The
power consumption of the active op-amps is (7R(2n − R))×
18 μW = 0.20 W, while the power consumptions of DACs and
ADCs are �Throughputin/1.6 GSample/s	×32 mW = 0.13 W
and �Throughputout/8.8 GSample/s	 × 35 mW = 0.026 W,
respectively. Assuming at least one memristor is set to HRS
from the source to the ground, the power consumption of mem-
ristors is (7R(2n−R))×2×10 μW = 0.22 W. For LB module,
the power consumption is 19.46 mW. Thus, the total energy
consumption for mDTW is 0.58 W.

2) Similarity Search: The dataset one day ECG [4], UCR
data [3], and two patterns [2] (joint all the sequences as
one sequence) are selected for similarity search applica-
tion. Similarity search is to find the candidate, which has
the minimum DTW distance with the query from all the
candidates.

Table III shows the results of the similarity search task.
For the dataset UCR data [3], FPGA, and mDTW have the
same accuracy as they find the same sequence as the most
similar one to the query. For the dataset one day ECG [4],
though the index of the first element has a minor difference of
three, actually the corresponding subsequences are the same
considering the query subsequence length of 421. However,
for the dataset Two patterns [2], there exists errors with a
2.20% difference for DTW values, which is due to the data
representations for FPGA with 8 bits and mDTW with 7 bits.

Compared with FPGA, mDTW has a speedup of 12.29×–
22.03×, and the energy efficiency improvement is 51.05×–
91.48×. We discover that the speedup for the dataset UCR
data is the highest which is close to the speedup (23.3×) of
DTW module in mDTW (0.18 ns per element) compared with
that in FPGA (4.17 ns per element). This is due to the fact

that the LB pruning rates are low (61.46%–63.36%) which
means a lot of DTW calculations are required, and the pro-
cessing time for LB is much shorter than that of DTW for each
sequence. Thus, DTW processing time occupies the majority
of the total processing time, and the speedup is determined by
the performance ratio of DTW modules in mDTW and FPGA.
For datasets one day ECG and Two patterns, as the LB prun-
ing rate increases, the speedup decreases. This is because that
the proportion of LB computation increases which is compa-
rable with that of DTW computation, and the LB performance
for FPGA and mDTW are comparable. We can also find that
different data representations of 7 bits (mDTW) and 8 bits
(FPGA) have a slight impact on the LB pruning rate. For
energy efficiency, it has a positive correlation with the speedup,
which follows the same principle.

3) Classification With k-Nearest Neighbors: Forty datasets
from UCR Time Series Classification Archive with [2] with
different sequence lengths are selected for classification appli-
cation. kNN with k = 1 is used for classification.

Fig. 12 shows the accuracy varies with 40 datasets. It can
be noticed that FPGA and mDTW have almost the same accu-
racy with different datasets. The average accuracy difference
is 0.1%, which means mDTW can achieve a slightly better
accuracy than FPGA.

The runtime and speedup are presented in Fig. 13. The
speedup of mDTW is 16.30×–42.57×, and the average
speedup is 23.4×. It can be learned that the speedup is around
22× for most datasets. This follows the same reason as dis-
cussed in Section IV-B2 for similarity search application: the
LB pruning rate has a slight difference for mDTW (7 bits)
and FPGA (8 bits), and the DTW processing time occupies
the vast majority of the total processing time. However, for
some datasets (e.g., fish and diatom size reduction) the LB
pruning rate have a relatively large difference which results
in different speedups. As shown in Fig. 14, the improvement
of energy efficiency varies from 119.20× to 286.77×, and the
average improvement is 160.43×.

4) Anomaly Detection: The long ECG data [5] is seg-
mented to sequences of length 96. The peak points are from
the annotations.txt from the database. With the peak point ai,
we get the segmented sequence as ai−31, . . . , ai, . . . , ai+64.
The first dimension of the 2-D data is used as representative.

A training processing [10] is needed to calculate thresh-
old for anomaly detection. The first 20 normal sequences
are stored as templates. The following 100 normal sequences
are used to training to get the threshold. The rest
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Fig. 12. Accuracy of classification application with kNN. The correspondence of dataset and the x-axis is as follows: (1, 50Words), (2, Adiac), (3, Beef),
(4, CBF), (5, Coffee), (6, ECG200), (7, Face All), (8, Face Four), (9, fish), (10, Gun_Point), (11, Lighting2), (12, Lighting7), (13, Olive Oil), (14, OSU
Leaf), (15, Swedish Leaf), (16, synthetic_control), (17, Trace), (18, Two_Patterns), (19, wafer), (20, yoga), (21, Chlorine_Concentration), (22, AdCinC ECG
torsoiac), (23, Cricket X), (24, Cricket Y), (25, Cricket Z), (26, Diatom Size Reduction), (27, ECG Five Days), (28, Faces UCR), (29, Haptics), (30, Inline
Skate), (31, Italy Power Demand), (32, MALLAT), (33, Medical Images), (34, Mote Strain), (35, Sony AIBO Robot Surface), (36, Sony AIBO Robot Surface
II), (37, Star Light Curves), (38, Symbols), (39, Two Lead ECG), (40, uWave Gesture Library X), where X is the x-axis and A is the name of dataset in the
format (X, A).

Fig. 13. Runtime and speedup of classification application with kNN. See the caption of Fig. 12 for the detail information of the x-axis dataset.

Fig. 14. Energy efficiency and improvement of classification application with kNN. See the caption of Fig. 12 for the detail information of the x-axis dataset.

of the ECG sequences are treated as the data to be
detected.

For compact demonstration, accuracy and precision in the
confusion matrix are selected to discuss the performance. As
shown in Fig. 15, the accuracy and precision of FPGA and
mDTW are almost the same for different datasets.

Fig. 16 shows the runtime comparison of FPGA and mDTW.
The speedup varies from 20.95× to 23.64× with differ-
ent dataset IDs, which follows the same principle discussed
in Sections IV-B2 and IV-B3. As shown in Fig. 17, the
energy efficiency improvements of mDTW over FPGA is
143.74×–152.49×.

V. RELATED WORK

There is a large body of work exploring the novelty
of memristor in new emerging fields beyond the straight-
forward memory application. One of the most impor-
tant applications is neuromorphic systems [17], [28], [29],

Fig. 15. Accuracy and precision of anomaly detection application.

which adopts crossbar structure for efficient computation.
Another important memristor application is analog and dig-
ital circuits. Logic/arithmetic operation [9] and programmable
modules (e.g., filters [33], Chaos circuit [34], and memristor-
based arithmetic-logic unit [47]) benefit from the feature
of programmability. Memristor has also been applied to
efficient architectures for area and energy optimization,
e.g., FPGA+memristor [11] and FPAA+memristor [27].
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Fig. 16. Runtime of anomaly detection application.

Fig. 17. Energy efficiency and improvement of anomaly detection applica-
tion.

Recently, memristor has been adopted for algorithm opti-
mization in analog domain. Liu and Zhang [31] implemented
an analog substrate with memristors for max flow problem and
achieves a speedup of 150× to 1500×. Memristor has also
been applied to maze [36], shortest path algorithm [50], and
bin packing algorithm [43]. The features in analog domain
give a new sight for the improvement of performance. This
paper is another exploring work of memristors in the matching
algorithm application.

VI. CONCLUSION

In this paper, we propose a high-throughput and energy
efficient mDTW architecture for time series mining on data
centers. We performed memristor-based analog circuit designs
for LB modules and DTW calculation modules. Based on
the feature of analog circuits, we developed a novel ELB
algorithm and an effective early termination algorithm for
DTW computation acceleration. We also achieved recon-
figurability in DTW calculation modules with memristors.
Comprehensive experiments are presented with public avail-
able datasets. Module evaluation and end-to-end evaluation
including similarity search, classification, and anomaly detec-
tion applications are presented. Experimental results show
that the proposed mDTW can achieve a speedup and an
energy efficiency improvement of 12×–43× and 51×–287×,
respectively.
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