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Abstract—The rapid development of Internet-of-Things is
yielding a huge volume of time series data, the real-time mining
of which becomes a major load for data centers. The computation
bottleneck in time series data mining is distance function, which
is the fundamental element of many high data mining tasks.
Recently various software optimization and hardware acceler-
ation techniques have been proposed to tackle the challenge.
However, each of these techniques is only designed or opti-
mized for a specific distance function. To address this problem,
in this paper we propose MDA, a high-throughput reconfigurable
memristor-based distance accelerator for real-time and energy-
efficient data mining with time series in data centers. Common
circuit structure is extracted for efficiency, and the circuit can
be configured to any specific distance functions. Particularly, we
adopt the emerging device memristor for the design of MDA.
Comprehensive experiments are presented with public available
datasets to evaluate the performance of the proposed MDA.
Experimental results show that compared with existing works,
MDA has achieved a speedup of 3.5×–376× on performance and
an improvement of 1–3 orders of magnitude on energy efficiency
with little accuracy loss.

Index Terms—Data center, data mining, distance function,
memristors, time series.

I. INTRODUCTION

ENERGY efficiency of data centers has been a primary
focus in the past few years due to their excessive power
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consumption. On the other hand, the load on data centers keeps
increasing with the explosion of information technologies.
It has been predicted that by 2020 a major portion of the
load will come from Internet-of-Things, which will yield
over 4.4 zettabytes (5.5×1021 Bytes) of time series data by
2020 [3]. These time series data are transmitted to data cen-
ters for real-time mining [14]. It is therefore of utmost interest
to explore techniques that handle time series data with high
throughput and high energy efficiency.

The computational bottleneck of many data mining tasks
such as classification and similarity search is the calculation
of distance function [37], which is used to evaluate the simi-
larity of two time series. Distance functions have a relatively
high complexity, yet all data mining tasks will invoke it a
huge number of times. Thus, the calculation of distance func-
tions consumes a large fraction of the data mining time. For
example, research results show that the computation of dis-
tance function takes up to more than 80% of the runtime for
subsequence similarity search task [40].

Recently, software optimization and hardware accel-
eration have been widely exploited for distance func-
tions. Dynamic time warping (DTW) has been opti-
mized with lower bound methods [30], field programmable
gate array (FPGA) [35], [40], [46]–[48], graphics processing
unit (GPU) [35], and application-specific integrated circuit
(ASIC) [23]. Manhattan distance (MD) has been acceler-
ated with GPU [7]. Longest common subsequence (LCS),
Hausdorff distance (HauD), and Hamming distance (HamD)
have also been accelerated by GPU [19], [28], [39]. Edit dis-
tance (EdD) has been optimized on GPU [8] and ASIC [36].
However, each data center handles a variety of applications
which use different distance functions. For example, a Cisco
data center needs to deal with healthcare [13] and smart city
applications [6]. The former adopts HamD for iris authentica-
tion [39] and LCS for electrocardiogram (ECG) similarity [9],
while the latter uses DTW for vehicle classification [41]. None
of these existing works on different platforms (GPU, FPGA,
and ASIC) can work well in this scenario as they are opti-
mized for a single distance function only. It remains an open
problem in the literature how to design a reconfigurable accel-
erator that works for all popular distance functions with high
throughput and high energy efficiency, which is of ultimate
importance in data centers.

Meanwhile, the nonlinear analog dynamics of memris-
tors has been extensively explored for nanoelectronic mem-
ories, computer logic, and neuromorphic/neuromemristive
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computer architectures [32]–[34]. Recently, memristors have
also been used for query processing [11], tunable approximate
computing [12], and distance acceleration [42]. Though these
works also accelerated distance function calculation using
memristors in submodules, they focused on specific applica-
tions such as query processing with only one distance function
which cannot achieve high efficiency in the scenario of data
centers.

In this paper, we address this problem by putting for-
ward MDA, a novel reconfigurable memristor-based distance
accelerator for high-throughput and high-energy-efficient time
series data mining in data centers [43]. The contribution of
this paper is threefold.

1) We present a specific analog circuit design as a unified
hardware that can be reconfigured for a set of distance
functions (including DTW, LCS, HauD, EdD, HamD,
MD), and we extract the basic primitives to facilitate
various distance functions to save chip area.

2) Memristors are adopted in analog circuit design for
configurable resistance and accurate calculation.

3) We perform module and end-to-end evaluations, and
experimental results show that compared with existing
works, our work has achieved a speedup of 3.5×–376×
on performance and an improvement of 1–3 orders of
magnitude on energy efficiency with little accuracy loss.

The remainder of this paper is structured as follows.
Section II describes the background and problem formulation.
Section III presents the distance accelerator architecture and
circuit designs. Module evaluation and end-to-end evaluation
are presented in Sections IV and V, respectively. This paper
is concluded in Section VI.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, the widely adopted six distance functions
are introduced. DTW, LCS and EdD are dynamic program-
ming methods, which can handle two sequences with different
lengths, while HamD and MD only support sequences with the
same length. HauD can also support two sequences with dif-
ferent lengths. In real applications, weight is introduced as the
significance of each element is different. Interested readers can
refer to [5], [17], [24], [27], [29], and [44] for the weighted
version of DTW, LCS, MD, HamD, HauD, and EdD.

Distance functions are used to calculate the similarity
between two sequences. Suppose there are two sequences P
and Q as follows:

P = {P1, P2, . . . , Pi, . . . , Pm}
Q = {

Q1, Q2, . . . , Qj, . . . , Qn
} (1)

where m and n are the length of Q and P, respectively.

A. Dynamic Time Warping

The procedure of DTW calculation is a dynamic
programming-based iterates process. Specifically, DTW is to
calculate a shortest warping path between two sequences P and
Q, which is derived as shown in (2), where D is the cumulate
distance in the warping path. wij is the weight, which equals
to 1 for general DTW and to other values (�= 1) for weighted

DTW. Smaller DTW(P, Q) value corresponds to higher simi-
larity. Usually the Sakoe-Chiba band [30] is adopted for DTW,
and its constraint R restricts the warping path. DTW has been
optimized with lower bound methods [30], FPGA [35], [40],
GPU [35] and ASIC [23].

Di,j = wi,j
∣∣Pi − Qj

∣∣ + min
{
Di,j−1, Di−1,j, Di−1,j−1

}

D0,0 = 0; D0,j = Di,0 = ∞; 1≤i≤n; 1≤j≤m

DTW(P, Q) = Dn,m

. (2)

B. Longest Common Subsequence

LCS is to find the longest common subsequence of two
strings. In order to apply LCS to time series, threshold is
introduced to determine whether two elements are equal or
not. LCS also belongs to dynamic programming as shown in
(3), where Vstep is the contribution of two equal elements. It
should be noted that unlike DTW, smaller LCS(P, Q) value
corresponds to lower similarity. LCS has been accelerated by
GPU [28].

Li,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if i = 0 or j = 0
Li−1,j−1 + wi,jVstep

if i, j > 0 and
∣∣Pi − Qj

∣∣ ≤ threshold
max

(
Li,j−1, Li−1,j

)

if i, j > 0 and
∣∣Pi − Qj

∣∣ > threshold
LCS(P, Q) = Ln,m

. (3)

C. Edit Distance

EdD is the number of operations in individual characters
to transform one string into another. Thus, lower EdD value
means higher similarity. The permitted operations include
replacement, insertion, and deletion. By introducing thresh-
old, EdD can also handle time series as shown in (4). EdD
has been optimized on GPUs [8] and ASICs [36].

Ei,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
(
Ei−1,j + wi−1,jVstep, Ei,j−1 + wi,j−1Vstep

Ei−1,j−1 + wi−1,j−1Vstep
)

if |Pi − Qj| ≤ threshold
min

(
Ei−1,j + wi−1,jVstep, Ei,j−1 + wi,j−1Vstep

Ei−1,j−1
)

if |Pi − Qj| > threshold
Ei,0 = i, E0,j = j, EdD(P, Q) = En,m

. (4)

D. Hausdorff Distance

HauD measures how far two subsets are from each other.
Low HauD value means two sets are close (high similarity)
or each point in one set is close to each point in another set.
The computation of HauD is shown in (5). HauD has been
accelerated by GPU [19].

HauD = maxj∈n
(
minj∈nwi,j

∣∣Pi − Qj
∣∣). (5)

E. Hamming Distance

HamD is the number of positions at which the correspond-
ing characters are different. Like LCS and EdD, threshold
is adopted for time series. The calculation process is shown
in (6). HamD has been accelerated by GPU [39].

Hi =
{

Hi−1 if |Pi − Qi| ≤ threshold
Hi−1 + wiVstep if |Pi − Qj| > threshold

H0 = 0, n = m, HamD(P, Q) = Hn

. (6)



XU et al.: MDA: RECONFIGURABLE MEMRISTOR-BASED DISTANCE ACCELERATOR FOR TIME SERIES MINING ON DATA CENTERS 787

F. Manhattan Distance

MD is a simple but rather popular method for time
series [7], which is the sum of absolute differences in the
corresponding positions. The calculation process is given as
shown in (7). MD has been accelerated with GPU [7].

MD(P, Q) =
n∑

i

wi|Pi − Qi|, n = m. (7)

G. Problem Formulation

From the above discussion it is clear that any existing accel-
erator is for a specific distance function only, and cannot be
shared by multiple functions. However, this is exactly what is
needed in data centers. In this paper, we formulate the problem
of reconfigurable distance accelerator as follows: given mem-
ristors and basic circuit devices, find a circuit structure design
that can be reconfigured to support multiple distance functions
with high performance, high energy efficiency and low area
consumption.

III. ACCELERATOR ARCHITECTURE

A. Architecture Overview

The proposed MDA comprises four modules: 1) a digital-
to-analog convertor (DAC) array; 2) a computation module;
3) a control and configuration module; and 4) an analog-to-
digital convertor (ADC) array as shown in Fig. 1. The DAC
and ADC arrays are used to convert time series data between
digital signals and analog signals. The control and configura-
tion module has two responsibilities: 1) control the dataflow
between modules and 2) reconfigure circuit connections in
the computation module to perform specific distance functions
with the configuration lib.

The configurable computation module calculates the dis-
tance functions. In order to save chip areas, we extract the
basic primitive, the processing element (PE) of the analog
circuits of distance functions. Each PE is compromised of
several basic elements which will be discussed in detail in
the next section. The connections between the basic elements
in PE is realized with transmit gates (TGs). All the adopted six
distance functions are aggregated into two structures for the
connection between PEs: 1) matrix structure (for DTW, LCS,
HauD and EdD) and 2) row structure (for MD and HamD)
as shown in Fig. 1. The circuit structures for different algo-
rithms have a high similarity with each other in matrix and row
structure, respectively. The reuse of op-amps and their corre-
sponding memristors are labeled as shown in Fig. 3. It can be
noticed that the configuration of connections for the two struc-
tures is relatively simple, and the circuit elements have a high
resources utilization. By configuring each PE and connections
between PEs, the function of specific distance can be achieved.
The details of configurations are discussed in Section III-B.
When the sequence length is larger than the number of PEs in
each row or column, tiling technique will be applied and the
throughput will decrease.

In analog circuits, memristor is used for computation due
to two reasons. First, using memristors as normal resistors
enables the fine-tuning of memristance, which contributes to

Fig. 1. Architecture of the distance accelerator, MDA.

mitigate the impact of process variation and parasitic resis-
tance. Second, By setting memristors to specific resistance,
computation can be realized. A typical calculation of mem-
ristors is shown in the row structure in Fig. 1. Vout is the
weighted sum of the output of each PE, and the weight is
determined by the ratio of Mi (1 ≤ i ≤ k) and M0. For
general computation of MD, DTW, LCS, HamD, EdD, and
HauD, the ratio of 1 is adopted, and only the high resistance
state (HRS) and low resistance state (LRS) of memristors are
used. Recently, weighted version of MD [29], DTW [17],
LCS [5], HamD [44], EdD [27], and HauD [24] have been
widely adopted for a variety of applications. In this situation,
different ratios between memristors are used, and memristors
need to be set to specific resistance other than HRS or LRS.
The calculation with memristors in the matrix structure follows
the same principle. Within analog circuits, the computation is
conducted in a parallel manner. We discover that with identical
circuit structure, the relations of outputs in converage state and
unconverage state are the same, which could be used for fur-
ther optimization. The details of implementations are discussed
in Section III-C.

Note that the nonlinear behavior of the memristor model
is only used for resistance tuning. It is strictly avoided
for accurate computation during normal operation [22],
which is achieved with a low load voltage as discussed in
Section IV-B. Thus, the polarity of memristors will not affect
the performance, which is not indicated in all the figures in
this paper.

B. Hardware Implementation

1) Circuit of Processing Element: PE can be configured to
a variety of distance functions according to the configuration
lib. As shown in Fig. 2, it is compromised of several basic
elements: absolution module, minimum module, individual
subtractor module, control module, and connection module.
The absolution module and minimum module are used to cal-
culate the absolution value of two numbers and the minimum
value of three numbers, respectively. Particularly, the mini-
mum calculation is a combination of subtraction and maximum
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Fig. 2. Overall circuit structure of PE.

calculation. The details of the two operations are discussed and
analyzed in detail with specific distance functions. The control
module includes a comparator and a either/or circuit, which is
used to select the appropriate output according to the input to
the comparator. The individual subtractor module can be con-
figured to subtraction or addition operation. The connections
between the basic elements are realized with the connection
module which is a TG-based sparse array. Specific connections
between the inputs and outputs can be realized by configur-
ing the TGs. Note that the TG-based array is sparse, which
means that some inputs can only be connected to some spe-
cific outputs. In the TG-based array there exists some diodes
to calculate the maximum value of several inputs as shown in
Fig. 3(d1) and Fig. 3(d2). Note that as each PE is indepen-
dent and the connection is flexible, MDA can be configured to
several groups, each of which supports one distance function
calculation.

Compared with accelerating only one distance function, our
reconfigurable approach comes with a cost. We need to add
more circuit devices in each PE to support multiple distance
functions. Also, the connection configuration between PEs
becomes complex resulting with more area consumption. This
is the cost we have to pay to achieve flexibility. Note that data
centers especially benefit from such flexibility.

2) Circuit of Dynamic Time Warping: The DTW calcu-
lation module is shown in Fig. 3(a), which includes three
modules: 1) absolution module; 2) minimum module; and
3) addition module. The absolution module calculates the
absolute value of (Pi − Qj). Two analog subtractors are used
for calculating (Pi−Qj) and (Qj−Pi), respectively. Two diodes
are to output the larger value of the two values. Thus, the out-
put value is the positive value, which is the absolute value
of (Pi − Qj). For conditions of Pi = Qj, the output is also
correct. Weight factor wi,j supports weighted DTW, which
can be achieved by configuring memristors M1 and M2 to
M1/M2 = (2 − wi,j)/wi,j. Other memristors are all with the

same resistance

Di,j = wi,j
∣∣Pi − Qj

∣∣ + min
(
Di,j−1, Di−1,j, Di−1,j−1

)

= wi,j
∣∣Pi − Qj

∣∣ + {
Vcc/2 − max

(
Vcc − Di,j−1

Vcc/2 − Di,j−1, Vcc/2 − Di,j−1
)}

Step 1 (8)

= wi,j
∣∣Pi − Qj

∣∣ − {
max

(
Vcc/2 − Di,j−1, Vcc/2

− Di,j−1, Vcc/2 − Di,j−1
) − Vcc/2

}
Step 2.

The minimum module obtains the minimum value of Di,j−1,
Di−1,j, and Di−1,j−1. As diodes are perfect for maximum value
calculation, we transform the minimum calculation to a maxi-
mum problem as shown in (8), where Vcc is the supply voltage.
In Step 1, the minimum problem is converted to a maximum
problem, which can be easily calculated with diodes. However,
there is a problem in the designs according to step 1. With
diodes, the input current for the analog subtracter is fixed
to positive, which means there is no negative current. As a
result, the diode works in the cutoff region when the input is
less than Vcc/4, and there is no current for the input. Thus,
the maximum value for the output is Vcc/4, which is insuffi-
cient for DTW calculation. Step 2 is introduced to tackle the
problem. The input and Vcc/2 switch their roles as shown in
Fig. 3(a). Then, the output is the minimum value with a neg-
ative sign, which can be easily solved by converting addition
to substraction.

3) Circuit of Longest Common Subsequence: The PE cir-
cuit of LCS is shown in Fig. 3(b). The calculation of Li,j

depends on the elements of sequences and PEs besides it.
The PE circuit contains two modules: a selecting module

and a computing module. The selecting module fulfills the cal-
culation of conditions in (3). To determine whether Pi is equal
to Qj, we first calculate the absolute value of (Pi-Qj), and then
compare the absolute value with a threshold voltage Vthre. If
the absolute value is less than the threshold voltage, we assume
that Pi is equal to Qj, otherwise not. The TG determines which
part should connect to the output.

The computing module is consisted of two parts. The first
part calculates the sum of Li−1,j−1 and wi,jVstep. The sec-
ond part outputs the maximum value of Li,j−1 and Li−1,j

with diodes. Weight factor wi,j supports weighted LCS by
configuring memristors M1, M2, M3, M4, and M5. Assuming
M1/M2 = k1, M3 should be set to wi,jk1M2, and the relation
of M4 and M5 is M5/M4 = (1 + k1)wi,j.

4) Circuit of Edit Distance: Fig. 3(c) shows that the PE
circuit of EdD includes two modules: 1) a computing module
and 2) a minimum module. In the computing module, we have
three computation paths. The first computation path is asso-
ciated with Ei−1,j−1, which is the result of the left-lower PE.
We calculate the absolute value of (Pi − Qj) and use a com-
parator to determine whether Pi is equal to Qj. If Pi is equal
to Qj, the output of the comparator will be high and the out-
put of the first path will be Ei−1,j−1 +wi−1,j−1Vstep, otherwise
will be Ei−1,j−1. The second and the third path share the same
circuit structure, and the outputs are Ei−1,j + wi−1,jVstep and
Ei,j−1+wi,j−1Vstep, respectively. Vstep is a unit voltage, and the
exact result can be obtained by dividing E(m, n) by Vstep. For
weighted LCS the configuration of memristors around op-amp
A3, A4, and A5 in Fig. 3(c) are the same with that in Fig. 3(b).
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Fig. 3. PE circuit structures of DTW, LCS, EdD, HauD, HamD and MD. Particularly, HauD has a different PE connection.

The minimum module calculates the minimum value among
the output of the three paths in the computing module. As
the diodes can easily solve the maximum problem, we use a
subtractor circuit to make it a maximum problem.

The same problem arises here, which also exists in the PE
circuit structure of DTW. The current through the diode must
be in the right direction, which means the output of the diodes
in the maximum module must be higher than Vcc/2. In order
to solve the problem, we add a buffer at the output of the
diodes to ensure that the output can be lower than Vcc/2.

5) Circuit of Hausdorff Distance: Fig. 3(d1) shows the PE
circuit structure of HauD, which is compromised of a comput-
ing module and a comparing module. The computing module
is consisted of two steps, the first step is to calculate the abso-
lute value of (Pi-Qj). As explained in Section III-B2, diodes
and Vcc are also used here to solve the minimum problem in
the second step.

The comparing module outputs the maximum value of
D(i − 1, j) and Vcc − wi,j|Pi − Qj|. We add a buffer between
the output of diodes and the negative input of A3 [shown
in Fig. 3(d1)], therefore the output voltage of wi,j|Pi − Qj|
can be below Vcc/2. For weighted HauD, the configuration of
memristors M2/M1 = M3/M4 = wi,j should be applied.

Fig. 3(d2) shows the PE circuit structure of HauD. Given
Qj, we check every elements of sequence P and calculate the

value of Hau(m, j), which is the maximum value of Vcc −
wi,j|Pi −Qj| ((1 ≤ i ≤ k)). With the same processing for Qj in
sequence Q, we have Hau(m, 1), Hau(m, 2), . . . , Hau(m, n).
Then, a converter is used to process each Hau(m, j) in which
the output is the difference of Vcc and Hau(m, j). Therefore,
the output of the converter is the minimal wi,j|Pi − Qj| where
j is fixed and i varies. Finally, we use diodes to output the
maximum value of all minimal wi,j|Pi − Qj|, and the result is
the HauD of P and Q.

6) Circuit of Hamming Distance: The PE circuit structure
of HamD is shown in Fig. 3(e). The absolute value calculation
module and a comparator are used to calculate whether Pi is
equal to Qj. If Pi is equal to Qj, the output of the comparator
will be high, and the output of Ham[i] will be Vstep. Otherwise,
the output will connect to the ground, and Ham[i] will remain
zero. When all PEs finish computation, an analog adder is
adopted to add all Ham[i], and the output is the HamD of P
and Q. Weighted HamD is achieved by configuring memristors
to M0/Mk = wk in the row structure in Fig. 1.

7) Circuit of Manhattan Distance: Fig. 3(f) shows the PE
circuit structure of MD, which is the subset of that of HamD.
Like HamD, when all the PE fulfill computation, we use an
analog adder to add all D[i], and the output is the MD of P
and Q. For weighted MD, the configuration is the same with
weighted HamD.
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Fig. 4. Early determination in analog circuits.

Fig. 5. Resistance tuning circuit. (a) Analog subtractor and (b) analog adder.

C. Implementation Details

1) Optimization: In the row structure, each input has an
equal position to each other, and the circuit structure for
each input is identical. With this character, early decision
can be achieved, which means HamD and MD can process
sequences with a shorter time rather than the convergence
time. The detail is illustrated with MD in Fig. 4. It can be
noted that the relation of |V(MD1)|, |V(MD2)| and |V(MD3)|
in the unconvergence state and the convergence state are the
same. This feature in analog domain is extremely useful for
many data mining tasks. For example, in classification we
can obtain the value at the Early Point shown in Fig. 4.
The sequence with the minimum value obtained at the Early
Point is also the one with the minimum value obtained in the
convergence state.

2) Resistance Tuning: All the resistances in the distance
accelerator are memristors. Thus, resistance tuning is required
to make appropriate configurations for efficient computa-
tion [21]. This is also useful to minimize the influence of
parasitic resistance. The process is presented as follows, which
includes two parts, analog subtractor and analog adder as
shown in Fig. 5. Note that resistance tuning is also performed
when the configuration remains for some time as memristance
leakage/drift exists in memristors. Thus, timing and power
consumption will also increase slightly due to the extra con-
figuration. Note that we do not take writing time (including
wait time [25], about 1/3 to 1/4 of writing time) for resistance
tuning into consideration in this paper. It should be pointed
out that writing/tuning is only performed periodically with a
relative large period for distance function calculation in the
scenario of data centers. Thus, writing time including wait

time will only increase the overall processing time slightly,
and has very small influence on the performance.

For analog subtractors as shown in Fig. 5(a), we set y1 = 0
and y2 = 0 in the first step. The four ports, x1, x2, x3, and x4
are used to modulate M1, M2, M3, and M4, respectively. In the
second step, we verify the ratio of M1/M2 and M3/M4. When
verifying M1/M2, we set y2 = 0 and x1 = 0.1. By measuring
x2, the radio of M1/M2 can be verified. For example, for ana-
log subtractors in Fig. 5(a), M1 and M2 are set to HRS. Thus,
if x2 = 0.1 V, M1/M2 = 1 is configured successfully. When
verifying M3/M4, we set x3 = 0.1 V and x4 = 0. By measur-
ing y2, the radio of M3/M4 can be verified. If verification is
not successful, the first step will be applied to further modu-
late corresponding memristors. The two steps can be iterated
several times for better precision.

For analog adders as shown in Fig. 5(b), we set n2 = 0 in
the first step. The k + 1 ports, m1, m2, . . . , mk and mk+1 are
adopted to modulate M1, M2, . . . , Mk and Mk+1, respectively.
In the second step, Mk+1 is regarded as the reference mem-
ristor, which is used to verify other memristors. We will set
m1 = 0.1 V and measure n1 to verify M1/Mk+1. If n1 = 0.1 V,
the configuration of M1 = Mk+1 is achieved. Otherwise, M1
will be modulated according to the offset to the configuration.
The process of modulation and verification can be iterated
for high precision. The above tuning process for M1 will be
applied to other memristors.

3) Impact of Process Variation: Considering process vari-
ation, the actual resistance of memristors have a tolerances of
±20% to ±30%, which will degrade the solution quality. Two
steps are adopted to reduce the impact of process variation.
First, we can discover that the solution quality only depends on
the ratio of memristor resistances. In a similar way, dynamic
voltage (IR) drop will also have very limited influence on the
solution quality. Thus, tolerance control technique [10] can
be used to restrict the tolerance between two memristors to be
lower than 1%. Second, post-fabrication resistance tuning can
further reduce the negative effects of process variation.

IV. MODULE EVALUATION

In this section, we perform module evaluations of the
proposed MDA with respect to accuracy, throughput, and
energy efficiency. SPICE [26] and MATLAB [15] are adopted
for simulating the performance of MDA.

A. Experimental Setup

We adopt three data sets (Beef, Symbols, and OSU Leaf)
from the UCR Time Series Classification Archive [18]. For
each data set, we formalize the sequences with different
lengths.

We implement the proposed design in SPICE [26] with the
32-nm technology node of TSMC [2], and the simulation setup
is presented in Table I. Note that the choice of technology node
will affect the design parameters but will not affect the circuit
topology or the general conclusions to be drawn. It should be
noted that we focus on the computation part in the simulation,
and weights are set to 1 to make a fair comparison with exist-
ing works. It should be highlighted that different weights have
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TABLE I
SPICE PARAMETERS FOR DISTANCE ACCELERATOR SETUP

TABLE II
PARAMETERS FOR STOCHASTIC BIOLEK’S MODEL

little influence on the performance. For the sake of generality,
the parameters of op-amps and diodes are set to typical val-
ues according to [22]. Particularly, a parasitic capacitance of
20fF is added to each circuit net to model the effect of para-
sitic capacitance [22]. The parameter voltage resolution is to
translate sequence values to voltages. Considering the balance
between simulation time and comparison quality, the longest
sequence length is set to 40. Considering sequence length, we
set the voltage resolution to 20 mV. The translation is as fol-
lows: the sequence value 1 is translated to 20 mV. Other values
follow the same principle, e.g., 1.2 and −0.5 are translated
to 24 mV and −10 mV, respectively. The stochastic Biolek’s
model [4], [25] considering nondeterministic digital dynam-
ics for memristor simulation is adopted, and the parameters
are shown in Table II where V0 and τ are the parameters of
time and voltage units, respectively, VT0 is an initial dynamic
stochastic threshold, � V is the voltage margin, Roff and Ron
are the state parameters, and �Ron/off is the standard deviation
of the Ron/off that varies between the switching cycles.

For algorithms such as EdD, LCS, and HamD, a threshold
voltage (Vthre) and a unit voltage (Vstep) are used. Considering
the longest sequence length is 40, we set Vstep to 10 mV in case
the output voltage overflows. Unlike Vstep, Vthre is application-
specific, and it is configured to 10 mV in the experiment.

The evaluation metrics are accuracy, throughput, and energy
efficiency. For accuracy, the results from MDA and double-
precision calculation are compared. For throughput, the con-
vergence time in analog domain is used for evaluation, and
smaller convergence time means higher throughput. Energy
efficiency is defined as follows:

Eefficiency = N

E
= N/t

E/t
= Th/P (9)

where N is the total sequence number, t is the runtime, E is
the total consuming energy, Th is the throughput, and P is the
power. Thus, we discuss energy efficiency based on throughput
and power.

B. Results and Analysis

We present performance evaluation for each module of
these algorithms. The convergence time indicating how fast
the module can operate and the relative error are discussed.
The convergence time is defined as the interval between the
rising edge of the input and the timestamp when the output
is within 0.1% of the final value. For each algorithm module,

Fig. 6. Waveform of the output voltage of DTW (corresponding to the final
output) computation with sequence length of 20.

Fig. 7. Convergence time and relative error of distance functions. (a) DTW.
(b) LCS distance. (c) Edit distance. (d) Hausdorff distance. (e) Hamming
distance. (f) Euclidean distance.

we randomly choose a pair of data from the same class and
a pair from different classes in one dataset. The length of the
time series data are converted to different lengths. Totally ten
similarity computations are presented for each dataset. This
process is repeated for all the three datasets.

An example of the output waveform is shown in Fig. 6.
The output voltage increases gradually with the runtime, and
there exists some fluctuations when it comes to convergence
state. The rising speed varies because the capacity along the
propagation path for each PE varies. Note that there exists
zeros drifts in the calculation.

The convergence time and relative error of the six distance
functions is shown in Fig. 7. We can observe that the con-
vergence time for all distance functions are almost linear to
the sequence length except for HauD. This linearity is due to
the fact that the current propagation path of all the distance
functions expect HauD have a linear capacitance to the input
size. We can discover that the convergence time of HauD stays
almost constant when the sequence length is larger than 10.
This is because the convergence time is determined by the
output voltage and the amount of capacitance in the current
propagation path. For HauD, it should be noted that the result
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Fig. 8. Performance comparison of this paper and (a) existing works based
on FPGAs and GPUs and (b) CPU implementation.

of each submodule is only used for the maximum calculation
in the submodule right to it, whose calculation time is very
short and can be ignored compared to other calculation. Thus,
these submodules work almost in parallel, and the increase of
sequence length has almost no effect on the runtime. With the
fact that the output voltage of HauD will not increase when
the sequence length increase, the convergence time of HauD
stays constant basically.

Considering the relative error, it does not have a strong cor-
relation with sequence length and is purely characterized by
the property of the datasets. It can be noticed that the rela-
tive error of DTW and EdD is larger than others’, which is
caused by the fact that larger zero drift exists for PEs of DTW
and EdD as shown in Fig. 6. This error introduced by zero
drift adds a bias to the final results, which will not affect the
accuracy of end-to-end applications.

In the module performance experiment, all the results
are not influenced by the nondeterminism of the stochastic
Biolek’s model. This is due to the following two reasons. Note
that in order for stochastic behavior of memristors to be sig-
nificant, two conditions need to be satisfied: the voltage drop
is larger than the threshold voltage, and the voltage duration is
longer than the transition time [25]. First, all memristors are
under a voltage far less than the threshold voltage of memris-
tors. For DTW, the input voltages in the absolution module are
very small, which are far lower than the threshold voltage of
3.0 V. In the minimum module, the output voltage of diodes
cannot be below zero, which makes the input voltages have
a value less than or equal to Vcc/2. Thus, the voltage drop
of all the memristors in the minimum module and the addi-
tion module is less than or equal to Vcc/4 = 0.25 V, which
is also far lower than the threshold voltage of 3.0 V. Other
distance functions have the same situations. Second, the com-
putation time is far less than the transition time of about 1 μs
for memristors, and the running time for distance functions is
about several nanoseconds. Considering the above two condi-
tions, the possibility for stochastic resistance change is rather
low with several hundreds of experiments.

C. Comparison With Existing Works

We compare our method with existing works on both
GPU/FPGA and CPU platforms. The performance comparison
to compute 1 million distance calculations of this paper and
existing works [7], [8], [19], [28], [35], [39] on GPU/FPGA
is shown in Fig. 8(a). The sequence length is set to 128. As
all existing hardware accelerations and our work have a linear

time complexity of the sequence length, the processing time of
each element in sequences is analyzed for speedup discussion.
For HamD and MD, the optimization method early determina-
tion is adopted, and the point with one-tenth convergence time
is set as Early Point. For DTW comparison, the lower bound
module for task-level optimization in work [35] is regarded
as a DTW module to calculate the throughput, which is also
the ideal maximum throughput. We can notice that our work
has a speedup of 3.5×–376× for the six distance functions.
The runtime of LCS and HamD in this paper is shorter than
that of others. This is because the convergence time in analog
circuits is influenced by output voltages which are smaller for
LCS and HamD.

As existing works have different configurations for differ-
ent applications, we also make an appropriate comparison of
this paper and a CPU implementation with the same datasets.
The desktop computer is with Windows 8.1 operation system
and a quad-core CPU. The code is written in C language and
compiled by Microsoft Visual Studio 2015. The optimization
level is set to maximum speed O2. As shown in Fig. 8(b), our
work has a speedup of 20×–1000× compared to CPU with
different sequence lengths. The speedup gets larger with longer
sequences. It should be noted that the speedup for HamD and
MD are smaller than the other four distance functions. This is
because that the time complexity of the two distance functions
is O(n), while that of others are O(n2).

A rough power and area analysis is presented for energy effi-
ciency discussion. The power and area for a recently popular
op-amp with a gain-bandwidth product 303GHz is 197 μW
and 0.16 mm2 [45], respectively, under 0.35 μm technology
node, and the power and area for the 32-nm technology node
are projected to 18 μW and 1312 μm2, respectively, with ideal
scaling for capacitance. The same procedure goes for a recent
8-bit 1.6 Gsample/s DAC [38] in 90 nm technology node, and
the projected power and area for the adopted DAC are 32 mW
and 0.02 mm2, respectively. A recent 8.8GSample/s ADC in
32-nm technology node with a low power of 35 mW and an
area of 0.025 mm2 [20] is adopted. The number of PEs in each
column and row is set to 128, which is the same with [35].
For sequence length larger than 128, tiling technique can be
applied.

The power consumption of MDA depends on specific
distance functions. Note that leakage is also included in
the overall power calculation. For DTW configuration, the
power consumption of the distance accelerator includes three
parts: 1) op-amps; 2) ADCs/DACs; and 3) memristors around
op-amps. The widely applied Sakoe-Chiba band constraint
R = 5% × n is adopted. The power consumption of the
active op-amps is (7R(2n − R)) × 18 μW = 0.20 W,
while the power consumptions of DACs and ADCs are
�Throughputin/1.6 GSample/s� × 32 mW = 0.13 W and
�Throughputout/8.8 GSample/s� × 35 mW = 0.035 W.
Assuming at least one memristor is set to HRS from the
source to the ground, the power consumption of memristors is
(7R(2n − R)) × 2 × 10 μW = 0.22 W. Thus, the total energy
consumption for DTW configuration is 0.58 W. Following
the same principle, the total power consumptions of the dis-
tance accelerator for LCS, EdD, HauD, HamD, and MD are
2.97 W, 6.36 W, 2.64 W, 2.95 W, and 2.16 W, respectively.
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For the power consumption of the existing work, we use
Xilinx Power Estimators [16] to estimate the power according
to the used logical resources and clock frequency for FPGA
implementations. For GPU implementations, we adopt 80%
of the maximum power as the typical power. Thus, power
consumptions of exiting work for DTW, LCS, EdD, HauD,
HamD, and MD are 4.76 W (FPGA) [35], 240 W(GPU) [28],
175 W(GPU) [8], 120 W(GPU) [19], 150 W(GPU) [39], and
137 W (GPU) [7], respectively. Considering speedups, the
improvement of energy efficiency is one to three orders of
magnitudes (26.7×–8767×). Though more detailed implemen-
tation will weaken the speedup, the distance accelerator still
has a higher energy efficiency.

The area of MDA is dominated by op-amps, DACs, and
ADCs as there are only tens of memristors in each PE which
occupy much less area than op-amps. Thus, we estimate the
area of MDA with op-amps, DACs, and ADCs. The area of
each PE is 10 × 1312 μm2 = 0.013 mm2, and the area of
all PEs is 1282 × 0.013 mm2 = 195.19 mm2. The areas
for DACs and ADCs are �Throughputin/1.6 GSample/s� ×
0.02 mm2 = 0.08 mm2 and �Throughputout/8.8 GSample/s�×
0.025 mm2 = 0.025 mm2, respectively. Thus, the estimated
area of MDA is 195 mm2, which is comparable with that of
existing works [7], [8], [19], [28], [35], [39] using FPGAs and
GPUs (100–400 mm2).

V. END-TO-END EVALUATION

The two widely used applications, similarity search and
classification are employed in the end-to-end evaluation.
Specifically, the performance of MDA obtained via simula-
tions with SPICE [26] and MATLAB [15] is compared with
existing works on GPUs and FPGAs.

Considering that the highest data precision analog circuit
can support is only 8 bits [31], and zero-drift error only adds
bias to the final results as discussed in Section IV, we mainly
discuss the accuracy of MDA for similarity search and clas-
sification applications in this section. As we focus on the
performance of MDA, the involved optimization in the task
level is not considered here. Therefore, the achieved speedup
and energy efficiency are the same with that in Section IV-C.
Note that speedup and energy efficiency are obtained with
comparison with existing works with task-level optimization.

A. Experiment Setup

According to work [35], there is simply no significant differ-
ence made by reducing the dimensionality of all datasets from
their original lengths to exactly 128. Thus, we apply the same
operation to all datasets used in the experiments. We also set
the number of column and row of PEs in MDA to both 128.
For DTW, the DTW constraint of 5% is used. As the existing
implementations do not support variable weighting factors, the
weighting factor, σi, is set to 1. MATLAB is used to simu-
late accuracy with different data precisions. Considering data
precision, data length of 8 bits is adopted for MDA, which is
the highest data precision analog circuit can support [31]. Note
that as discussed in Section IV-B, analog calculation produces
no error about the relations of the distance values between

sequences. Thus, in the experiment we focus on the accuracy
loss introduced by low data precision in analog domain. For
DTW with FPGA implementations, data length of 8 bits is
used. For other distance functions with GPU implementations,
double float precision is used.

It should be emphasized that there exists a big difference
between the data precision of 8 bits in analog domain and in
FPGA implementations. In FPGA implementations of DTW
in [35], only inputs are with 8 bits data precision, while data
precision of intermediate variables and outputs are accord-
ing to computation requirement which can be much larger
than 8 bits. However, in the analog domain, data precision of
8 bits means inputs, intermediate variables and outputs are all
constrained to only 8 bits. Thus, the data precision of FPGA
implementations is still much higher than that of analog com-
putation. By analyzing the computation pattern of distance
functions (except HauD), we can discover that the output is
the sum of n values (n is the sequence length and is 128 in
the experiment). In FPGA implementations, the sum of 128
8-bits numbers requires a data precision of 15 bits. However, in
the analog domain, the data precision of the sum is limited by
8 bits, which will introduce serious overflow problem. Tradeoff
exists for bits allocation for overflow and input data precision.
More bits for overflow means that the input data precision is
too low to obtain an acceptable accuracy, while more bits for
input data precision will lead to serious overflow problem. In
order to tackle the overflow problem, in fact we only need to
keep the final result of distance functions (usually with the
lowest distance value) in the range, and the overflowed values
have no influences on the final results. This will largely reduce
the required bits for overflow. Particularly overflow conditions
are specific to distance functions and applications, which deter-
mines the corresponding bits design. In the experiment, with
some test experiments our configuration is as follows.

1) Most of the input data precision for DTW and MD is
6 bits, and is 5 bits for only some datasets because six
bits will cause serious overflow problem.

2) The input data precision for HauD is 8 bits as only
maximum and minimum computation is involved.

3) For LCS, EdD and HamD, a threshold and a step are
used, the step is set to constant 1 as the maximum dis-
tance for these algorithms is 128× step, unlike step,
threshold is application specific.

4) The input data precision for LCS, EdD and HamD
is 8 bits as the maximum distance is determined by
step, which is set to constant 1 to eliminate overflow
problem.

B. Similarity Search

Twenty datasets from UCR Time Series Classification
Archive [18] are adopted. All the sequences except randomly
selected one in each dataset is jointed together as the test
sequence, and the selected one sequence is used as the query
sequence. Similarity search is to find the subsequence from
the test sequence, which has the minimum distance with the
query sequence.
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TABLE III
RESULTS OF SIMILARITY SEARCH WITH 20 DATASETS

Table III shows the results of the similarity search task.
For all the dataset, MDA can find the same subsequence with
existing works with a percent of 70%, 80%, 90%, 70%, 95%,
and 70% in distance function DTW, LCS, EdD, HauD, HamD,
and MD, respectively. The average percent is 79%, which is
still high considering the low data precision. Note that two
subsequences in which the index of the first elements are near
to each other are regarded as the same subsequence, e.g., for
dataset Inlinestake with DTW computation, the subsequence
with the first element of 11006th and another one with the first
element of 11007th are assumed as the same subsequence.

It can be noted that though MDA and existing works can
find the same subsequence, the relative difference maybe high,

e.g., for dataset ECGFiveDays with EdD computation, the
relative difference is 100%. However, the relative difference
maybe low even MDA and existing works find different sub-
sequences, e.g., for dataset 50 words with LCS computation,
the relative difference is only 1% though the obtained subse-
quences are different. Further more, in some conditions though
the relative difference is large, the real difference is low. For
example, for dataset StarLightCurves with EdD calculation,
the relative difference is 100%. However, the distance value is
0 for GPU and is 2 for MDA, which means 128 elements are
matched for GPU and 126 elements are matched for MDA.
In fact, there are only two mismatched elements for the 128
elements in the query, which is with a low error. Thus, low
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Fig. 9. Classification accuracy using kNN and (a) DTW, (b) LCS, (c) EdD, (d) HauD, (e) HamD, and (f) MD with 40 datasets. The correspondence
of dataset and the x-axis is as follows: (1, Beef), (2, CBF), (3, ChlorineConcentration), (4, CinC_ECG_torso), (5, Coffee), (6, Cricket_X), (7, Cricket_Y),
(8, Cricket_Z), (9, DiatomSizeReduction), (10, ECGFiveDays), (11, FaceAll), (12, FaceFour), (13, FacesUCR), (14, fish), (15, Gun_Point), (16, Haptics),
(17, InlineSkate), (18, ItalyPowerDemand), (19, Lighting2), (20, Lighting7), (21, MALLAT), (22, MedicalImages), (23, MoteStrain), (24, OliveOil), (25,
OSULeaf), (26, SonyAIBORobot Surface), (27, SonyAIBORobot SurfaceII), (28, StarLightCurves), (29, SwedishLeaf), (30, Symbols), (31, synthetic_control),
(32, Trace), (33, Two_Patterns), (34, TwoLeadECG), (35, uWaveGestureLibrary_X), (36, uWaveGestureLibrary_Y), (37, uWaveGestureLibrary_Z), (38, wafer),
(39, WordsSynonyms), (40, yoga), where X is the x-axis and A is the name of dataset in the format (X, A).

data precision introduces some variances to the outputs and
the resulting error is relatively low.

We can discover that for specific datasets, MDA finds
different similar subsequences for the adopted six distance
functions. This is caused by the fact that different distance
functions have their own characteristics, and choosing the
distance functions is determined by applications.

C. Classification With k-Nearest Neighbors

Forty datasets from UCR Time Series Classification
Archivewith [18] with different sequence lengths are selected
for classification application. k nearest neighbor with k = 1 is
used for classification.

Fig. 9 shows the accuracy varies with 40 datasets. It can
be noticed that existing works and MDA have almost the
same accuracy in most cases. Compared with existing works,
the average accuracy losses for are DTW, LCS, EdD, HauD,
HamD, and MD are 1.4%, −0.2%, 0.23%, 0.12%, −0.03%,
0.17%, respectively, and the overall average accuracy loss is
0.14%. It can be concluded that MDA introduces almost no

accuracy loss. We can also find that though most of the dis-
tance function introduce errors, LCS obtains a relatively high
accuracy improvements (0.2%). This is highly caused by the
fact that for LCS low data precision removes noises in the
input data and therefore obtains high accuracy.

However, there still exists some cases that the accuracy loss
is relatively large, e.g., for dataset 1 with DTW calculation, the
accuracy loss is 10%. This is because dataset 1 is more sen-
sitive on the input data precision for DTW. In practical uses,
this problem can be solved by changing the adopted distance
function for dataset 1. For example, MDA using HamD gets a
much higher accuracy (86%) than GPU using HamD (86%),
FPGAs using DTW (60%) and MDA using DTW (50%) for
dataset 1.

We can also notice that for specific dataset, the accuracy of
distance functions vary. For example, the accuracy of dataset
24 using LCS and EdD is lower than 20%. However, MD
can achieve a high accuracy of 100%. This is due to the fact
that choosing distance functions is specific to applications.
Considering such specification, we can select suitable distance
functions for application for comparison, and the accuracy loss
will be even lower.
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VI. CONCLUSION

In this paper, we propose MDA, a reconfigurable high-
throughput and high-energy-efficient memristor-based distance
accelerator for time series data mining in data centers. We
adopt memristors to design analog circuits for six widely
used distance functions including DTW, LCS, Hausdoff dis-
tance, EdD, HamD, and MD. The basis primitive of the
circuits is extracted, which can be configured to any specific
distance functions. Comprehensive experiments are presented
with public available datasets. Compared with existing works,
the performance of the proposed accelerator has a speedup
of 3.5×–376× with limited accuracy loss. Energy analysis
shows that the accelerator has an improvement of 1–3 orders
of magnitude on energy efficiency. Though the data precision
for MDA is low, there is little accuracy loss is for similarity
and classification applications.

The future works will evaluate the effeteness and efficiency
of the proposed MDA considering more detailed fabrication
issues (e.g., defects) and runtime issues (e.g., memory reliabil-
ity, wait time) with a computer-system architecture simulator
(e.g., Gem5 [1]). The detailed design of I/Os of the proposed
MDA for long sequences also needs to be investigated and
analyzed in the future. Furthermore, we will improve the PE
design to support more functions.
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