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Abstract— To address the increasing challenges of counterfeit
detection and IP protection for 3D printing, we propose that every
3D printer holds unique fingerprinting features characterized by
the thermodynamic properties of the extruder hot-end and can
be used as a new way of 3D watermarking. We prove that these
physical fingerprints resulting from manufacturing imperfections
and system variations exhibit distinct heating responses, namely
“ThermoTag,” which can be represented as the distinguishable
thermodynamic processes and, ultimately, the temperature read-
ings during the preheating process. Experimental results show
that, by only changing the hot-ends of the same model on
the same 3D printer, we can achieve about 92% identification
accuracy amongst 45 hot-ends. The permanence and robustness
of ThermoTag for the same hot-end were examined, throughout
a period of one month with hundreds of trials under different
environmental temperature settings. Leveraging the hidden Ther-
moTag, an example of watermarking scheme in 3D printing is
presented and evaluated.

Index Terms— 3D printer, hot-end, thermal model, fingerprint-
ing, watermarking.

I. INTRODUCTION

ADDITIVE manufacturing (AM), also commonly known
as 3D printing, is defined as a process of building

up a three-dimensional object through forming successive
layers of printing materials according to a digital 3D model.
Technically, AM is capable of creating any shape with intricate
internal structures and geometries. 3D printing has expanded
and grown significantly in the past decade, due to the advance-
ments in mechanical and materials technologies. According to
the Wohlers Report 2019, the AM industry has a 21% CAGR
(Corporate Annual Growth Rate), approaching $9.975 billion
globally in 2018, and is expected to exceed $35.6 billion by
2024 [1].

With the significant advantages in short time-to-market,
freedom to design, reduced tooling costs, and substantial mate-
rial diversity, 3D printing has drawn increasing interest and
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attention from many industry sectors. It has also been applied
in many safety- and mission-critical applications, including
aerospace and defense, architecture and construction, bio-
medical fabrication, and automotive manufacturing [3]–[6].
SpaceX launched its Falcon 9 rocket with a 3D-printed part
in its engine [7]. General Electric (GE) also planed to apply
its first 3D-printed parts in its aircraft engine platform [8].
The U.S. Navy unveiled the first proof-of-concept, 3D-printed
submersible hull, which was 90 percent cheaper and produced
within a few days instead of the conventional 3-5 month [9].
On the other side, as consumer-grade 3D printers become
more popular, affordable, and accessible, 3D printing has the
potential to offer personalized products through mass cus-
tomization, boost new designs and innovations through rapid
prototyping, and support in-house manufacturing of consumer
objects, parts, and components. Along with this incredibly
transformative opportunity, the technology’s biggest strength
— the ability to easily create and distribute computer-aided
design (CAD) files that convert the digital design model into
a physical object — also poses a major challenge for design
owners [10], [11]. 3D printing makes it easy to copy and
reproduce products, because it is as simple as downloading
a CAD file that can instruct the printer to reproduce a 3D
object. Therefore, it is necessary to investigate new approaches
to ensure the confidentiality and protection of intellectual
properties (IPs) in 3D printing.

Among all the potential security risks associated with 3D
printing, counterfeiting threats are becoming more prevalent
and fundamentally different from threats usually causing man-
ufacturing defects and product failures, as IP theft doesn’t
necessarily interfere with the 3D printing process or alter
the mechanical and physical properties of 3D printed objects.
Counterfeiting threats are mostly caused by the widespread
illegal copying of the IP holder’s design from either the cyber
domain or the physical domain. Many researchers have been
exploring the potential vulnerabilities and attack models for
3D printing [12]–[17]. But no matter for the malicious access
to digital models or the side-channel reconstruction, the identi-
fication of IP is the most effective anti-counterfeiting method.
Thus, to address the increasing threats related to IP theft in
3D printing, it is imperative to explore novel techniques for
verifying the integrity of the 3D printing process and detecting
the IP infringement.

Generally, for 3D printing, IP infringement can be consid-
ered as illegally duplicating 3D designs, copying the specific
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Fig. 1. The proposed counterfeiting threat model. (Left-side: malicious users illegally obtain the digital model of the copyrighted product with high-resolution
scanners and fabricate counterfeits using unauthorized printers. Even with loss-less scanning, the re-printing process for different printers would still involve
some uncontrollable variations in the watermark [2]. Right-side: the manufacturer and consumers could scan and extract the survived watermark, thus, to
verify if the product is a genuine one or a counterfeit).

inherent features, or introducing external features. Some tech-
nologies such as 3D watermarking [18], [19] and adding
anti-counterfeiting tags with Physically Unclonable Functions
(PUFs) into the printed materials [20] have been proposed for
IP authentication. PUFs are unique random physical patterns
of taggants that cannot be copied and must be fabricated by a
stochastic process, which however, come with the limitations
of high computational and manufacturing complexity as well
as the risk of changed material properties. Other solutions have
also been explored by adding robust watermarks in 3D mesh
models that can survive multiple attacks from the printing
and scanning process [21], [22]. But for IP identification and
protection purposes, those approaches need to inject a specific
watermark or signature manually. Particularly for large volume
production, storing and updating the digital watermark and sig-
nature database will increase the security risk and maintenance
cost. Besides, if the attacker knows the decoding scheme or
part of the watermarks, the watermarks on the products might
be decrypted or manipulated, especially when manufacturers
use the identical watermark for batch production. Just like the
password in our daily life, it comes with high accuracy, but is
also hard to remember and easy to forge, compared with the
biometrics such as fingerprints.

Inspired by prior research that identified the fingerprinting
features of various hardware devices [23], [24], we would
like to ask the question: Do 3D printers also possess their
own fingerprints that cannot be erased and replicated? Con-
sidering the heating system in a 3D printer, which controls
the thermodynamic process in 3D printing that can directly
influence the printing quality, we propose a hypothesis that,
every heating system holds a unique and measurable feature
that can make each 3D printer distinguishable, and thus
can be used in a potential 3D printing counterfeit detection
model (e.g., Figure 1). Specifically, our initial exploration of
IP attacks on 3D printing focuses on the physical domain,
in which unauthorized users can possibly scan the printed
product and reconstruct it using their own 3D printers. In
this article, we present a novel anti-counterfeiting method to
extract the unique fingerprinting features of 3D printers, which
can be used for counterfeit detection. Specifically, the unique,
intrinsic fingerprinting features of each 3D printer will be
seamlessly incorporated into the authentic 3D design model,
to protect against unauthorized counterfeiting and piracy of
products.

3D printing process can be generally divided into two
phases: pre-heating and printing. A unique fingerprint of the
legitimate 3D printer will be extracted during the pre-heating
process and then inserted into the 3D design model using pop-
ular non-blinding watermarking methods. When unauthorized
users seek to scan and reprint the 3D-printed, watermarked,
genuine product, the hidden watermarks will be retained in the
3D-printed counterfeit products. Through the comparison of
the hidden watermarks extracted from any 3D-printed product
against the original user design model, the legitimacy of
the printed product can be verified to prevent unauthorized
IP infringement. Because the hidden watermark is generated
based on the unique fingerprint of the genuine 3D printer, the
attacker cannot obtain the same watermark by using any other
3D printers. In addition, each time the fingerprint generated
from the same printer will be slightly different due to the
environmental variance and thermal property of the hot-end
itself. This dynamic trait of the fingerprint will help prevent
reverse engineering. For instance, if the attacker decrypts one
sample of the fingerprint by chance, he/she cannot apply
the same fingerprint into other products or forge similar
fingerprints without accessing the thermal model of the hot-
end from the genuine 3D printer.

To the best of our knowledge, our work is the first of its
kind to thoroughly investigate the thermodynamic process of
3D printing and discover its unique, measurable fingerprinting
property. Leveraging this intrinsic device fingerprint in 3D
printers, a more secure and robust anti-counterfeiting solution
is presented to detect and protect against unauthorized IP
infringement. Our contributions can be summarized as follows:
• We investigate the mechanical and thermal characteristics

of hot-ends in 3D printers. The thermodynamics in the
heating process unveils the uniqueness of each hot-end,
which generates the 3D printer fingerprints. (Section IV)

• Fingerprinting features of 3D printers are designed and
calibrated based on the rationale of ease of measurement
and low computational cost. (Section V)

• Experimental evaluations are conducted based on three
3D printers of different models, 45 hot-ends of exactly
the same model in the same printer, and hundreds of trials
under different temperature settings. (Section VI)

• Through a real watermarking example, we demonstrate
that the proposed technique is closely dependent upon
the 3D printing process and the 3D printer itself, which
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Fig. 2. A FDM 3D printer example (Lulzbot Mini), including a hot end, a
extruder motor, Y and Z axis motors, and printing bed.

eliminates the needs of secure storage and encryption of
PUF keys and watermark keys, and are more difficult to
spoof and attack. (Section VII)

II. BACKGROUND AND RELATED WORK

A. Overview of 3D Printing

Currently, there are many existing technologies applied in
3D printing, such as Fused Deposition Modeling (FDM),
Selective Laser Sintering (SLS), Electron-Beam Melting
(EBM), and Stereolithography (SLA). It was reported in the
Wohlers Report 2019 that [1] 591,079 consumer 3D printers
were sold worldwide in 2018 (this may be an underestimation
because it doesn’t include those assembled from parts or those
purchased as kits [25]), and most of them were based on
FDM technology, more affordable and accessible compared
with other methods. Meanwhile, thanks to the unrelenting
efforts of the community on low-cost, open-source 3D printers
[10], [26], such as the RepRap project [27] and the LulzBot
3D printers, it has seen a boom in entry-level 3D printing
machines and the cost of 3D printers has decreased dramat-
ically. Since 2010, the price of 3D printers that used to cost
$20,000 has dropped to a level of $1,000 or less. According to
a recent forecast report [28], the low-cost, sub-$1000 desktop
3D printers will continue to be a major driving force for growth
and is expected to grow at a rate of 12% into 2020. Therefore,
in this article, we will focus on the FDM 3D printers.

FDM 3D printing follows exactly the principle of “additive
fabrication” by laying down material in layers to produce a
part, where a plastic filament or metal wire is unwound from
a coil. Figure 2 presents an actual FDM 3D printer example
(LulzBot Mini desktop 3D printer), which consists of X-axis,
Y-axis, and Z-axis motors that control the movements of the
extruder, a hot end for melting filament, an extruder motor
controlling the filament’s printing speed, and the printing bed
right below the hot end for placing the printed object.

Figure 3 shows a complete 3D printing process consisting
of five steps. First, users create a digital 3D model using
Computer-Aided Design (CAD) software and convert it into
a stand stereolithography (STL) file, which is widely used

Fig. 3. 3D printing process chain.

in rapid prototyping. Then, during the Computer-Aided Man-
ufacturing (CAM) process, a layer description toolpath file
(G-code) is generated by performing operations that includes
slicing, path-planning, and support generation, by using 3D
printing slicing tools such as Cura and Slic3r. Those toolpath
instructions will be sent to the 3D printer to instruct the
firmware to control the motor movement, the fan speed, and
the extruder’s printing speed to fabricate the desired product.

B. Cyber Attacks on 3D Printing

With the fast growth of 3D printing market, cyber-security
threats such as theft of 3D printing design or malicious
manipulation of 3D printers have gained increasing attention
[14], [29]. Sturm et al. [13] conducted a case study of multiple
cyber-attack scenarios on the 3D STereoLithography (STL)
files. Moreover, remote manipulation of 3D printers has been
studied as another potential attack model [12]. In addition
to the cyber domain, some research has been conducted to
simulate and explore physical domain attacks on 3D printing.
For example, researchers have presented thermal and acoustic
side-channel attacks and reconstruction by using thermal cam-
eras and audio recorders [30], [31]. Similar work has been
done using acoustic waves and electromagnetic energy features
that come from 3D printers as a side-channel attack [32],
[33]. Compared with the side-channel attacks which have
the limitation of physical proximity, scanning and printing
are a more common and easier way to produce counterfeits.
Especially for some products with lower printing resolution
requirement, the counterfeited or replicated products can be
easily obtained through reverse engineering. However, the
corresponding defense scenarios are largely under-explored.

C. Hardware Fingerprinting of 3D Printers

Fingerprints were first used in the area of biometrics for
identity verification. This concept subsequently appeared in the
hardware security domain. Extrinsic fingerprints based on the
inherent features of the device, so-called Physical Unclonable
Function (PUF), were introduced to build the first silicon PUF
authentication with integrated circuitry [34]. Since then, more
and more silicon PUFs have been developed to verify the
integrity of integrated circuits (ICs) and secure the critical
components in hardware [35], [36].

With regard to the possible fingerprinting of 3D print-
ing, a new method called InfraStructs [37] was proposed
to insert common polymer material tags into 3D printed
objects, which can be later read through Terahertz scanning
(0.1 ∼ 10 THz). Instead of adding ID tags after 3D printing,
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a physical security feature for 3D printing was proposed by
injecting quantum dots into PolyJet material before printing
[38]. According to Brownian motion, these nanoparticles were
randomly distributed. By observing the quantum dots’ light
spectrum distribution after absorbing UV light, this PUF
allowed every 3D-printed object to be identifiable and distin-
guishable. A recent study also shows the feasibility of utiliz-
ing plasmonic nanopaper as PUF tags for anti-counterfeiting
applications [39].

In addition, the manufacturing imperfection and associ-
ated system operational variations also could be used as the
fingerprints of 3D printers [2]. The distortion of material
extrusion caused by the stepper motor could be reflected via
the uniqueness of the printed QR code that can be captured
through a commercial smartphone [40]. Prior studies have also
investigated the uniqueness of inherent equipment distortions
to track the source printer of a 3D printed object [41].

D. 3D Watermarking

Another possible fingerprinting method for 3D printers is
3D watermarking [42]. A 3D printer with a fine stair-step can
ensure that the printed object’s distortions, such as surface
texture and roughness, are reduced to a microscopic level.
Using the high-resolution Kinect or other 3D scanners, it is
possible to reconstruct a 3D model through scanning. There
are two major types of watermarks. The first type is visible
watermarks (e.g., layer artifacts, printing deformations). It
is easy to identify, but meanwhile, it is not safe for the
copyright holder when malicious attackers attempt to erase
the watermark. The second type is invisible watermarks (e.g.,
mesh-based). The signature may be lost or removed during the
common model processing steps, such as lossy compression
and simplification, which is usually applied to the 3D object.
Zafeiriou et al. [43] proposed two robust blind watermark-
ing schemes. The first method, called Principal Object Axis
(POA), embedded the signature by modifying a set of vertices
that correspond to specific angles θ . And the second method,
called Sectional Principal Object Axis (SPOA), displaced the
set of vertices having the coordinate θ domain within a specific
ranges. Cho et al. [44] proposed a robust blind watermarking
method by shifting the mean or variance of the histogram
distribution of the mesh vertex norms. This method is fairly
robust against various distortion attacks; however, it would
also cause visible artifacts on the surfaces of 3D models. Based
on Cho’s algorithm, Yang et al. [45] developed a modified
method by changing the discrete statistic feature which is the
height of the histogram bins, instead of the mean and variance.
Hou et al. [46] proposed a robust and blind watermarking
scheme in 3D-printed models by utilizing the layering artifacts.
Its printing-axis estimator for alignment needs strong printing
artifacts, whereas the watermark extraction process may be
fragile to those strong printing artifacts.

III. THEORETICAL MODEL

We consider an adversary that aims to compromise the
IP and even possibly claim the copyright of a 3D printed
design by illegally scanning and replicating the IP owner’s

3D-printed products. It is reasonably assumed that the adver-
sary has neither any knowledge about the original 3D design
model nor any access to the legitimate 3D printer. This
is a very common scenario that happens not only in the
additive manufacturing domain but also in the entire traditional
manufacturing industries. Although there have been extensive
research efforts and a wide range of technologies to ensure the
security of digital design files and reduce the risk of attacks
on the critical manufacturing infrastructure, it is unpreventable
and inevitable that the adversaries can physically scan the
3D-printed products to acquire the full geometry and details
of a 3D design and then replicate the design using their own
3D printers. The recent advancements in high-resolution, high-
precision 3D scanning systems make the IP protection more
challenging and more critical than ever.

A. Methodological Flow

The proposed 3D printer fingerprinting process contains
three phases: 1) pre-heating the hot-end to the target temper-
ature; 2) extracting the fingerprinting features from the tem-
perature reading; 3) send the extracted fingerprinting features
back to the slicing software to be embedded into the 3D design
model as the watermark.

1) Phase 1: Pre-Heating (See Section IV): Pre-heating
process is used for melting filament, such as PLA and ABS,
which is the prerequisite for FDM 3D printing. Our proposed
fingerprint is generated from a normal printing process without
adding any extra hardware.

2) Phase 2: Fingerprint Extraction (See Section V): The
temperature readings during the pre-heating process (usually
around 1 minute) will be recorded, and the correspond-
ing fingerprinting features will be extracted using a sparse
autoencoder.

3) Phase 3: Watermark Embedding (See Section VI): To
ensure that the fingerprints will survive through the slicing
process, even for some low-resolution printing setting, the
design file will be embedded with the fingerprint as water-
marks after being sliced as the toolpath file (G-code).

Assumptions: Because the hot-ends are not consumables
and well-maintained in a carefully packaged manner, it is
arguably assumed that the hot-ends in the 3D printer will not
be frequently replaced during the operational lifetime.

B. Definitions

1) Definition 1: Intellectual Property (IP): For a 3D print-
ing process, let C denote the whole IP information for the
design model. ci represents each independent attribute that
determines the quality of a 3D printed model, such as the
vertex placement, the mesh property, the infill structure, the
layer thickness, and the printing temperature.

C = {c1, c2, . . . , ck} (1)

2) Definition 2: Physical Observations: Let O represent the
variable set of all physical information that can be sensed
and measured from the 3D printer during the entire printing
process. Each oi is considered as an individual physical
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observation, including the nozzle’s temperature, the motor’s
vibration, or other side-channel information.

O = {o1, o2, . . . , om} (2)

3) Definition 3: Fingerprint Extraction: Let P be the
set containing each individual fingerprinting feature pi that
resulted from manufacturing imperfection or distinct behaviors
of different parts in 3D printers. And g(.) is the fingerprint
extraction function and is determined through the analysis of
mapping relation between each fingerprinting feature and the
corresponding observation.

P = {p1← g1(o1), p2 ← g2(o2), . . . , pm ← gm(om)} (3)

4) Definition 4: Watermark Embedding and Detection Func-
tion: Let F and F � indicate the watermark embedding and
detection schemes respectively. And Ĉ denotes the IP infor-
mation of the watermarked 3D model.

Ĉ = F(C, P) (4)

P =
�
F �(Ĉ)⇒ blind watermarking

F �(Ĉ, C)⇒ non-blind watermarking
(5)

5) Definition 5: Printing and Scanning Process: For water-
marking, the printing and scanning process can be both
considered as the attacking function that might affect the
watermark stored in the target model. Let H and H� represent
the printing process and the scanning process, respectively.
During the printing and scanning process of the watermark
P , considering the printing noise �p and observation noise �r

during the scanning process, we define

H → P + �p (6)

H� → P + �r (7)

where the printing noise �p caused by the material’s thermal
property and the step motor’s vibration was proven to be quite
subtle and random according to the literature [2], [47]. Hence,
we neglect this noise in this work. The noise �r introduced
by image recording and processing usually belongs to the
Gaussian noise with a normal distribution of zero mean. Thus
it can be roughly removed by processing multiple observed
images for the same watermark.

C. Problem Formulation

1) Formulation 1: Model Watermarking: The purpose of
model watermarking is to protect the copyright of the 3D
model and generate the secure watermarks based on the unique
intrinsic characteristics of the 3D printer itself. Cw is defined
as the IP of the printed watermarked model.

Cw = H(Ĉ ← F(C, P)) (8)

2) Formulation 2: Model Verification: We assume that the
attacker can obtain a 3D printed product that holds the IP Cw

and manufacture counterfeits through scanning and reprinting
the acquired 3D design model using any available 3D printers.
To verify the ownership and legitimacy of the IP Cu of a
product that is printed according to the scanned 3D design
model (H�(Cw)) acquired by the attacker, we define the IP
assessment based on the pre-defined watermark P . When the

pre-defined watermark P is decoded, we can consider it as
authentic one, otherwise, it is a counterfeit.

Cu = H(H�(Cw)) (9)

F �(Cu) =
�
= P ⇒ Authentic

�= P ⇒ Counterfeit
(10)

IV. THERMODYNAMICS OF HOT-ENDS IN 3D PRINTING

This section provides a brief introduction to the hot-end in
3D printers in terms of its physical structure and mechanical
properties. Followed by this, we present preliminary experi-
mental results to support our hypothesis about hot-end-based
fingerprinting of 3D printers. A detailed analysis will be
presented in the later sections.

A. Thermal Modeling and Variations of 3D Printer Hot-Ends

Hot-end is part of the extruder in 3D printers and is in
charge of melting filament such as Polylactic Acid (PLA)
or Acrylonitrile Butadiene Styrene (ABS). A typical hot-end
consists of four pieces, including the cartridge heater, ther-
mistor, metal frame, and nozzle. Figure 4 shows the physical
structure and the thermal conduction process of an hot-end
in the Prusa i3 HIC 3D printer. A general three-dimensional
thermal conduction process in an isotropic can be modeled
using the following equation:

∂u

∂ t
= k

Cpρ

�
∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2

�
+ q(t)− h A(u − ue)

(11)

q(t) = ChPWM(t − d) (12)

where in Equation 11, u is the temperature as a function of
space and time; ∂u

∂t denotes the rate of change in temperature
at a certain time point; q(t) is the heat generated from the
cartridge heater, and then conducted to the thermistor at the
location {x, y, z} which eventually result in the temperature
change in the nozzle; k is the thermal conductivity; ρ is the
material density; Cp is the specific heat capacity; k

C pρ is called
thermal diffusivity; h is the heat transfer coefficient by heat
convection with air; A is the area of the object exposed to the
air; and ue is the environmental temperature. In Equation 12,
Ch is the heat capacity of the cartridge heater; PW M is the
Pulse-Width Modulation, which refers to the control variable
of the heater for heat generation, and d is the time of heat
conduction inside the heater. Based on this simplified model,
it is shown that many intricate configuration factors may
lead to a unique, complex thermal conduction process of an
individual hot-end. Different hot-ends have diverse dimensions
and use various materials for the metal block. Even with
the same material, the thermal diffusivity may vary due to
the manufacturing imperfections [48]. In addition, resistors’
tolerance in the heater will cause a self-heating effect that
further influences the temperature change rate.

B. Evidence of Hot-End Uniqueness

To preliminarily prove the feasibility of using hot-ends for
hardware fingerprinting purpose, we set up an experiment
using three desktop 3D printers of different models: 1) Lulzbot
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Fig. 4. (a) RepRap Prusa i3’s hot end includes metal block, a MK8
0.4mm nozzle, a 12V 40W cartridge heater and a 100K NTC thermistor;
(b) Simplified thermal conduction model.

Fig. 5. Temperature curves from three different printers during pre-heating.

Mini, 2) Prusa i3 HICTOP, and 3) Ultimaker 2 Go, with
the same default Proportional-Integral-Derivative (PID) setting
for temperature control. Then we pre-heated the hot-ends
to 80 degrees Celsius (◦C) and obtained the temperature
readings at a sampling rate of 50 Hz during the heating
process by accessing the Arduino board in 3D printers. We
repeated this process five times to reduce random variations.
Figure 5 depicts the preheating temperature curves for three
different types of printers (represented in three colors), and five
temperature curves for each printer (highly overlapped cluster).
It is clearly shown that different models of printers have
observable and distinguishable behaviors and characteristics
in the temperature curves during the pre-heating process.

To validate our hypothesis about the uniqueness of 3D
printers, particularly the critical hot-end, we would like to
ask a question: Can the 3D printers of the same model hold
unique hot-end-based fingerprints? To answer this question,
we investigate the temperature control system in the 3D printer
as shown in Fig. 6. Based on the nozzle’s current temperature
at time t , Tempk , the Pulse-Width Modulation (PWM) which
is the control variable of the heater is calculated as below:

errort = Temptarget − Tempt (13)

PWMt = K perrort + Ki

� t

0
errort dt + Dtermt (14)

Dtermt = (1− K 1) ∗ Kd
derrort

dt
+ K 1 ∗ Dtermt−1 (15)

where the PWMk depends on the temperature errork through
three individual P I D elements. 1) The (P)roportional term

Fig. 6. Temperature control flow.

is based on the default parameter K p and the instant error.
The higher the P term is, the faster the output approaches
the target value, while a rather high K p value may result
in overshoots. 2) The (I)ntegral term is based on the default
parameter Ki and the accumulative error in a certain period of
time. A suitable Ki can help reduce steady-state error. 3) The
(D)eviation term is responsible for predicting the future based
on the current error change rate, and a higher Kd will increase
the system responding speed. Factor K 1 can make the Dterm
change smoothly and reduce the temperature’s overshoots. In
our 3D printer temperature control system, K 1 is set as 0.95.

As discussed in Section IV-A, the heat conduction process
will bring in many manufacturing imperfections, which result
in the variations of thermodynamic characteristics in hot-ends.
In addition, the heat generation q(t) is also not identical among
different heaters of the same type. Therefore, our hypothesis
is that, each individual hot-end will hold a unique mapping
function from the PWM variables to the temperature changes,

The temperature only depends on three attributes: 1) default
PID setting, 2) target temperature, and 3) the hot-end’s ther-
modynamic mapping function. Among these three attributes,
the PID setting and target temperature are usually device-
dependent and shall be determined according to the specific 3D
printing task. The thermodynamic mapping function of the hot-
end, which results from the individual hot-end’s manufacturing
imperfections and system variations, is believed to be the
key component that influences the heating process during the
3D printing. Such mapping functions shall be examined from
two perspectives: uniqueness and consistency. In terms of
uniqueness, the mapping function should be distinguishable
among different hot-ends, even with exactly the same default
PID setting and target temperature. Consistency means that the
mapping functions generated from the same hot-end should
be consistent with different default PID settings or target
temperatures.

The thermistor’s location within the hot-end is fixed and the
second derivation of temperature u by the x, y, z location is a
constant. The typical h ranges from 5 - 10 W/(m2 K ), and the
surface area of the hot-end is usually limited within 16 cm2.
Thus, the power of the entire heat convection approximately
ranges from 0.48 W to 0.8 W, which can be neglectable
compared with the 40 W heating power. Therefore, the heat
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Fig. 7. Ground truth and estimated temperature changes of 4 hot-ends for
the same setting (A is the same hot-end for the training, and B, C, and D are
three different hot-ends).

conduction can be further simplified as follows:

∂u

∂ t
= �temp = α + βPWM(t − d) (16)

α ∝ k

Cpρ
, β = Ch (17)

where the specific heat capacity Cp and Ch vary over different
temperatures. Therefore, the relationship between �temp and
PWMt is a non-linear mapping function.

To better model the non-linear thermodynamic mapping
function of the hot-end, we adopt a simple Multi-Layer
Perceptron (MLP) neural network with two hidden layers and
50 neurons per layer. In the training phase, we let the MLP
learn to approximate the relationship between the input set,
which is one hot-end’s PWMs during a certain period of time,
and the output set which is the same hot-end’s temperature
changes. In the testing phase, we can obtain the estimated tem-
perature changing curves based on the testing PWM readings.
The correlation coefficient is used to describe the similarity
between the estimated and ground-truth temperature change
curves, which is defined as:

ρ(A, B) = cov(A, B)

σAσB
(18)

where A and B represent the estimated and ground-truth tem-
perature curve respectively, cov(A, B) is the covariance of two
temperature curves, σA and σB are the standard deviations of
the estimated temperatures and the ground truth temperatures
respectively.

1) Be Unique Among Different Hot-Ends: In the experi-
ment, we set the default PID parameters as the fixed values,
where K p = 11.95, Ki = 0.49, Kd = 72.55, and the target
temperature as 80 degree Celsius (◦C). By modifying the
firmware, we collected the temperature and PWM readings
from 30 different hot-ends of exactly the same model, and
conducted five times of heating process for each hot-end. One
of the hot-ends was randomly selected as the genuine one, for
which we further repeated the heating process and collected
temperature and PWM readings for 60 more times. The MLP
was trained based on the genuine hot-end’s PWM and tempera-
ture readings. In the testing, the estimated temperature curves

Fig. 8. Similarity distribution for the same hot-end and 29 different hot-ends.

Fig. 9. Well-tuned PID values for different hot-ends clustered in 3D space
with clear separation.

for the other different 29 hot-ends were generated through
the employed MLP based on the corresponding hot-end’s
PWM readings as inputs, shown in Figure 7. For the same
hot-end A, the estimated temperature change curve fits the
ground-truth temperature curve very well and shows a weak
similarity with another three different hot-ends, B, C, and D.
Those differences largely result from the difference of the
manufacturing imperfections among those hot-ends. The more
considerable difference of physical characteristics (discussed
in Section IV.A) between the target hot-end A and test hot-end
(B, C, or D), the more clear difference shown in Fig. 7.

Based on the 145 similarity values between the 29 different
hot-ends and the single, randomly chosen genuine hot-end,
as well as the 65 similarity values between any two arbitrary
trials of the same genuine hot-end, we plotted the Probability
Density Function (PDF) in Figure 8. It is manifest that, the
similarity between any two trials of the same hot-end is
largely concentrated on a rather high level, i.e., 0.9 ∼ 0.95,
while the similarity levels between the chosen hot-end and
the other 29 hot-ends are widely spread out throughout the
range of 0.5 to 0.9. The clearly distinguishable difference
of similarity distribution indicates that the thermodynamic
mapping function from the hot-end holds a high level of
uniqueness and robustness.
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TABLE I

TUNING PARAMETERS FOR ZIEGLER-NICHOLS METHOD [49]

2) Be Consistent for the Same Hot-End: In order to evaluate
the consistency of the thermodynamic mapping function from
the same hot-end, based on Figure 6, we conducted a series
of experiments by using different default PID parameters and
different target temperatures. Because the PID parameters have
a significant impact on the temperature oscillation, and as
shown in Figure 9, different hot-ends have clearly separable
PID clusters. In order to mimic the real-world scenarios, a
default PID parameters set P I D = {pid1, pid2, . . . , pidk} for
the genuine hot-end is generated by an optimized auto-tuning
algorithm available in the Marlin firmware.

For 3D printing, the temperature control system has a rel-
atively low requirement on the decay ratio during the steady-
state oscillation and is not sensitive to overshooting. Thus most
3D printer controllers adopt the Ziegler-Nichols tuning method
[49]. This method (shown in Table I “Control type: classic
PID”) disables I and D gains initially, and only increases K p

to the ultimate gain Ku , at which the system keeps doing
undamped oscillations. Finally, the P , I , and D gains are
determined by the ultimate gain Ku and the oscillation period
Tu . Ku denotes the ultimate gain for loop stability, and Tu is
its corresponding period. We also list other PID tuning settings
under different control preferences in Table. I. To gain more
stabilized, auto-tuned PID values, based on the tuning setting
“Control type: classic PID”, we optimized the existing PID
tuning algorithm (as shown in Algorithm 1) available in the
Marlin firmware, an open-source firmware for many desktop
3D printers.

We performed the experiments under three different target
temperatures of 80, 90, and 100 degrees Celsius respectively.
For each target temperature setting, we collected temperature
and PWM readings for 12 different PID parameters and
repeated the experiments by five times. Thus, in total, we have
180 pairs of data for the target temperature settings and PWM
readings from the same hot-end.

C. Temperature-PID Mapping Function

The Proportional-integral-derivative (PID) controller is a
classic and widely used temperature control mechanism based
on the feedback theory [50]. A typical equation for PID control
is as follows:

u(t) = K pe(t)+ Ki

� t

0
e(t)dt + Kd

de(t)

dt
(19)

where the u(t) denotes the control variable which depends on
current error e(t) through three individual elements. 1) The
proportional term K p takes charge of the instant error. The

higher the p term, the faster the output approaches the target
value, while a rather high K p value may result in overshoots.
2) The integral term Ki is based on the accumulative error in
a certain period of time. A suitable Ki term can help reduce
steady-state error. 3) The derivative term Kd is responsible for
predicting the future based on the current error change rate,
and it will increase the system responding speed and reduce
the undesired overshoots.

Algorithm 1: Optimized Auto-Tuning Algorithm

Input: St : target temperature;
It : target iteration times; Ic: current iteration times;
Sc: current temperature;
T : minimum oscillation period;
Output: Pi , Ii , Di : Optimized PID values for It

iterations
Start heating at the default PWM value R;
if Sc > St and time > T then

Stop heating;
Record period for upper peak Tup and maximum
temperature Smax ;

end
if Sc < St and time < T then

Start heating;
Record period for lower peak Tdown and minimum
temperature Smin ;

R = Tup−Tdown
Tup+Tdown

R + R ; // update R values;

if Ic < It then
Ku = 8R

π(Smax−Smin ) ;

Tu = Tup+Tdown
samplingrate ;

Ic ++;
Calculate Pi , Ii , Di ;

end
Autotune finish;
Return Pi , Ii , Di ;

end

D. Estimated Fingerprint Capacity

Given a digitized fingerprint authentication system for M
users, its constrained capacity [51] can be denoted as C:

C = 1

2
log2[1+

d2
m

4max(σ 2
g , σ 2

i )
] (20)

where dm measures the distance between the median matching
scores from the genuine PDF distribution ĝm and the imposter
PDF distribution l̂m . Both ĝm and l̂m belong to the normal
distribution N(0, σ 2

g ) and N(0, σ 2
i ), respectively.

Given the matching score from 0 to 1 for 45 different hot-
ends, our result shows that the constrained capacity of our
fingerprint system C is 0.313 with dm = 0.17, σ 2

g = 0.0072,

σ 2
i = 0.0133, which indicate that our system is reasonably

accurate and scalable, compared with C = 0.33 for the
palmprint and C = 0.22 for the hand geometry reported
in [51].
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Fig. 10. 3D printer fingerprinting based on preheating temperature readings
and auto-tuned PID values.

V. THERMOTAG-BASED FINGERPRINTING

This section describes how the fingerprinting features of 3D
printers are extracted and verified based on the uniqueness of
hot-ends, including: 1) fingerprint selection, 2) data collection,
3) fingerprint generation, and 4) fingerprint matching. The
methodological flow diagram is shown in Figure 10. During
the enrollment phase, when the 3D printer is performing the
printing task, the pre-heating temperature reading is recorded
to train the verification classifier. After finishing the enroll-
ment, when the 3D printer receives the new printing task,
the hot-end starts to pre-heat to the target temperature. The
corresponding temperature reading is captured and extracted
into the fingerprint via the autoencoder. The fingerprint is
further embedded as the watermark in the object during the
printing process. To verify the identity (i.e., whether it is
printed by the authorized source) of an unknown printed
product, we scan and decode the watermark in the product.
The extracted watermark is inputted into a softmax classifier
to verify the legitimate printing source.

A. Fingerprint Selection

In Section IV-B, we have demonstrated the existence of
the fingerprints of hot-ends by defining the uniqueness of
thermodynamic mapping function from the heater’s PWM to
the hot-end’s temperature change. However, as an effective
hardware fingerprint, it needs to be ease of implementation
and low computational cost. As the temperature change can
be defined in the following way:

�temp = g( f (PID, tempT )) (21)

where �temp is the temperature change, g is the mapping
function from PWM to the hot-end’s temperature change. f
is the temperature tuning function. PID is the default PID
parameters, and tempT is defined as the target temperature.

In the real scenario, to ensure a good and stable printing
quality, each individual 3D printer will hold a fixed, well-
tuned PID parameter set and a fixed target temperature for the
pre-heating process. Correspondingly, in Equation 21, with the
same temperature tuning function f , PID and tempT , �temp
only depends on the mapping function g.

Hence, we propose the “ThermoTag” fingerprints, which
make use of the uniqueness of the temperature change curve
during the pre-heating process to represent the uniqueness of
thermodynamic mapping function resulted from the manufac-
turing imperfections and system variations of hot-ends.

B. Data Collection

By accessing the MKS V1.4 controller board in the 3D
printer, we obtained the temperature readings of the hot-end by
the built-in 100 Kohm NTC thermistor during the pre-heating
process, with 10, 15, 25 and 50 Hz sampling rates respectively.

An intuitive question is, how long should the temperature
reading be recorded to capture the uniqueness? The entire
pre-heating process is composed of heating, cooling, and
oscillating stably to the target temperature. As the uniqueness
we defined is caused by the heat generation and conduction
behaviors, and the cooling behavior is more affected by the
room temperature; thus, we will focus on the very first 50
second heating period.

C. Fingerprint Generation

1) Temperature Pre-Processing: Instead of directly extract-
ing the fingerprint features from the raw temperature data
which often starts from sightly different room temperatures
(20∼25 degree Celsius), we normalized the temperature curves
by filtering out the temperature below 30 degree Celsius.

2) Feature Extraction: We design our ThermoTag by using
the sparse auto-encoder to automatically extract a compre-
hensive set of intrinsic features from the temperature curves
through an unsupervised learning process.

A regular autoencoder is a neural network which is trained
to reconstruct the input and compress the input data by using
the limited neurons in the hidden layer [52]. In a standard
autoencoder with one hidden layer, we can assume that the
input x ∈ R p = χ is mapped to the hidden layer z ∈ Rq = ζ
as follows:

z = hhidden(W x + b) (22)

z is subsequently mapped onto output layer x �:

x � = hout (W �z + b�) (23)

where h denotes the activation function of neurons.
The training process is based on the optimization of the cost

function J (W, b), which minimizes the reconstruction error. In
our method, given the training set S = {x (1), x (2), . . . , x (N)}
representing the N different hot-end temperature curves, the
weight matrix W and bias vector b are used to generate a new
labeled training set Ŝ = {(ĥ(x (1)), l(1)), . . . , (ĥ(x (N)), l(N))},
where ĥ(xn) is the activation vector obtained in the hidden
layer, and ln represents the corresponding labels.

The sparse autoencoder is a specialized autoencoder that
adds a sparsity regularizer to its cost function (mean squared
error) [53].

Jsparse(W, b) = J (W, b)+ β ∗sparsit y (24)
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where J (W, b) is the original cost function, e.g., quadratic
cost, cross-entropy, or exponential cost, and β is the coefficient
for the sparsity regularization.

The sparsity regularization is to minimize and constrain the
activation values by comparing the Kullback-Leibler diver-
gence.

sparsit y =
M�

j=1

K L(ρ||ρ̂ j )

=
M�

j=1

ρlog(
ρ

ρ̂ j
)+ (1− ρ)log(

1− ρ

1− ρ̂ j
) (25)

where M is the number of neurons in the hidden layer and ρ
is the desired activation value.

The sparsity regularizer based on the average activation
value of j th neuron in the hidden layer is defined as:

ρ̂ j = 1

N

N�
i=1

h(ω
(1)T
j xi + b(1)

j ) (26)

where N is the total number of training examples.
With a low output activation value, this j th neuron is

considered to respond to a few training examples, which
means that in the hidden layer, each neuron is associated with
some features representing a specified subset of total training
samples.

D. Fingerprint Matching

In order to distinguish the pre-heating behaviors among dif-
ferent hot-end configurations, an unsupervised feature learning
and classification method is proposed by combining the sparse
autoencoder and the softmax classifier layer.

We further classify those labeled features Ŝ =
{(ĥ(x (1)), l(1)), . . . , (ĥ(x (N)), l(N))} (extracted from the
temperature curves) by training a softmax classifier, which
has been proved to be effective for multi-class classification
problem. A softmax function is given as:

P(y = j |x (i), θ) = eθT
j x (i)

�K
k=1 eθT

k x (i)
(27)

where j is the class type, and θ is the model parameter to
minimize the cost function by using gradient descent. The cost
function is shown as below:

J (θ) = −
⎡
⎣ N�

i=1

K�
j=1

1{y(i) = j}log
eθT

j x (i)

�K
k=1 eθT

k x (i)

⎤
⎦ (28)

where K is the number of different classes.
When the feature vector of a new temperature reading curve

is presented to the well-trained softmax classifier, its most
likely output will be the class (i.e., the specific 3D printer unit)
which has the maximum probability arg max

y
p(y = j |x (i), θ).

Fig. 11. Experimental device and measurement setup.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

1) Standalone Hot-End Setup: In the previous section,
a small scale experiment among 3 different types of 3D
printers has been conducted. The result shows distinguishable
differences among those printers. Here we will focus on a
more challenging task: to evaluate the fingerprinting features
extracted from the hot-ends of exactly the same model.

To prove that 3D printers can be distinguished only by the
equipped hot-ends, we conducted the experiments using 45
individual hot-ends on a single Prusa i3 HICTOP 3D printer.
The experimental setup is shown in Figure 11. To further
evaluate and verify the uniqueness of hot-ends resulted from
the manufacturing imperfections, the chosen 45 hot-ends of
exactly the same model were acquired from the same vendor
and the same manufacturing assembly line.

2) Temperature Setup: As we have demonstrated in
Section IV-B, the target temperature has no influence on the
uniqueness of the intrinsic fingerprintings in the hot-ends.
To reduce the cooling period between each test less than
20 minutes, we set 80 degree Celsius as our target pre-heating
temperature.

3) Data Collection and Allocation Setup: The data collec-
tion protocol is described in Section V-B. As the variances
of the temperature curves for the same hot-end in different
trials are very small and trivial, thus for each hot-end, we
collected the whole temperature readings of the 3D printer,
from the initial room temperature to the final stabilized target
temperature by only five times. Totally, we have 225 trials for
the 45 individual hot-ends.

In the evaluation phase, we evaluated our system for five
times. Each time for each hot-end, we randomly selected three
trials as the training set and the remaining two trials as the
testing set. Thus, in total, we have 135 trials for the training
and 90 trials for the testing.

B. Metrics

To evaluate a hardware fingerprint, we want first to know
how each fingerprint can be distinguishable from each other.
Let k be the total number of hot-ends. After training the
softmax classifier with all the k hot-ends, given a testing pre-
heating temperature trial, we will have an estimated label for
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Fig. 12. Confusion matrix over 45 hot-ends.

one of k hot-ends. Based on the ground truth label, we define
the identification accuracy as below:

Accuracy =
�k

i=1 CTi

N
(29)

where CTi is the number of correctly identified trials for the
i th hot-end, and N is the total number of testing trials.

In addition to the multi-class classification performance, we
also investigate the performance of our fingerprinting scheme
with the existence of alien hot-ends (i.e., unknown devices for
the 3D printer system). We define F P as the number of false
positives, which means the number of incorrectly accepted
trials. m and n are the number of trained classes and alien
classes. An error evaluation metric which equals to the average
false acceptance rate (FAR) are defined as below:

Error (Avg. FAR) =
�m

i=1 F Pi +�n
j=1 F Pj

N
(30)

C. Performance

Firstly, we trained the softmax classifier with three trials
and tested the rest two trials from each of 45 hot-ends. The
identification score for each hot-end is shown in Figure 12.
In the confusion matrix, the lighter the cell, the higher the
confidence for identification. Generally, cells in the diagonal
line are the lightest, which indicates that the i th hot-end is
classified as the correct one. For those few randomly distrib-
uted light cells, they are the misclassified hot-ends. In overall,
the identification accuracy for 45 hot-ends is about 92%.
To investigate the effect of the sampling rate of temperature
readings on performance, we test the accuracy based on four
different sampling frequencies (i.e., 10 Hz, 15 Hz, 25 Hz, and
50 Hz), as shown in Fig. 13. Consistent with our expectation,
when the sampling rate increases, the more detailed and subtle
temperature variations can be captured, which result in the
higher accuracy.

To further evaluate our system while introducing alien hot-
ends, we randomly selected 20 hot-ends as the trained classes,
and each time we trained one hot-end’s temperature traces as
the genuine class and the remaining 19 hot-ends’ temperature
traces as the outsider classes. Based on the classification score

Fig. 13. Identification accuracy among 45 hot-ends at different sampling
rates.

Fig. 14. Average ROC curve for trained 20 classes.

of the validation results, we optimized the threshold for the
classification score by computing the Equal Error Rate (EER).
The receiver operating characteristic (ROC) curve is shown in
Figure 14 with an EER = 8.72%. For the testing part, we
tested both the 20 trained classes and the other 25 untrained
hot-ends (as the alien classes). As shown in Fig. 15, when
the number of alien hot-ends is very small (from 1 to 5), the
randomness of the intrinsic physical characteristics of each
individual hot-end unit would bring high variance of the FAR
performance. However, the average FAR remains stable with
FAR = 8.72%, when increasing the number of alien hot-ends.
It is shown that, even for unknown hot-ends, our model is
suitable and effective for large-scale representation.

D. System Robustness

1) Variations of Room Temperature: Room temperature is a
significant and common factor that may affect the temperature
readings on 3D printers. Also, in the real environment, we
cannot guarantee that every trial was performed with the
identical room temperature. To reduce the influence of room
temperature variations, we normalized all temperature reading
curves by setting a standard temperature start point that higher
than the room temperature, such as 30 degrees Celsius, and
recording 1,500 samples starting from this standard tempera-
ture start point.

2) Permanence of 3D Printer Fingerprints: Like conven-
tional biometrics, permanence (i.e., performance consistency
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Fig. 15. Error rate for alien hot-ends.

Fig. 16. Performance of recall rate (in blue) and true positive score (in
yellow) for the same hot-end over a duration of up to one month.

over time) is another important factor for hardware fingerprint-
ing. Although the best usage metric is the exact working hours,
considering the target 3D printer is in normal daily usage, we
thus take the calendar days to approximate the usage level.
We randomly selected one hot-end and kept recording the hot-
end’s temperature readings of pre-heating over one month and
found that the temperature reading curves indeed had some
variations compared with the original one. To present these
variations, we used the true positive verification score from
the classifier as the evaluation parameter. For up to one-month
duration, we measured the hot-end’s fingerprint on 10 testing
days with 3 days interval and repeated 10 times on each testing
day. The result is shown in Figure 16, the recall rate remains
100% for the first 27 days and drops 10% only on the last day.
To better present the variance, we also list the classifier scores
which can be considered as the probability to be labeled as
true positive. It is observed that the classifier scores gradually
decrease, although still remaining at relatively high levels. The
graceful performance degradation would be largely attributed
to the slight change of thermodynamic properties of the hot-
end as a result of the reduced heating efficiency of the cartridge
heater and accumulation of filament residue in the nozzle.

VII. THERMOTAG-BASED WATERMARKING

The ThermoTag fingerprints extracted from our proposed
scheme can be used for watermarking 3D-printed products

and protecting the IPs of the genuine 3D design. This section
will give an example of utilizing layer deformation as the
watermarking process in real scenarios.

A. Watermark Generation

Inspired by the watermarking methods specifically for FDM
3D printing [54], [55], we designed a watermarking scheme
to embed the ThermoTag of a 3D printer into the 3D-printed
objects. This method aims to encode each ThermoTag number
into a 12-bit binary number. As shown in Fig. 17, the Ther-
moTag is the outputs of the hidden layer with the sigmoid
activation function which ranges from 0 to 1. To check the
integrity of the ThermoTag, an adapted ISBN10 checksum is
firstly used, which is embedded as a new bit of the watermark
in every 10th layer (5 layers in the Fig. 17 as an example),
defined as the follows:

p10 = ((

9�
i=1

i ∗ pi) mod 7)+ 1 (31)

where pi is the ThermoTag number in the i th layer, p10
is the checksum number. Moreover, to identify the degree
information of the top and bottom for decoding, the initial
two layers are reserved as the reference points.

B. Watermark Embedding

1) Watermark Pattern: To embed an M layers’ Thermo-
Tag with the checksum number watermark, after adding the
checksum and initial numbers, we then convert them (floating
numbers) into binary numbers. As shown in Fig. 18, it shows
the encoding of one layer of binary numbers by locally
modifying the thickness of the two printing layers. The layers
are divided into equally sized encoding and seperating regions
for each bit. In the encoding regions of each bit, the thickness
of the bottom layers is multiplied by the factor (1+α) or (1-α)
to encode the bit 1 or 0, respectively. The top layer thickness
is adjusted to keep the sum of the two layers’ thickness. An
example of the encoded pattern is shown in Fig. 19 with
embedded watermark bits “1” and “0”. To avoid material
accumulated deformation and increase decoding resolution,
each encoding layer is separated by M “N/A” layer with
normal layer thickness.

In practice, we use the settings of α = 0.3, M = 2,
Codingwidth = 1.2 mm, and Gapwidth = 0.6 mm. Considering
the printing and scanning errors, to ensure the accuracy of
expanded watermark bits, we further introduce a local corre-
lation check mechanism [55]. Specifically, we check the sums
of binary watermarks in the corresponding layer and in the
corresponding column, respectively, which largely reduce the
printing and scanning errors. For example, if the watermark
“1” indicated by the red box in Fig. 17 is accidentally
recognized as “0”, we can localize the error by checking the
corresponding layer-sum and column-sum.

2) Pattern Printing: In order to modify the layer thickness,
we precisely adjust the PLA filament volume extruded from
the hot-end during the printing process proposed in [56]. We
obtain the volume of the PLA filament by multiplying the
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Fig. 17. An example of the watermark generation and encoding steps (5 ThermoTag number).

Fig. 18. Encoding layer pattern. The pattern corresponds to two layers with
variable thickness.

Fig. 19. An example of the encoding layer pattern. Red boxes indicate the
embedded watermark bits “1” and “0”.

cross-sectional area by the length of the layer, and calculate
the filament length, as shown below:

Lfilament = AlayerL layer

π(φfilament/2)2 (32)

where Alayer is the cross-sectional area, Lfilament is the extruded
filament length, φfilament is the filament diameter, and L layer is
the length of the layer.

C. Watermark Decoding

1) Pattern Detection: To detect the embedded watermarks,
we first align the scanned image by utilizing Radon transform
[57]. Then, we detect the peak magnitude value of the Radon
transform over all angles, compute the corresponding rotation,
and reorient the image. After that, we recognize the edges
between the encoding layers and separating layers using the

Fig. 20. Decode the printing pattern of separating layer and coding layer by
using the edge detection.

Canny filter which is a robust edge detection algorithm [58],
as shown in Fig. 20. Then we analyze the edges information
between the encoding layers in the range between the top half
of the bottom encoding layer and the bottom half of the top
encoding layer shown in Fig. 21, which restricts the searching
region for these edges and is robust to printing noises. We
firstly find the largest distance gap between the encoding layer
and bottom half of the top layer h1 and top half of the bottom
layer h2. Then based on the peak point, we can calculate
the watermark encoding region with the fixed width d . After
every edge has been robustly detected, we can decode the
value of each watermark bit by analyzing the layer thickness
of encoding layers.

2) Watermark Verification: After decoding the pattern, we
first check each watermark row and column based on the
layer-sum and column-sum bits and localize the possible
wrong watermark bit. The correlated watermarks are converted
from the binary format into ThermoTag in the format of
floating-point numbers. We then check the integrity based
on the checksum bit from Equation (31). Finally, we match
the decoded ThermoTag with our stored template to verify
the watermark.

D. Proof-of-Concept Case Study

As described in Section V-C, to validate the effectiveness
of the proposed ThermoTag-based watermarking scheme, we
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Fig. 21. Watermark decoding by finding the largest difference of distances
(|h1−h2|) between the encoding layer and top and bottom layers, respectively.

Fig. 22. Printed models in the experiment “cube” and “hexagonal nut”.
(a) CAD models; (b) actual printed models.

Fig. 23. Bit error rate for two printed models “cube” and “ hexagonal nut”
under different layer thickness settings.

first extract the ThermoTag which is a set of intrinsic features
from the temperature curves through a sparse auto-encoder
model. As a proof of concept, a 9-bit watermark is generated
based on the ThermoTag, and then encoded into different
layers of the 3D design with modified layer thickness in
“G-code” sliced by “Ultimaker Cura”. As shown in Fig. 22,
we choose two different models in our experiment, a standard
cube (20 mm × 20 mm × 20 mm) and a hexagonal nut with
inside screw thread (24 mm × 27 mm × 13 mm). When the
single wall cannot hold the entire binary watermark sequence,
we print the remaining portion of the watermark sequence on
the next side of the wall. To evaluate the effectiveness of water-
marks on different layer thickness, we printed five times for
each model under different layer thickness settings. In total, we
printed ten times for each model with embedded watermarks.
We recorded the side-view images of the watermark patterns
by a camera with the resolution of 12 megapixels. The result
is shown in Fig. 23. It is observed that the correlation-check
could greatly reduce the error rates for both layer settings,
and the bit error rates for 0.2 mm are generally lower than the
error rates for 0.15 mm. The reason could be that the extrusion

variations or accumulated extrusion distortions during printing
have higher impacts on thinner layers.

VIII. DISCUSSION AND CONCLUSION

This study proposes a new hardware fingerprinting approach
for emerging 3D printers, leveraging the uniqueness of ther-
modynamic characteristics of the hot-ends in 3D printers, to
prevent against counterfeiting and cyber-physical attacks. The
hot-end-based ThermoTag fingerprints can be easily obtained
through temperature sensing and used as the 3D printing
watermarks, safer than using extrinsic elements or random
numbers, and more efficient than introducing PUFs into 3D
printed products. The unique features of hot-ends are caused
by the manufacturing imperfections and system variations,
which are hard to identify, predict, and clone. The investigation
on 3D printer fingerprinting is still in the infant stage but holds
great potential for IP protection or forensics in 3D printing.

A. Environmental Factors

Room temperature and time are not the only two envi-
ronmental factors. After printing for an extended period of
time, the melted filament may coat the nozzle, which is very
hard to remove completely and will gradually change the
thermodynamic properties of the hot-ends. In addition, the
moisture level is another factor that might affect the heat
convection in the air, and thus affect the temperature readings
as well. All these changes caused by the environment or
regular daily usage indicate that for authentication purposes,
the hot-end-based 3D printer fingerprints in the database need
to be periodically calibrated and updated.

B. Multi-Level Fingerprinting

We have demonstrated that the temperature readings during
the pre-heating process can provide unique features of 3D
printer hot-ends. From our preliminary experiments, we have
observed that standalone printers will have different responses
to the same printing command during the printing. Thus,
instead of solely based on the unique thermal behavior of
pre-heating, combining the other printing behaviors such as
temperature or motor oscillation with our proposed fingerprint,
could further increase the accuracy and robustness of discrim-
ination.

C. 3D Watermarking

In this work, we utilized the layer-deformation approach to
encode the ThermoTag into 3D-printed objects. It still holds
the potential risk of being noticed or modified by attackers. In
the future work, to help further provide a more obscure and
secure fingerprint, a 3D mesh-model based blind watermark
technique (e.g., [46], [59]) could be included in the encoding
scheme.
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