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Abstract—The past decades have witnessed a rapid
surge in new sensing and monitoring devices for well-
being and healthcare. One key representative in this field
is body sensor networks (BSNs). However, with advances
in sensing technologies and embedded systems, wireless
communication has gradually become one of the dominant
energy-consuming sectors in BSN applications. Recently,
compressed sensing (CS) has attracted increasing atten-
tion in solving this problem due to its enabled sub-Nyquest
sampling rate. In this paper, we investigate the quantization
effect in CS architecture and argue that the quantization
configuration is a critical factor of the energy efficiency for
the entire CS architecture. To this end, we present a novel
configurable quantized compressed sensing (QCS) archi-
tecture, in which the sampling rate and quantization are
jointly explored for better energy efficiency. Furthermore,
to combat the computational complexity of the configu-
ration procedure, we propose a rapid configuration algo-
rithm, called RapQCS. According to the experiments involv-
ing several categories of real biosignals, the proposed
configurable QCS architecture can gain more than 66%
performance-energy tradeoff than the fixed QCS archi-
tecture. Moreover, our proposed RapQCS algorithm can
achieve over 150× speedup on average, while decreasing
the reconstructed signal fidelity by only 2.32%.

Index Terms—Body sensor networks (BSNs), com-
pressed sensing (CS), configurable architecture, quantiza-
tion effect, RapQCS.

I. INTRODUCTION

W ITH THE recent advances in sensing and computer
technology, body sensor networks (BSNs) have been

widely applied in various domains, such as long-term health-
care telemonitoring [1], sports enhancement [2], and assisted
rehabilitation [3]. Energy efficiency is becoming one of the
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most challenging issues in BSN system [4]. Due to the scal-
ing of data throughput with the development of hardware and
computing technology, wireless transmission has become the
dominant energy consumer in the entire BSN system [5]. In
recent years, the compressed sensing (CS) theory [6] pro-
vides a breakthrough paradigm to tackle the energy-efficiency
challenge in wireless communication. The CS theory guaran-
tees an accurate recovery by sampling the signals at a lower
rate, which is proportional to their intrinsic salient informa-
tion, rather than their bandwidths. By breaking the limitation of
the traditional Shannon–Nyquist sampling theorem, CS brings
great potential to dramatically reduce the power consumption
on wireless transmission. Furthermore, with the integration of
the sampling and compression procedures, the CS framework
would also be beneficial to the applications in size, weight, and
power-constrained environments.

In 2004, Donoho first officially introduced the concept of
CS [6]. In 2006, Candes and Tao proved robust uncertainty
principles in CS [7]. With the superior advantage of energy
efficiency, the CS framework has been successfully applied to
many different fields. Duarte et al. [8] designed a single pixel
camera based on CS, and Wright et al. [9] employed the CS the-
ory for face recognition to reach astonishing results. However,
some fundamental technical challenges in the practice of CS
in BSN system remain unsolved. One of the concerns is that
analog signals in modern computing systems must be digitized
before wireless transmission. The quantization effect in CS is
still under-explored regarding the energy-performance trade-
off. For example, different sectors in a BSN system emphasize
different design criteria. Specifically, distributed body sensors
are usually energy bounded, and more sensitive to energy
consumption, while data aggregators compile data quality.

In this paper, we propose and investigate a novel configurable
quantized compressed sensing (QCS) architecture. In addition
to the sampling rate, also referred to as the compression ratio,
QCS integrates the quantization operation in practice into the
CS-base data flow. Based on extensive experiments, we have
proved that the quantization configuration is a critical and sen-
sitive factor in the QCS architecture for its energy efficiency.
We develop the energy model for the configurable QCS archi-
tecture to quantitatively evaluate its performance–energy (P–E)
tradeoff in both architecture- and circuit-level design space.
Moreover, we develop a rapid configuration algorithm, called
RapQCS, to further reduce the elapsed time while compromis-
ing virtually no performance deviation of the QCS architecture.
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In this work, our main contributions are threefold.
1) We propose a configurable QCS architecture, which con-

siders both the sampling rate and quantization configu-
ration. We analyze the significance of the quantized bit
resolution in the CS framework, and prove that the opti-
mized quantization configuration with the sampling rate
can provide a better P–E tradeoff.

2) We develop a RapQCS algorithm to quickly locate the
optimal configuration of the sampling rate and the bit res-
olution, with a bound energy budget in practice, which
can drastically reduce the elapsed time while keeping an
excellent efficiency and capacity of the QCS.

3) We evaluate the QCS architecture with experiments
using biosignal data sets. The configurable QCS archi-
tecture can improve the P–E tradeoff by more than 66%.
Meanwhile, our fast RapQCS algorithm can offer 150×
speedups while introducing a 2.32% average distortion
rate.

This paper is organized as follows. Section II introduces prior
work of CS and quantization. The basics of conventional CS
theory are described in Section III. Our proposed efficient QCS
architecture is elaborated in Section IV, and Section V presents
our fast RapQCS algorithm. Related experiments and evalua-
tions are discussed in Section VI, and Section VII presents our
conclusion and future work.

II. RELATED WORK

Most research on CS is focused on the reconstruction algo-
rithms to pursue lower sampling rate and better signal qual-
ity. Reconstruction algorithms comprise three categories [10]:
greedy algorithm, convex optimization, and iterative thresh-
olding. Greedy algorithm aims to select the most significant
components in sparsity-inducing bases, such as orthogonal
matching pursuit (OMP) and compressive sampling match-
ing pursuit (CoSaMP). The convex optimization method is
based on optimizing the �1 norm problem and its variants.
Representatives include basis pursuit (BP), NESTA, and gradi-
ent projection. Iterative thresholding can solve the �1 penalized
least square problem with fast speed, such as iterative split-
ting and shareholding (IST) and iterated hard shrinkage (IHT).
Also, Liu et al. implemented an energy-efficient reconstruction
algorithm on a field-programmable gate array (FPGA) [11].
Although these reconstruction algorithms can either reduce the
measurements dimension or improve the reconstruction accu-
racy, they ignore that quantization is an inevitable process when
applying CS into practical applications.

There are some existing work that take quantization effects
into account. Dai et al. [12] studied the quantization effects on
reconstruction error of CS. Laska et al. [13] mitigated the quan-
tization effects by adapting the CS reconstruction algorithm.
Also, an optimal quantizer was designed [14] for the least abso-
lute shrinkage and selection operator (LASSO) reconstruction
under high-resolution quantization assumption. All aforemen-
tioned research primarily focus on reducing the quantization
noise or mean-square quantization error (mse) by designing
a better quantizer. However, understanding the quantization
effect on compressed signals is not typically a research priority.

Fauvel et al. presented a comprehensive analysis of electroen-
cephalography (EEG) telemonitoring architecture in [15], but
took the bit resolution of quantization operation as a constant
value. In fact, the quantization effort on reconstruction error
is indeed related to the overall system performance. Moreover,
researchers did not investigate the impacts of the quantization
effect on energy consumption in BSN applications.

III. BACKGROUND OF CS

CS is an emerging low-rate sampling scheme for the signals
that are known to be sparse or compressible in certain cases.
CS has been successfully applied in image processing, pattern
recognition, and wireless communications.

We assume x is an N -dimensional vector and sampled using
M -measurement vector y

y = Φx (1)

where Φ ∈ RM×N is the sensing array, which models the
linear encoding, and M is defined as the sampling rate in N -
dimensional CS. The elements in Φ are either Gaussian random
variables or Bernoulli random variables. Because of M << N ,
the formulation in (1) is undetermined, and signal x cannot be
uniquely retrieved from sensing array Φ and measurements y.
However, under a certain sparsity-inducing basis Ψ ∈ RN×N ,
the signal x can be represented by a set of sparse coefficients
u ∈ RN

x = Ψu (2)

i.e., the coefficient u, under the transformation Ψ, only has few
nonzero elements. Therefore, based on (1) and (2), the sparse
vector u can be represented as follows:

y = ΦΨu = ΘM×Nu (3)

where ΘM×N = ΦΨ is an M ×N array, called measuring
matrix. Due to the prior knowledge that the unknown vector
u is sparse, it is possible to estimate the value u using the �0
minimization formulation as follows:

u = min ‖u‖0, s.t. ‖y −Θu‖ < ε (4)

where ε is the reconstruction error tolerance. The formulation in
(4) is a determined system with unique solutions. However, �0 is
an NP-hard problem [16], and one of the methods to solve (4) is
to approximate �0 minimization formulation to �1 minimization
formulation

u = min ‖u‖1, s.t. ‖y −Θu‖ < ε. (5)

Under the condition of restricted isometry property (RIP) [17],
�1 has been theoretically proven to be equivalent to minimize
�0. Moreover, �1 minimization is convex and can be solved
within polynomial time. In this work, we will use the �1-based
approach CS. After estimating the sparse coefficient u with the
formulation in (5), the original input signal x can be recovered
directly

ẋ = Ψu. (6)
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TABLE I
NOTATIONS AND SYMBOLS IN THIS PAPER

We can see that both reconstruction error and wireless com-
munication energy in the traditional CS formulation are deter-
mined by the sampling rate M . Researchers only consider
adapting M with regard to different design constraints.

IV. CONFIGURABLE QUANTIZED CS ARCHITECTURE

We first list all the notations and symbols in Table I, for
the following discussions of our proposed architecture, and
then introduce our proposed configurable QCS framework and
related optimization strategy in details.

Fig. 1. Configurable quantized CS architecture in BSN. The QCS
includes three modules. Randomized encoding, quantization, and signal
reconstruction.

A. Architecture Overview

The traditional CS theory does not apply quantization to the
formula [see (3)]. In practical applications, original signals are
analog in nature and need to be quantized before transmitting
over the wireless channel. Therefore, the compressed signal
y should be processed by a quantization model formulated as
follows:

ŷ = Qb(y) (7)

where Qb(·) is the quantization function, and ŷ is the quantized
representation of y with b bits [18]. When considering the quan-
tization process into the CS architecture, the CS formulation is
reformulated

û = min ‖u‖1, s.t. ‖ŷ −Θu‖ < ε. (8)

By solving the formulation in (8), we can obtain the sparse rep-
resentation û from the quantized measurement ŷ. Therefore, the
reconstructed signal x̂ is retrieved by

x̂ = Ψû. (9)

The sensing framework based on the formulation in (8) is
defined as QCS architecture, which is illustrated in Fig. 1.

The entire block diagram is a BSN framework, incorporating
two key parts. on-body sensor node and data aggregator. The
on-body sensor node collects the vital biosignals and imple-
ments simple yet necessary signal processing. Then, it sends the
data to the data aggregator. The data aggregator can be a local
server or remote cloud center to retrieve the collected sensing
information for postprocessing. In this framework, the sensor
node is sensitive to energy consumption due to the limited-life
battery supplement, while the data aggregator focuses on the
signal reconstruction quality for later analysis. The transceiver
of wireless communication is an off-the-shelf module with low
power consumption. It consists of a wireless transmitter in the
sensor node and a wireless receiver in the data aggregator.
Toward the application in BSNs, the transmitter in the sensor
node should comply with certain medical specifications [19]
and communication standards, such as IEEE 802.15.6 [20].

We can see that the QCS architecture consists of three
parts: 1) randomized encoding; 2) quantization; and 3) sig-
nal reconstruction modules. Original analog signals, which
usually denote the raw analog data x ∈ RN , coming from
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sensors, are encoded into an M -dimensional vector y ∈ RM ,
by linear encoding ΘM×N . Through the quantization scheme
Qb(·), every measurement becomes a certain b-bit digital rep-
resentation ŷ. A wireless transmitter streams these digitized
measurement data to the receiver. When the wireless receiver
extracts the data from the bit stream, it performs reconstruction
algorithms to recover the N -dimensional original input signal
x from the quantized M -dimension compressed measurements
ŷ. The reconstructed signal x̂ is sent to the data postprocess-
ing model for specific applications, such as signal classification,
signal demodulation, or signal separation. In this architecture,
linear random encoding and quantization modules form a dis-
tributed node for the sensor’s flexibility. Reconstruction and
postprocessing functions are conducted in the data aggregator.
Note that as shown in Fig. 1, in this QCS architecture, both sam-
pling rate M in the random encoding module and bit resolution
b in the quantization module are configurable. These parameters
can be setup according to different applications.

B. Energy and Performance Models in QCS Architecture

In this part, we discuss the energy and performance mod-
els in the QCS architecture. The distributed node is energy
bound with limited energy budget, and the data aggregator
is performance-driven, focusing on the signal quality. In dis-
tributed nodes, the power consumption is dominated by wire-
less communication, and communication energy is proportional
to the volume of the data stream. Therefore, its energy model
can be formulated as follows:

E = C ×M × b (10)

where M is the sampling rate, b is the bit resolution in quan-
tization in the QCS architecture, and C is the energy per bit,
i.e., the energy consumption of transmitting 1 bit data.1 We can
change the power consumption of distributed nodes through the
M and b setup. The larger the M and b, the more the energy
consumption in the distributed nodes.

The aim of the data aggregator is to reconstruct the original
signal from the streaming compressed data for postprocessing.
For the simplicity of presentation, we use the reconstruc-
tion error as the performance metric in the data aggregator.
Therefore, the performance model in the data aggregator can
be defined as follows:

P (M, b) =
‖x− x̂‖2
‖x‖2 × 100% (11)

where P (M, b) denotes the performance metric, i.e., the recon-
struction error under the configuration of sampling rate M and
resolution bit b. x̂ denotes the recovered signal and x is the
original input signal. Because x̂ is directly derived from the
measure ŷ, the performance is affected by the sampling rate
M and the bit resolution b. Specifically, M has an impact on
the performance of reconstruction algorithms, and b determines
the quantization noise in the measures. From the models in (10)

1The energy per bit is determined by the wireless communication protocol
and is usually a constant.

and (11), we can see the QCS architecture can reach different
energy-performance tradeoffs through the configuration of M
and b.

C. System Design Formulation

In this part, we present the design formulation toward CS-
based distributed systems. The distributed sensor nodes are
equipped with a capacity-limited battery, and the battery life-
time is usually the design constraint.

Given an energy bound E0 for the distributed node, the
design criterion in the QCS architecture is to find the optimal
configuration of M and b such that the energy E is less than
E0, and the reconstruction error is as small as possible. This
design formulation can be formulated as follows:

(M, b)opt = argmin
M ,b

(P(M , b)), s.t. C ×M × b ≤ E0

(12)

where (M, b)opt denotes the optimal energy configuration under
energy bound E0. We can see that the total design space in the
formulation in (12) is b×M , where b is the bit resolution in the
quantization and M is the sampling rate. Note that the objective
function is not in an analytic form, and the constraint function
is nonconvex. Therefore, it is challenging to efficiently obtain
(M, b)opt.

D. Brute Force Algorithm

The most straightforward method to find (M, b)opt is the
brute force method. It is also called exhaustive searching, a gen-
eral technique enumerating all potential solutions to check if
they satisfy the problem’s statement. In our challenge, when
energy bound E0 changes from 0 to b×M , we can get a P–E
tradeoff point (M, b)opt on every bound energy. If we connect
all of these P–E tradeoff points, they will form an optimal P–
E tradeoff curve, called Pareto’s curve [21]. Once the Pareto’s
curve is depicted in the P–E space, we can easily identify the
optimal energy configuration (M, b)opt under any given bound
E0. So we first employ the brute force method to search the
entire P–E space for the Pareto’s curve and then set the opti-
mal energy configuration under E0 by looking up the Pareto’s
curve. In fact, after we give the definitions of energy and per-
formance, this problem can be solved by searching for a series
of P–E tradeoff points, which hold the best tradeoff in lower
energy intervals. It can be formulated as follows:

(M, b)i+1
opt = argmin

M ,b
‖E i+1

opt − E i
opt‖,

s.t.

{
Ei+1

opt > Ei
opt,

P (Ei+1
opt ) < P (Ei

opt)
(13)

where i is the number of energy bound, (M, b)iopt is the ith opti-
mal energy configuration, Ei

opt is the energy level of (M, b)iopt,
and P (Ei

opt) is the performance metric of (M, b)iopt. We execute
our searching by the ascending order of energy level. We start
from the minimal energy level, and then increase the energy
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level gradually. It is common for more than one (M, b) config-
uration to be on the same energy level, which results from our
energy definition. Under this situation, we exhaustively check
every possible (M, b) configuration for the optimal tradeoff.
That is, we take every energy configuration (M, b) as our can-
didates, but our searching order is by ascending order of energy
values. The entire algorithm is defined as Algorithm 1.

Algorithm 1. Brute Force Algorithm

Input: E0: given energy bound
DE : the set of all the parameter configuration
(M, b)min: parameter configuration corresponding to

the least energy level
check13(·): function to check if configuration

satisfies Eq. (13)
Output: GE : set of configurations of P-E trade-off points.

(M, b)opt|E0
: the optimal configuration with energy

bound E0

1: GE = GE

⋃
(M, b)min

2: (M, b)opt = (M, b)min

3: for each (M, b) in DE do:
4: If check13((M, b), (M, b)opt) then
5: GE = GE

⋃
(M, b)

6: (M, b)opt = (M, b)
7: end if
8: end for
9:

10: for (M, b) ∈ GEdo
11: if M × b ≤ E0 then
12: (M, b)opt|E0

= (M, b)
13: else
14: break
15: end if
16: end for

We can see from the brute force algorithm that we exe-
cute reconstruction for each specific parameter configuration.
We adopt the second-order cone programming (SOCP) [22]
to solve the �1 optimization problem in signal reconstruction.
The SOCP can be solved under the time complexity of O(N3),
where N is the dimension of the signal. Then the time complex-
ity of brute forcing the entire P–E space should be O(|M | ×
|b| ×N3). An example of the brute force algorithm on one EEG
recording segment is shown in Fig. 2. Every red point represents
a P–E point, located by its energy configuration (M, b) and cor-
responding performance P (M, b). The green line is the Pareto’s
P–E curve, connecting all the P–E tradeoff points, which are
centered in the blue triangular markers. However, run time of
the brute force algorithm increases sharply as the candidate
number grows, which can be demonstrated by the above time
complexity analysis.

V. RAPID QCS CONFIGURATION WITH A BOUND

ENERGY BUDGET

In practical applications, it is very common that an upper-
energy bound is set to constraint the system’s energy con-
sumption. For our proposed configurable QCS architecture, the

Fig. 2. Brute force algorithm on one EEG recording segment. Red point
indicates a P–E point. Blue triangular marks a P–E tradeoff point. Green
line is the Pareto’s curve.

energy bound is usually set on the distributed node for its sen-
sitivity to power consumption. It is a big challenge to quickly
locate the optimal energy configuration under a given energy
bound. In the following part, we discuss this challenge and
demonstrate how we overcome it.

A. Energy-Efficiency Control Formulation

When there is an energy budget E0 for the distributed node, it
is critical to find an optimal energy configuration corresponding
to the best performance under a given constraint. This prob-
lem has been formulated in (12), which is an NP-hard problem
without any polynomial optimal solutions. The performance in
(12) refers to �0 form, which has been proved to be NP-hard
[16], for its optimal solution. An intuitive solution is to apply
a brute force algorithm based on �1 relaxation, whose energy
is limited in the bound E0, to search the subspace entirely. But
this method is time consuming and impractical for large-scale
problems. Based on our empirical estimation, the energy level
where the optimal configuration is located should be just near
the energy bound. Thus, it seems not to be a wise way to search
the whole bound energy space. In the next section, we will
introduce a better heuristic local search algorithm based on the
sensitivity analysis to quickly locate the optimal configuration.

B. RapQCS Algorithm

In our QCS architecture, better performance under a given
energy budget is the ultimate goal. So, we directly take the per-
formance definition as the cost function fc of our optimization
in RapQCS, assuming a is a specific parameter configuration

fc(a) = P (M, b) =
‖x− x̂‖2
‖x‖2 × 100%. (14)

The cost function fc is a multivariable function. To efficiently
tackle this problem, the main idea of our sensitivity analysis is
to search for a series of parameter configurations an satisfying

fc(a0) < fc(a1) < · · · < fc(an). (15)
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By (15), it can guarantee that the cost function fc converges to
the optimal (or suboptimal) solution [23]. For the convergence
speed, we first define the sensitivity σ at configuration ak

σ(ak) = {fc(ak)− fc(ak+1)}. (16)

Our sensitivity is a differentiable value set for all possible
adjacent parameter configurations ak+1. Our goal is to find
the adjacent configuration ak+1 corresponding to the steep-
est sensitivity value, the maximal in σ, for each parameter
configuration ak

ak+1 = max
ak+1

(g) s.t. g ∈ σ(ak). (17)

Therefore, the current challenge is how to find such parameter
configuration sequences. Observing that the parameter config-
uration a relates to two discrete variables, sampling rate M
and bit resolution b, we adopt the neighborhood to construct
the relationship between the adjacent parameter configuration
pairs. That is, we define ak+1 as the neighbourhood of ak.
Next, we introduce our neighborhood definition for the QCS
design space. For simplifying the presentation of parameters’
representation, we define a parameter space A in our QCS
architecture as

A = {p1, . . . , pi, . . . , pn} (18)

where pi is the ith parameter category affecting energy or per-
formance in the architecture. For example, due to our energy’s
definition, M and b are two parameter members in this model.
Since parameters are all discrete values, we first define a new
neighborhood operator “→” in the same parameter category pi

sk → d =

{
sk+d, 1 ≤ k + d ≤ L
⊥, otherwise

(19)

where sk is the kth configuration value of specific parameter pi.
L is the dimension of pi. We name d as the neighbor distance.
Then we continue to introduce symbol Nd as the neighborhood
set with d as the upper bound of neighbor distance

Nd(sk) = {sk → l : l ≤ d}. (20)

For example, N2 indicates that the neighbor distance from the
current position is not more than 2 units. By (19), this case is
setting d not more than 2. Here, we can rewrite our sensitivity
definition by neighborhood representation

σ(ak) = {fc(ak+1)− fc(a) : ak+1 ∈ Nd}. (21)

We can find from (21) that the total number of sensitivity val-
ues on a specific parameter vector depends on the parameter
vector dimension |a| and the neighbor distance d. In our BSN
application, the parameter set A has two parameters, M and b.
Thus, the value of |a| is 2. Assuming we take neighbor distance
d = 1, we may have (2d+ 1)× (2|a|+ 1)− 1, i.e., we have 8
in total, sensitivity values for a specific configuration a. So if
the local search chooses the most sensitive direction to proceed,
which is with the fastest decreasing of the cost function, optimal
(or suboptimal) configuration can be achieved eventually.

Fig. 3. Example to illustrate the RapQCS algorithm. The colorful blocks
indicate the different reconstruction error levels.

For a better convergence speed and a more stable solution,
we would like to add a tuning phase to reasonably estimate
an initial configuration a0 before the local search based on
sensitivity

a0(EB) = Eh∈H(aopt(h,EB)) (22)

where H is the application set. aopt(h,EB) is the optimal con-
figuration of application h under energy bound EB. In the
tuning phase, the brute force algorithm will be employed to
search the P–E space for optimal configuration aopt(h,EB). The
entire RapQCS algorithm is defined as Algorithm 2.

Algorithm 2. RapQCS Algorithm

Input: EB:given energy budget
a0(EB): starting configuration
fc: cost function
σ(a): sensitivity at configuration a

Output: aopt(EB): optimal configuration with EB
1: aopt(EB) = a0(EB)
2: Search for (M, b):

(M, b) = argmin
M,b

(σ(aopt)), s.t.

{
σ(aopt) < 0

M × b < EB

3: if find such (M, b) then
4: aopt(EB) = (M, b)
5: Go to Step (2)
6: else
7: EXIT
8: end if

Fig. 3 shows an example of the optimal parameter estima-
tion of our RapQCS algorithm. The horizontal axis indicates
the sampling rate M , the vertical axis is the bit resolution
b, and the small colorful blocks display the different recon-
struction error. We can find that reconstruction error has a
decreasing trend, blending with fluctuations, as the M and b
increase. Specifically, we use black line to delimit the solu-
tion space of the brute forcing algorithm under energy budget
2.25 µJ. The brute forcing method needs to probe each param-
eter setup to search for the optimal solution. We also show
the searching path and result of our RapQCS in the small red
rectangular area. Note that we zoom in the searching path of
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our RapQCS to make the result clearer in the large red rect-
angular area. We can observe from the zooming-in area that
our trained staring point is just near the optimal solution. After
several sensitivity propagations, our RapQCS algorithm termi-
nates at the optimal solution. In practice, due to the quality
of the starting point estimation, the RapQCS proceeds to the
local minimum. For typical biosignals, this local minimum has
a 31.39%–47.88% probability to hit the global minimum. We
would like to demonstrate why our RapQCS is so rapid. The
brute force algorithm and RapQCS have the same run time for
the probing with the specific parameter setup (M, b). This is
an �1 minimization-based signal reconstruction attempt using
the second-order cone programming strategy [22], whose time
complexity is O(N3), where N is the length of the origi-
nal input signal. However, the brute force algorithm needs
to calculate all the possible parameter combinations under a
specific energy constraint, whose size is O(|M | × |b|), just
as delimited by the black line in Fig. 3. For our RapQCS,
it starts with a reasonable estimation from (22), and forward
to the optimal solution by the steepest performance-changing
direction. Our method jointly optimizes the two parameters,
sampling rate M and bit resolution b, to come to the conver-
gence, resulting in its linear searching steps O(s), where s
is less than 10 empirically. Therefore, our RapQCS algorithm
can drastically reduce the run time while keeping the signal
quality.

VI. EXPERIMENTS

A. Experimental Setups and Data Sets

In this section, we describe the performance evaluation on
our work from two aspects.

1) We evaluate the advantage of the configurable QCS archi-
tecture and compare the P–E tradeoff gain against the
traditional CS architecture.

2) We test the effectiveness and efficiency of our RapQCS
algorithm, i.e., the reconstruction error, energy-bound
accuracy, and runtime speedup, by comparing with the
brute force method.

Our configurable QCS architecture is a general framework,
which can improve the P–E tradeoff in the BSN regardless
of the specific type of physiological signals. Without loss of
generality, we choose four different types of biosignals [24]
from Physionet [25] as our test bench in the experiments, elec-
trocardiography (ECG), EEG, electromyography (EMG), and
electrooculography (EOG). They are all the vital electrophysi-
ological signals gathered to monitor human health status. The
characteristics of each category of the biosignals are listed in
Table II, and their waveforms are shown in Fig. 4. We can see
that these four types of biosignals have significantly different
patterns.

Considering that biosignals are usually sparse under the dis-
crete wavelet transform (DWT) basis, we use inverse discrete
wavelet transform (IDWT) as the sparsity-inducing transfor-
mation basis Ψ. All of our experiments use Bernoulli random
variables as the sensing array and use the uniform quantization
strategy.

Fig. 4. Waveforms of the four biosignals from Physionet, and their
patterns are significantly different. (a) ECG. (b) EEG. (c) EMG. (d) EOG.

TABLE II
CHARACTERISTICS OF BIOSIGNALS IN THE TESTBENCH

B. Energy Setup in Wireless Communication

We employ an ultralow-power transceiver model for wire-
less medical implant communications, which is proposed by
Bohorquez et al. [26]. It includes a 350-µW MSK/FSK direct
modulation transmitter and a 400-µW ON–OFF keying (OOK)
super-regenerative receiver (SRR). The transceiver is imple-
mented in 90-nm CMOS and digitally tunes 24 MHz in fre-
quency steps smaller than 2 kHz. The transmitter meets the
Medical Implant Communication Service (MICS) mask spec-
ifications [19] with data rates up to 120 kb/s consuming only
2.9 nJ/bit; the receiver has a sensitivity better than 93 dBm
with a data rate of 120 kb/s consuming 3.3 nJ/bit. We are
only concerned with the energy consumption on the sensor
node. Therefore, to facilitate the calculation, we set the aver-
age energy consumption per bit of wireless communication
(transmitter) as C = 3 nJ/bit.

C. Configurable QCS Versus Traditional CS

1) Energy-Efficiency Comparison: The significance of
the configurable QCS architecture is that it takes into account
the flexibility of resolution bit b in the quantization module. The
experiment in this part is designed to explore how much the P–
E tradeoff can be gained in our configurable QCS compared
with the traditional CS architecture. In our experiment, we take
all four biosignals for the benchmark evaluation. As shown in
Fig. 4, there are no coherence features between any two signals
in the time domain. Considering that the bit resolution require-
ment is usually high in the BSN application, we can set b = 16
for the traditional CS architecture during the experiment. For
the QCS architecture, bit resolution ranges from 1 to 16. In the
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Fig. 5. (a)–(d) Pareto’s curves of each signal. The blue area in (d) is an
example of AUC. (a) ECG. (b) EEG. (c) EMG. (d) EOG.

experiment, we use the brute force method to find the Pareto’s
curve of the P–E space, and the results of four biosignals are
shown in Fig. 5(a)–(d), respectively.

In Fig. 5(a)–(d), the red line is the Pareto’s curve of the con-
figurable QCS architecture, and the blue line is the Pareto’s
curve of the traditional CS architecture. Every marker, includ-
ing red square and blue triangular, is an optimal P–E point.
Here, we can see that the P–E tradeoff in the configurable
QCS architecture is significantly better than that of the tradi-
tional CS architecture. For the constant bit case, ECG and EEG
share a common approximately convex curve trend, while EMG
and EOG appear as a concave shape. We can see that EMG
and EOG signals gain more P–E tradeoff. More specifically,
to quantitatively analyze the P–E gain, we adopt area under
curve (AUC) [27] as our metric, which is the area between the
Pareto’s curve and the energy axis. The Pareto’s curve consists
of all optimal P–E tradeoff points, and these points form a set
of trapezoidal areas. Therefore, we can add up all these areas
and obtain AUC as follows:

AUC =
∑
i

Si (23)

where i is the P–E point’s number, Si is the trapezoidal area
between two adjacent P–E points of i and i− 1, and the energy
axis. For example, the AUC of the traditional CS architecture
of the EOG signal is indicated as the blue area in Fig. 5(d). We
can further define the tradeoff enhancement metric as follows:

TOenhance =
AUC(CB) − AUC(OB)

AUC(CB)
(24)

where AUC(CB) is the area of Pareto’s curve of the traditional
CS architecture, and AUC(OB) is the area of Pareto’s curve of
the configurable QCS architecture. According to (24), we can
calculate the P–E tradeoff enhancement as in Table III.

From Table III, the improvements of P–E tradeoff are all
more than 66% by considering bit resolution. It is indicated
that our configurable QCS architecture can enhance the energy
efficiency more than the traditional CS architecture. According
to our enhancement definition, ECG gains the most efficiency

TABLE III
P–E TRADEOFF ENHANCEMENT TABLE

Fig. 6. Average relative reconstruction error over all possible energy
bounds under different b setups.

and EOG gets the least improvement, which is contradictory
with our previous observation. This is because our enhancement
definition is an AUC ratio corresponding to the Pareto’s curve
of the traditional CS architecture. The AUC of EOG under the
traditional CS architecture is much greater than that of other
samples. Thus, its enhancement is down to the smallest sam-
ple. Overall, it seems that all four enhancements do not have
significant difference, all about 70%, which indicates that our
bit resolution strategy has similar impacts on different types of
biosignals in BSN applications.

We also examine the reconstruction error under different
bit resolution b setups to verify the good performance of the
setup, b = 16, for the traditional CS architecture. We choose
four setups of bit resolution, where b = 2, 4, 8, and 16. For
a specific energy bound and given b, we first calculate the
relative reconstruction error using the reconstruction result of
the constant bit subtracting that of the optimal bit case under
the same energy bound. Then we calculate the average rela-
tive reconstruction error over all possible energy bounds for
specific b setup. The related results are shown in Fig. 6.
We can find that the average relative reconstruction error
decreases rapidly from b = 2 to b = 8. The case of b = 16
always holds the minimal average relative reconstruction error
for all the biosignals, which demonstrates the superiority of
the setup b = 16 for the traditional CS with constant bit
strategy.

2) Reconstructed Signal Comparison: In practical
applications, precise reconstruction signals usually need post-
processing. Thus, we would like to take a closer look at the
signal quality, comparing between traditional CS and config-
urable QCS architecture in this experiment. We can directly
check the related energy configuration and performance when
setting an energy bound as E0 = 3.6 µJ. All four reconstruction
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Fig. 7. Reconstructed waveforms of four biosignals when the energy bound is set as 3.6 µJ.

TABLE IV
ENERGY CONFIGURATION AND PERFORMANCE OF THE

RECONSTRUCTED SIGNALS ON E0 = 3.6 µJ

waveforms are depicted in Fig. 7, and the detailed energy con-
figurations with corresponding performance information on the
energy bound are illustrated in Table IV.

There are two columns in Fig. 7. The left column indi-
cates the reconstruction results of four biosignals, while the
right column is the corresponding sample-level reconstruction
error between the two CS architectures and the original sig-
nal. From the contrasting of the left column, we can see that
our configurable QCS (green line) almost ideally covers the
original signal (blue line). The reconstruction waveform of the
traditional CS (red line) is with larger distortion than the con-
figurable one. It is also obviously shown in the right column
that the sample-level reconstruction error of our QCS is much
smaller than the traditional CS. In all four biosignals, the tradi-
tional CS cannot reconstruct the peak part appropriately, which
is always much smaller than the original signal, especially in
ECG and EMG. For the relatively flat position in each sig-
nal, the reconstruction of traditional CS suffers from almost no
changes, which is more significant in ECG and EMG, or larger
fluctuations, as in EEG and EOG.

From Table IV, we can see that the performance of the tradi-
tional CS is all much larger than the configurable QCS. When

we look at the energy configuration (M, b), we can find that the
bit resolution in configurable QCS is 5 or 6, far away from 16 in
the traditional CS. Although the total energy consumption in the
two architectures is close, there is remarkable difference in the
reconstruction error rate. Specifically, the performance differ-
ence between configurable QCS and traditional CS architecture
in all four signals, ECG, EEG, EMG, and EOG, are about 50%–
60%, resulting in an easy identification of their waveforms’
differences. Also, ECG under the configurable QCS holds the
least reconstruction error rate, 14.06%. We cannot find any
significant distortion under this case. However, for EMG, its
reconstruction error rate under traditional CS is up to 88.81%.
The reconstructed result loses some salient information from
the original EMG signal. The corresponding error rate under
the configurable QCS is 32.41%, also the highest error rate in
all of the QCS’s reconstructions. This largest error rate results
from the weak sparsity of EMG signals, seemingly with larger
randomness, which indicates that DWT can not reconstruct with
as high a quality as the other three signals.

D. Rapid Optimal Configuration With Energy Bound
Budget in QCS

1) Performance Accuracy Analysis: In this experiment,
we will demonstrate the performance of our RapQCS algorithm
compared with the brute force method. We use all four types
of biosignals. Their patterns are already shown in Fig. 4. Due
to the requirement of the tuning phase in our RapQCS algo-
rithm, we consider all three biosignals’ combinations as the
tuning applications, and the remaining signal under the corre-
sponding case is the testing waveform. In this way, each signal
is taken as testing data only once. For a comprehensive exam-
ination, we set energy bound on every discrete energy level.
After the searching of our RapQCS algorithm, we can obtain
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Fig. 8. Absolute reconstruction error between RapQCS curve and brute
force curve. (a) ECG. (b) EEG. (c) EMG. (d) EOG.

an optimal RapQCS performance curve (i.e., RapQCS curve),
with an optimal P–E tradeoff point on every energy bound. The
absolute reconstruction difference between RapQCS curve and
the brute force curve is illustrated in Fig. 8.

In Fig. 8, there are four subgraphs indicating the absolute
reconstruction error between RapQCS curve and brute force
curve, corresponding to four different categories of biosig-
nals. The common trend among them is that the absolute error
between these two types of curves decreases rapidly as energy
bound increases. For all samples except EMG signal, the rela-
tively larger errors always occur on the interval whose energy
bound is less than 1.5 µJ. When energy bound increases more
than 3 µJ, their absolute error will fluctuate in a relatively small
range, less than 3%. On the low-energy bound, measurements
number M and bit resolution b are both small. For �1 convex
optimization problem, less M will result in large reconstruc-
tion error rate. It is reported that M should meet the following
condition for a successful reconstruction:

M ≥ Klog

(
N

K

)
(25)

where K is the sparsity of input signal. Thus, even a small M
may cause reconstruction failure. Smaller b introduces more
quantization error into the reconstruction, which is always mod-
eled by noise. Therefore, performance in a small energy interval
takes on strong randomness, making our RapQCS method eas-
ily trapped in local minima. As energy increases, M and b both
grow gradually. Less quantization error and more accurate con-
vex optimization make the reconstruction error rate decrease
rapidly and become more stable. Less local minima provide a
larger chance for our algorithm to approximate to the optimal
solution. For the EMG signal, its absolute error is relatively
larger than other signals. In Fig. 4, the waveform of EMG is
more like a random sequence. DWT is not good at dealing
with such a signal. So the performance may engender more

Fig. 9. Absolute reconstruction error of all four biosignals. AvgError
presents the average absolute reconstruction error over all energy
bounds. StdError presents the standard deviation of absolute recon-
struction error over all energy bounds.

local minima to confuse our RapQCS method to reach its right
destination.

Specifically, we can use the average error rate AvgError
and standard deviation StdError to quantitatively evaluate the
reconstruction accuracy of our RapQCS algorithm. Because our
performance has already been defined as a reconstruction error
rate, we can calculate the average absolute error rate and stan-
dard deviation on all the energy bounds to indicate the overall
error level

AvgError =
1

|EB|
∑

eb∈EB

abs(PRap(eb)− Popt(eb)) (26)

StdError

=

(
1

|EB|
∑

eb∈EB

(abs(PRap(eb)− Popt(eb))− AvgError)2
) 1

2

(27)

where EB is the set of all energy bounds. PRap(eb) indicates the
reconstruction error of RapQCS method under energy bound
eb. Popt(eb) is the optimal performance querying the brute force
curve. The AvgError and StdError of all four signals are shown
in Fig. 9.

From Fig. 9, our RapQCS method holds about a 2.0% aver-
age error rate in the general case except the EMG case. The
standard deviations are all below 3.3%, which is a trivial fluctu-
ation. As observed in Fig. 8, ECG, EEG, and EOG only suffer
from larger error rates in a small low-energy bound interval,
while they hold lower error rates on high-energy bound inter-
vals. For the EMG signal, it has a larger average error rate of
2.32%, due to its problematic reconstruction. Even under this
situation, the average level of all performance error rates is
2.10%, with about 3.17% standard deviation. We can see that
the impact of reconstruction distortion affected by such sub-
tle error rate can be nearly neglected. Therefore, when given
a bound energy budget, our RapQCS algorithm can reach an
accurate P–E tradeoff.

2) Energy Accuracy Analysis: In this part, we continue
to check the energy accuracy between our RapQCS algorithm
and the brute force algorithm. The absolute energy configura-
tion error of these two algorithms is illustrated in Fig. 10.
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Fig. 10. Absolute energy configuration error between RapQCS algo-
rithm and brute force algorithm. (a) ECG. (b) EEG. (c) EMG. (d) EOG.

Combining the trends of four biosignals, the absolute error
is very small on the low-energy bound levels in Fig. 10. As
energy bound increases, this error shows a growing trend. We
can see that on high-energy bound, the absolute error is either
very small or relatively large. The reason is that our P–E
space consists of many discrete energy levels. As part of the
energy definition in (10), the step length between two adja-
cent energy levels will increase as the energy increases. Thus,
any inaccurate searching will result in a large absolute energy
error.

In all of these four biosignals, EEG keeps an accurate con-
figuration on high-energy bound levels, but the other three
biosignals suffer from different degrees of deviation. On all
energy bounds, the EMG signal shows relatively large fluc-
tuation. Because our reconstruction algorithm cannot recover
EMG signal well, its performance may take on strong random-
ness, which will result in more confusing local minima. Thus,
the energy configuration of our RapQCS is with larger fluc-
tuations. The ECG and EOG signals both have large energy
configuration error on the higher energy bound levels. Also,
when we take a closer look at the performance on high-energy
bound in Fig. 8, their performances are all in a small range. This
persuasively demonstrates the superiority of our configurable
QCS architecture to exploit the energy efficiency. Specifically,
we will still use the AvgError and StdError to evaluate the
energy configuration accuracy of our RapQCS method. Since
we already get the absolute energy error on every energy
bound, these two indicators of all four signals can be directly
calculated, as listed in Fig. 11.

Fig. 11 confirms our previous observation. The average abso-
lute errors of ECG and EMG are relatively larger than other
segments, more than 0.05 µJ. Their standard deviations are
also much greater than others. The error of ECG is caused by
the initial energy configuration setup. The EEG signal is with
less average error and standard deviation than other signals,
because the EEG has less energy configuration deviation on the
larger energy level. Although there are some impacts caused
by those factors, the average error rate of our results is only

Fig. 11. Absolute energy configuration error of all four biosignals.
AvgError presents the average absolute energy configuration error over
all energy bounds. StdError presents the standard deviation of absolute
energy configuration error over all energy bounds.

Fig. 12. Run-time comparison between RapQCS algorithm and brute
force algorithm. (a) ECG. (b) EEG. (c) EMG. (d) EOG.

TABLE V
RUN TIME SPEEDUP BETWEEN BRUTE FORCE AND RAPQCS

ALGORITHM

about 0.16 µJ, which is strongly supports the excellent energy
accuracy of our RapQCS algorithm.

3) Run Time Analysis: Although the brute force method
can find the optimal solution in P–E space, its huge computa-
tional burden is a main obstacle for practical applications. In
this experiment, we will continue to explore the run time con-
trasts between the RapQCS method and brute force method.
Also, we set energy bound on every energy level to do a com-
prehensive comparison. Related run time graphs are illustrated
in Fig. 12. Because the run time difference between these two
methods is large, about three orders of magnitude difference,
we use the log axis of run time to show clearer details.

From Fig. 12, the run time of the brute force algorithm is
increasing all the time. Its searching space first extends with a
dramatically fast speed when energy bound is less than 1 µJ.
Then run time increases by a small speed after energy bound
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Fig. 13. Reconstruction results of all four biosignals on E0 = 3.6 µJ.
(a) ECG. (b) EEG. (c) EMG. (d) EOG.

1 µJ. Because we have no information on the energy bound
value ahead of time, when we get the energy bound, the brute
force method must search all the subspace, where energy is less
than the given energy bound. However, our RapQCS method
starts from its optimal initial configuration. So its solution can
usually be found in several searching steps. This is a critical
time-reducing factor. Like APE and TOenhance in Experiment
C -1 , we will introduce Arun and Speeduprun to calculate the

TABLE VI
COMPARISON OF CONFIGURATION, ENERGY, AND PERFORMANCE

BETWEEN RAPQCS AND OPTIMAL RECONSTRUCTION

The energy bound setup is E0 = 3.6 µJ.

speedup quantitatively. Arun refers to the area between the run
time curve and energy bound axis

Arun =
∑
i

Srun(i) (28)

where Srun(i) is the trapezoidal area between two adjacent
points in the run time curve and energy bound axis in the run-
time–energy-bound axis, not the log run time axis as shown in
Fig. 12. Therefore, we can define the time speedup as follows:

Speeduprun =
Arun(Brute Force)
Arun(RapQCS)

. (29)

Table V shows the speedup of four biosignals. The speedup
in all cases is more than 150 times without significant differ-
ences. This is because the run time of four biosignals using
the brute force algorithm is similar. Our RapQCS method’s run
time fluctuates with a rising trend due to the initial energy con-
figuration. Thus, the speedups have small waves. It is firmly
demonstrated that our RapQCS algorithm provides significant
improvement to the run time.

4) Case Study: In experiment D-1 , we see the relation-
ship between the performance of RapQCS’s curve and Pareto’s
curve. In this experiment, we will take a closer look at the
reconstruction results of our RapQCS algorithm, comparing
them with an optimal solution and ground truth. The optimal
solution indicates the optimal result from applying brute force
to the P–E space, while ground truth is the original input signal.
For a better comparison, we set an energy bound E0 = 3.6 µJ.
Their reconstruction results are shown in Fig. 13.

In Fig. 13, the blue line is the original input biosignal, the
red line is our RapQCS’s result and the green line is the recon-
struction querying from the brute force curve. For all four
biosignals, the patterns from the RapQCS algorithm and brute
force curve are very similar to each other. We cannot directly
identify which performance is better between the two methods.
They all approximate to the ground truth closely. Therefore, we
investigate their detailed information, the energy configuration,
and performance, as listed in Table VI.

We observe that the absolute performance error rates of the
four signals are all below 6%. This demonstrates the similar
reconstruction signals between our RapQCS case and optimal
case. For EMG, although the performance difference of the
two reconstructions is only 3.6%, their own performances are
both larger than the other three signals, according to Table VI.
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Overall, it is strongly supported that our RapQCS algorithm can
quickly approximate the optimal P–E tradeoff.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a configurable QCS architecture,
which jointly considers the configuration of sampling rate and
quantization in its framework to further more optimize the CS
process in real-life applications. Through a case study on the
application of BSNs, our experimental results indicate that the
configurable QCS architecture can provide more than 66% P–
E tradeoff gain than the traditional CS architecture. Also, we
proposed a rapid configuration algorithm, RapQCS, for the
configurable QCS architecture. In experiments, our proposed
RapQCS algorithm can reach more than 150× speedup, while
only decreasing the signal fidelity by 2.32%.

In the future, we will further explore the design space within
the configurable QCS architecture. For example, in addition to
the bit resolution, we will also investigate the nonuniform quan-
tization strategies. Also, we will investigate better construction
algorithms and transformation basis for complex signals, such
as the EMG signal in this experiment.
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