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Abstract—Biometric authentication offers advantages over current security practices. Unlike keys and tokens, biometrics are never

lost or stolen. Unlike passwords, biometrics cannot be forgotten. However, existing biometric systems are with controversy: once

divulged, they are compromised forever. To this end, this paper explores a truly cancelable brain-based biometric system for the first

time. Specifically, we present a new psychophysiological protocol via non-volitional brain response for trustworthy user authentication,

with an application example of smart headwear. More specifically, we address the following research challenges in a theoretical and

experimental combined manner: (1) how to generate reliable brain responses with sophisticated visual stimuli; (2) how to acquire

effective brain response and analyze unique features in them for authentication; and (3) how to reset and change brain biometrics when

the current biometric credential is divulged. To evaluate the performance of the proposed system, we conducted a pilot study and

achieved an f-score accuracy of 95.46 percent and equal error rate (EER) of 2.503 percent, thereby demonstrating the potential

feasibility of neurofeedback based biometrics for smart headwear applications. Further, the cancelability study proves the effectiveness

of the reset brain password. To the best of our knowledge, it is the first in-depth research study on truly cancelable brain biometrics.

Index Terms—Head-mounted display, event-related potential (ERP), cancelable brain biometrics, mobile authentication

Ç

1 INTRODUCTION

IN recent years, biometric authentication is taking over
traditional passwords or PIN based authentication in

mobile and wearable applications because of identifica-
tion accuracy, convenience and seamless integration with
personal devices. However, existing biometrics, such as
fingerprint and face, are prone to being hacked in every-
day life or social media. For example, the Chaos Com-
puter Club announced that one of its members had been
able to replicate the fingerprint of German Minister of
Defense Ursula von der Leyen, using only photographs
taken of her finger [1]. Biometrics are unique to individ-
ual. Different from traditional passwords, once such bio-
metric credentials are damaged or counterfeited, the user
cannot cancel the pre-stored credentials or reset them
with a different biometric input.

How to design a truly cancelable biometric system is a
long and historical topic in the biometric research com-
munity. Cancelable biometrics are challenging because
stability and cancelability in biometrics are at odds with
each other. Stability requires that biometric traits are

immutable and hard to change; cancelability require that
biometric traits are erasable and easy to change. Accord-
ing to our literature review, existing works on cancelable
biometrics mainly focus on “soft cancellation”, which
means the biometric system only uses and saves trans-
formed biometric credentials, such as images with ran-
dom projection, in the database. In other words, once
biometric information is divulged, users can generate a
new biometric template with a different transformation
approach. For example, Paul et al. [2] introduced a cancel-
able template generation algorithm, when previously
transformed template is stolen, that produces new trans-
formed biometric templates. The algorithm can make new
templates unlinkable to the previous compromised tem-
plate. Nevertheless, this soft-cancellation approach only
works in case of database breaches. If the original biomet-
rics are compromised (e.g., compromising raw fingerprint
patterns in a photograph), it still results in permanent
biometric compromise. Therefore, to address the funda-
mental limitation of biometrics, it is necessary to explore
a new biometric approach for “hard cancellation”.

In recent years, physiological activities from human
organs (e.g., brains [3]) receive increasing attention in bio-
metric communities. The advantage of brain electric activity
based biometrics is that they are biologically unique and
less prone to forgery because of the dynamics of brain
responses. For example, event-related potential (ERP) brain-
wave is one type of brain electrical signals and can be
changed once different visual stimuli are presented [4]. This
special feature of brain response offers the potential to
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design a truly cancelable biometrics, referring to “hard-can-
cellation”. For example, if an ERP brainwave is produced in
response to a series of images, that ERP brainwave can be
canceled, and a new ERP brainwave can be generated in
response to another series of image stimuli.

Here, we argue that the most secure cryptographic cre-
dential can be obtained by ERP brainwave signals. By defini-
tion, ERP is one of the brain biometric measures that are
related to individual-specific characteristics. Besides its
unique property of hard-cancellation, ERP also possesses
another superior attribute compared with traditional bio-
metrics. While conventional anatomical and behavioral bio-
metrics, such as a fingerprint, voice, stroke, and gait, are not
confidential to an individual or can easily be altered for imi-
tation [5], [6], ERP biometrics are highly secure; one cannot
reproduce or copy other person’s mental pass-phrase. More-
over, it is non-revealable and naturally less prone to spoofing
and counterfeiting [7]. In summary, the ERP-based brain-
wave biometrics stand out with the following advantages:

� Secure: Traditional brainwaves biometrics which
requires users to create thought patterns to generate
the corresponding brainwave credentials [8]. In this
case, brainwave credentials are consciously con-
trolled by users, which can be revealed either pur-
posely or unintentionally [9]. Instead, ERP is the
non-volitional and involuntary brain response. This
mechanism conceals conspicuous interactions and
provides better security, i.e., a user himself even has
no control of ERP generations.

� Cancelable: Part of what makes each brain unique is
their knowledge and memories. The brain network
that manages forming and accessing memories is
large, spans across many anatomical areas [10]. This
provides a potential large capacity of various brain
ERP responses. Therefore, if ERP template database
is breached, new user’s ERP credentials are possible
to be generated by different stimuli sets. Notes that
ERP biometrics also requires no memorization bur-
den on users as other traditional biometrics (e.g.,
PIN, graphical pattern).

Based on these arguments, we propose a new psycho-
physiological approach for secure and trustworthy user
authentication in a head-mounted display (HMD). An
HMD is a computerized, information viewing device that is
worn on the head. It consists a small display optic in front
of eyes, which covers the entire field of view of the user and
produces an imaginary screen that appears to be positioned
away from eyes. Since both ERP acquisition sensor and
HMD are mounted on the head (see Section 3 later), it is
natural to employ ERP biometrics for the authentication of
smart headwear.

In this work, we study ERP, a non-volitional and invol-
untary brainwave response to a specific sensory, cognitive,
or visual stimulation, for HMD authentication. To generate
distinct ERP patterns for biometric applications, we utilize a
visual stimuli design consisting of the imagery patterns of
animal, human face, and text as examples. The brain activity
data are acquired from a lightweight wearable brain-com-
puter interface with three channels (i.e., P1, Pz, and P4), and
the features are extracted from multiple models, such as an

autoregressive (AR) model, power spectral density (PSD),
and eigenvector. Then, the feature vectors are classified via
support vector machine. Our main challenge is when the
ERP credential is divulged, what is the effective strategy to
reset and generate new and secure ERPs. In this study, we
present a novel stimuli update strategy that updates the in-
use stimuli to evoke new stable ERPs. In analogy to the case
where the user is not allowed to use a password that is too
close to a previous selection, we characterize the sequence
of visual stimuli in a joint spatio-temporal domain and
choose the ERP with the maximum proposed spatio-tempo-
ral warping distance as the new credential. As a result, the
original and newly generated “brain passwords” are dispa-
rate that the original ERP cannot be cross-matched to access
the system configured with new ERP credentials. Also, the
system maintains stability in this way as the new ERP
retains immutability until it is divulged again. To validate
the proposed approach, we further conduct a pilot study to
evaluate the system security via f-score accuracy (f-1), half
total error rate (HTER), receiver operating characteristic
curve (ROC), equal error rate (EER), and the time efficiency.
With 179 adult participants, our system achieves the f-score
accuracy of 95.46 percent, HTER of 2.261 percent, and EER
of 2.503 percent. The cancelability evaluation proves that
our stimuli update strategy is effective in revoking old ERP
and reissuing new ERP derived from the same physical
traits without degrading the authentication performance.
Also, the unlinkability between old and new ERPs is dis-
cussed in this study.

To the best of our knowledge, this is the first in-depth
study to explore secure and truly cancelable biometrics for
user authentication. In sum, there are three contributions in
our work:

� We propose a secure and truly cancelable ERP-based
authentication protocol with its application for smart
headwears. We study a sophisticated brain response
model and develop an end-to-end brain biometric
system integrated with a head-worn device.

� We study a joint spatio-temporal domain analysis-
based stimuli update strategy to achieve the cancelabil-
ity of our proposed biometric protocol.We empirically
investigate the biometric capacity of brain response.

� We validate the feasibility and effectiveness of our
proposed system with multi-session pilot studies,
including the performance study, cancelability study
and longitudinal study in different user scenarios.

2 BACKGROUND AND THEORY

2.1 HMD Authentication

2.1.1 Significance of HMD

In recent years, HMDs have been widely developed and
improved for a variety of purposes. Main applications
include virtual reality (VR) for simulation of user’s presence
in artificial environments (Samsung VR [11]) and realistic
experience of 3D games (PlayStation VR [12]). Also, some
HMDs provide an augmented reality (AR) to integrate digi-
tal information with user’s real-world environment (Google
Glass [13]), medical visualization for surgeon’s natural view
of the operation [14], and military simulation and training
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for either dangerous or costly situation [15]. According to
the analysts [16], [17], the HMD market is expected to reach
up to USD 15.25 billion by 2020.

2.1.2 Authentication Challenges

As the market prospects grow substantially, authentication
issues for smart headwear have also drawn wide atten-
tion [18]. For all personal devices, secure authentication is
vital as they store an enormous amount of information about
user’s privacy. Particularly, in wearable devices, the infor-
mation is even more privacy-sensitive than that of mobile
phones. For instance, an optical HMDwith a built-in camera,
like Google Glass, can record everything that a user is star-
ing. If an unauthorized access is allowed, this could result in
a leakage of user’s financial and health information.

To date, existing authentication approached for HMD are
limited in multiple aspects. Since HMDs are lack of either
physical keyboards or touchscreen, current authentication
systems in HDM often rely on additional mobile devices,
which must be carried along, registered, and paired via a
wireless connection (e.g., Bluetooth). For hands-off devices,
this authentication mechanism is not only inconvenient but
also vulnerable to hacking if the paired device is lost or sto-
len. Moreover, Bluetooth connection with the smartphone
could be another critical security flaw [19]. In fact, modern
technological advance provides better security mechanisms
using biometrics, such as eye blinking [20], head move-
ment [21], and hand gesture [22] for authentication in
HMD. Yet, addressed methods are not perfectly trustworthy
because a majority of biometrics can be surreptitiously
duplicated or adversely revealed by attackers [23].

2.2 Brain Response to Visual Stimuli

2.2.1 ERP Rationale

ERP is a stereotyped brainwave response to a specific sen-
sory, cognitive, or motor event. Part of what makes each
human unique is their memory. No two people have had
exactly the same experiences. Importantly, no two people
interpret the similar events in exactly the same way. Each
person’s interpretation of an event is based on their seman-
tic memory, a part of memory that includes a person’s
knowledge about what images depict and how they relate
to own experiences [24]. Thus, semantic memory is individ-
ually unique in this way, and the activity of semantic mem-
ory is visible in the scalp-recorded ERP, as shown in Fig. 1.

2.2.2 Characteristics of ERP

Cancelable. In traditional authentication systems, users can
easily replace the password when their credential is

divulged. As an analogy to this, we argue that hard-cancel-
lation can be achieved with ERP biometrics by changing
visual stimuli. No person has exactly the same experience
and memory on different events. Since the ERP is a stereo-
typed response to a particular event, we claim that the
change of the event can alter the characteristics (e.g., shape,
occurrence duration) of individual’s ERP signal and provide
new ERP signatures for the password reset.

Stable. Electroencephalogram (EEG) is a type of brainwaves
that is often collected without stimulation. Therefore, the per-
formance of EEG biometrics could be highly unstable as it
depends on individual’s emotional and physical states at the
moment of authentication. Moreover, Ruiz-Blondet et al. [25]
demonstrated typical EEG signals cannot reflect narrow, spe-
cific and cognitive processes as they are not captured time-
locked to any stimulus. In our study, we present much more
stable authentication method by utilizing the ERP signal, a
stimulus-averaged signal that is time-locked to a specific event.

Non-Volitional. In the absence of stimulation, EEG can be
volitionally modulated. For instance, a volitional control of
neural activities can be achieved by real and imagined
movements and cognitive imagery [26]. Thus, without stim-
ulation, EEG can be controlled by conscious thinking of the
user, which denotes that EEG is less secure to be used for
authentication in case that users intentionally disclose their
EEG credentials. In contrast, ERP biometrics are evoked by
the stimulus, and therefore it is not under control of the
user. This characteristic prevents the user from manipulat-
ing the brainwave contents purposely [25].

3 ERP AUTHENTICATION FRAMEWORK

3.1 Framework Overview

Our proposed system comprises three modules: visual stim-
uli selection, ERP signal acquisition, and signal pattern anal-
ysis. Primarily, a series of stimuli are selected according to
our designated stimuli selection strategy. Brainwave signals
are then acquired and averaged into the stimulus-averaged
ERP signal. Then, the ERP signals are filtered, and the fea-
tures are extracted via autoregressive model (AR), power
spectral density (PSD), and eigenvector. Lastly, the classifi-
cation of feature vectors is performed via support vector
machine. The illustration of the ERP-based authentication
system is shown in Fig. 2.

3.2 Visual Stimuli Design

Design Fundamental. To generate effective ERP biosignals,
we use a distinct stimulation protocol that consists of a large
set of various stimuli. As an analogy to a strong personal
identification number (PIN) that requires a mix of numbers,
letters, and special characters, (e.g., 1E@2R!3P), our brain
password design also includes a mixture of various visual
stimuli to enhance the “brain password” strength.

The criterion of stimuli selection is that the chosen stim-
uli must stimulate certain brain areas and reflect certain
functional capabilities of the human brain. In this way, our
brain password can satisfy the design diversity, thus form a
secure and robust credential. As shown in Fig. 3, three spe-
cial areas are existing at the back of the human brain,
including intraparietal sulcus, inferior parietal lobule, and
temporo parietal junction, each of which corresponds to the

Fig. 1. A single ERP signal is elicited by a specific sensory and cognitive
event. ERP is unique for individuals that different people will have dis-
tinct response with the same stimulus.
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dedicated function of human brain. Specifically, intraparie-
tal sulcus controls the declarative memory [27], inferior
parietal lobule processes the face recognition [28], and tem-
poro parietal junction manages the reading comprehen-
sion [29]. When a certain function is evoked, a distinct
characteristic of the brain waveform is exhibited. In our
design, pictures of animal, celebrity human face, and the seg-
ment of texts are selected as the effective stimuli for afore-
mentioned brain areas to process declarative memory, face
recognition, and reading comprehension, respectively. The
examples of three visual stimuli are shown in Fig. 4.

The rationale for choosing pictures of animal for the
declarative memory is that one’s semantic memory on the
appearance of a certain animal is highly individualized [30].
For example, a person who has suffered a spider bite will
react differently to a spider picture than the person who has
never been suffered from the spider. Moreover, the brain
activation of the people with particular emotion to a certain
category of animal is different from the brain activation of
the people who don’t possess such emotional state when
the visual representation of that category of animal is
exposed [30]. As for the human face, neurophysiology stud-
ies [31], [32] prove that the unique subject-specific brain sig-
nals can be obtained during the human face recognition. For
instance, face stimuli elicit a larger peak of the negative
brain potential at 170 ms (N170) compared to the ERP
evoked by non-face stimuli [33]. Furthermore, texts are
used to elicit the semantic memory as it is extremely
unlikely for any two people to have same ability to compre-
hend text. Also, texts are known to elicit a distinctive nega-
tive brain potential for each individual [34].

Visual Stimuli Selection. To choose effective images from
three stimuli types, we require the ERP signal from each
type of stimuli to be distinct from the ones from other types
of stimuli, such that each ERP signal can significantly reflect
the attributes of their corresponding brain areas. Therefore,
we aim at selecting stimuli whose ERP signals can achieve
maximization of the dissimilarity among them. Specifically,
let p(t) be the continuous-time 2D ERP signal and Ts be the
sampling period. The discrete ERP sample for each stimulus
can be written as:

pi ¼ p iTsð Þ; (1)

For the jth ERP signal from animals stimuli, it can be
written as:

aj ¼ pa;j1 ; pa;j2 ; . . . ; pa;jNs

n oT

; j ¼ 1; 2; . . . ; N; (2)

where Ns denotes the number of the sample size in the ERP
signal, and N denotes the total number of the ERP for each
type in the pool of collected data. The superscript a indi-
cates that the signal belongs to the animals stimuli category.
Likewise, the ERP signal from texts and celebrity human
faces can also be written as:

tj ¼ pt;j1 ; pt;j2 ; . . . ; pt;jNs

n oT

; j ¼ 1; 2; . . . ; N; (3)

f j ¼ pf;j1 ; pf;j2 ; . . . ; pf;jNs

n oT

; j ¼ 1; 2; . . . ; N: (4)

The superscripts, t and f , denote the signal belonging to the
texts and faces stimuli category, respectively.

Fig. 3. Certain areas of human brain largely influence certain cognitive
functions.

Fig. 2. An ERP-based HMD authentication system framework is illustrated. (a) When a user attempts to access a head-mounted device (such as a
VR headset or Google Glass), a set of visual stimuli will be displayed on the display optic, and the dry sensors implemented in the device will measure
brain-responses. (b) Obtained brain signals will be processed and analyzed. (c) The ownership will be identified by comparing with pre-stored tem-
plates of the device owner.

Fig. 4. Examples of visual stimuli, including animals, celebrity human
faces, and texts.
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ERP signals corresponding to the same stimulus can be
expressed and mapped as a dot in a high-dimensional
space, where each point has the dimensionality of Ns. For
ease of representation, we depict the geometric relationship
of ERP signals in a 3D space, as depicted in Fig. 5. The ERP
signals from the same type of stimuli are aggregated as a
set, namely, A for animals, T for texts, and F for celebrity
faces. To maximize the diversity among the ERP signals
from different types, we aim to find a triangle, as shown in
Fig. 5, which has the largest perimeter. Thus, the visual
stimuli selection can be formulated as follows:

maximize
i;j;k

ai � tj
�� ��

2
þ ai � fkk k2 þ tj � fk

�� ��
2
; (5)

s.t. ai 2 A; tj 2 T; fk 2 F; i; j; k ¼ 1; 2; . . . ; N: (6)

By solving the above formulation, we can use the solution
set {i; j; k} as the ERP stimuli set.

Password Set Expansion. We can define the size of the ERP
stimuli set by finding the sub-optimal solution with a cer-
tain dimension in Eqs. (5) and (6). This is similar to expand-
ing the PIN password length from “1@a” to “1@a2!b”. In
this study, we define the size of the ERP password set as Np,
where we consider one combination of three stimuli types
(one triangle) as one password set (Np ¼ 1). The perfor-
mance of various Np values are evaluated and discussed in
Section 7.4.7.

4 SYSTEM IMPLEMENTATION

4.1 System Overview

Fig. 6 shows the flowchart of our proposed system. A set of
visual stimuli is selected from the database and displayed
to the user through the VR headset. The generated ERP sig-
nal is extracted and analyzed for the later matching with the
owner record. If they matches, the user is considered as the
owner. Otherwise, she is rejected as the intruder.

4.2 ERP Acquisition Device

To capture the ERP data, our team has developed an ERP
brain sensor headset, which is equipped with dry electro-
des. Such electrodes utilize a set of angled legs and permits
the legs to flex outward under pressure which helps push

aside hair for better contact. The sensors are coated with
metallized paint for conductivity providing low impedance
contact (100-500 kV) to suppress noise in the ERP acquisi-
tion. The headset employs the channel P3, Pz, and P4 (Inter-
national 10� 20 System) with two grounds (Fp1 and Fp2)
and reference on A1 (See Fig. 7). The brain sensor headset
can conveniently collect brainwave signals at the sampling
rate of 1000 Hz. The adoption of 1000Hz sampling rate will
prevent losing any useful brainwave components. First,
some brainwave, such as “high gamma” activity brainwave,
can reach up to approximately 200 Hz [35]. Second, EEG sig-
nal is no perfect sine wave and that it will have significant
harmonic content. Thus, the 1000Hz sampling rate, that is
higher than the Nyquist rate, is an appropriate choice.
Then, the collected data can be saved locally or streamed to
a computer via Bluetooth.

4.3 Electrode Placement

In standard practice, 32 to 64 electrodes are used for ERP
measurement, and the number of electrodes sometimes
raises up to 256 to obtain the detailed information [36].
However, the implementation of multiple electrodes in the
HMDs is problematic due to the heavy weight, low cost-effi-
ciency, and highly complex data acquisition process [23].
Therefore, we customized a sensory headset that is suitable
for HMD applications. Our brain sensor device contains
three channels (i.e., P3, Pz, and P4) on the parietal lobe.

According to previous studies [37], [38], [39], brain-
computer interface (BCI) classification accuracy can be sig-
nificantly increased by utilizing the parietal electrodes P7,
P3, P4, Pz, and P8 because the negative peak of ERPs in
the parietal region is unique compared to other regions.
Also, since the parietal lobe has an important role in the
recollection of episodic memory [40], the parietal electrodes
are highly recommended as an alternative to using the
complete EEG channel set. More importantly, as shown in
Fig. 7a, P3, Pz and P4 are placed on the brain areas
addressed in Section 3.2. Also, since the headband of HMD
is typically placed on the back, these electrodes can be easily
implemented in the headband, providing more convenient
and non-invasive data acquisition process.

4.4 Motion Artifacts Suppression

Motion artifacts generated by the head movement may com-
promise the ERP recordings. However, it is inevitable while

Fig. 5. A geometric illustration on visual stimuli selection. Images of ani-
mals, celebrity human faces, and texts are distributed in the 3D space
as three clusters. We aim to find three dots from three clusters, respec-
tively, that expand the triangle with the maximum perimeter.

Fig. 6. The flowchart of the proposed ERP authentication system. The
neural response is compared with the pre-stored neural record to deter-
mine whether the unknown user is the authentic user.
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wearing smart headwears. In our proposed method, the
automatic epoch rejection removes the data epoch with
extreme artifact noises using measurement statistics includ-
ing mean, standard deviation, skewness, kurtosis, and
median. Then, infinite impulse response filter reduces high-
frequency noises. To further compensate artifact noises, we
applied a channel-based artifact template regression proce-
dure and subsequent spatial filtering approach [41], which
removes the ambulation-related movement artifacts.

5 ERP PROCESSING

5.1 Pre-Processing

Pre-processing is applied to improve the resolution of brain
signals. After obtaining a full EEG waveform, the signal is
segmented from the start to the end of the stimulus hit.
Thus, each ERP segment has a length of 200 milliseconds.
Automatic epoch rejection [42] is applied at the probability
threshold of 2.5 to remove the segments with abnormal elec-
trode activity (e.g., fluctuation triggered by motion or
sounds). Then, four ERP segments of the same type are
averaged into a single stimulus-averaged ERP signal. These
ERP signals of animal, face, and text type are combined into
one vector. Therefore, there is 600 milliseconds stimulus-
averaged ERP template per channel per subject. Then, an
infinite impulse response (IIR) Butterworth filter is
employed to produce a zero phase-shift.

5.2 Feature Extraction

Each channel has 280 feature elements, and the feature vector
of the channel is attached to the feature vector of other chan-
nels. Therefore, the final length of one feature vector is 840.
The following features are extracted for each feature vector:

Autoregressive Model. We utilize three 6th order autore-
gressive (AR) models [43] to extract ERP features. AR model
is advantageous with short data segments because the fre-
quency resolution of AR spectrum is infinite and does not
depend on the length of analyzed data [44]. Since our ERP
signals are short data segments, AR model is suitable for
our system. By definition, the AR model is a linear differ-
ence equation in the time domain:

Xt ¼
Xp
i¼1

aixt�i þ "t; (7)

whereXt is the signal at the sampled point t, p is the order of
the model, ai is the AR coefficient, and "t is an independent

and identically distributed white noise input [45]. To obtain
normalized autoregressive (AR) parameters, we employ the
Yule-Walker method [46], which exploits the approximate of
the autocorrelation data function. Then, the Burg method
[47] is utilized to reduce linear prediction errors. Lastly, the
covariance and modified covariance methods are used to
minimize the forward and backward prediction errors. Since
each model consists six parameters, 24 AR coefficients are
obtained for each channel. With all three channels, there are
72 features attached to the vector.

Power Spectral Density. To accurately detect the spread of
power with respect to frequency, the power spectral density
(PSD) estimate is obtained by the Welch’s overlapped seg-
ment averaging estimator [48]. First, ERP signals are
divided into frames of 128 to utilize periodogram method
for ERP application. The periodogram method is based on
Fourier transform and known as non-parametric spectral
estimation method. Then, the Welch power spectrum esti-
mates the PSD by averaging modified periodograms. We
extract 128 features from the estimates for each channel and
consequently attach 384 features to the feature vector.

Eigenvector. Since the skin electrode interfaces in dry EEG
may induce signal noises, the eigenvector spectral estima-
tion method is used to compensate the effect of the noises.
The eigenvector method is known to provide a suitable res-
olution for artifact corrupted signals by calculating a
pseudo-spectrum estimation, which is defined as [44], [49]:

P ðfÞ ¼ 1PN
j¼iþ1 V H

j eðfÞ
��� ���2=�j

; (8)

where V H
j eðfÞ represents a Fourier transform, N is the

dimension of the eigenvectors, i indicates the integer value
of the dimension of the signal subspace, and �j represents
the eigenvalue of the matrix. ERP signals are divided into
frames of 128, and the pseudo-spectrum is measured by
estimates of the eigenvectors. We extract 128 features for
each channel, and total 384 features are obtained for the fea-
ture vector.

5.3 User Authentication

The user authentication process is described as below. Ini-
tially, owner’s template is stored in the system. Then, the
anonymous user attempts to access the system by wearing
the smart headwear device. After detecting the user pres-
ence, the system provides a series of stimulus and elicits
brain signals of the unknown user. The stimulus-averaged
ERP signal from the corresponding user is then verified
based on the pre-stored templates. During the authentication
process, we employ support vector machine (SVM) with a
radial basis function (RBF) kernel [50] for the classifier. The
choice of the classifier will be further discussed in Section
7.4.5. SVM with RBF kernel enables classification operation
in a high-dimensional, implicit feature space without ever
computing the coordinates of the data in the input space,
where two parameters g and C dominates the kernel func-
tion. g can be seen as the inverse of the radius of influence of
samples selected by the model as support vectors and C
trades off misclassification of training examples against sim-
plicity of the decision surface. In our study, g and C of RBF
function are chosen as 0.001 and 10000, respectively.

Fig. 7. 7(a) shows the standard electrode location in International 10-20
System. The electrode in green represents the reference, the electrodes
in blue are grounds, and the electrodes in red reflect the channels used.
7(b) shows the placement of the Dry EEG Headset.
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6 CANCELABILITY AGAINST ATTACK

Traditionally, once a human biometric, such as iris or finger-
print, is divulged, the authentication system is compro-
mised and no longer safe to use. Comparing with these
biometrics, ERP-based brain password is superior because
the originally stored credential of brainwave can be can-
celed if divulged. In other words, our system updates the
in-use stimuli to avoid any potential risk. In practice, when
a user need to change their password, the system will pres-
ent a large number of images from the pool to the user and
record the brainwave signal, then there is an offline phase
where a new password is chosen corresponding to a subset
of the images where the selection of that subset follows a
stimuli update strategy. In this section, we will deliberate
the stimuli update strategy to cancel ERP credentials.

6.1 Stimuli Update Strategy

The update strategy is illustrated in Fig. 8, where the origi-
nal password design is depicted using real line and the new
one is depicted using dash line. The candidates for new
visual stimuli must satisfy two conditions:

1) the new brain password should achieve comparable
authentication performance comparing with the
original one. Therefore, the new stimuli should also
comprise of images from the three diverse categories
separately.

2) the ERP signals evoked by these images should be
distinct from the ones evoked by the original images,
which is analogical to the case where we are not
allowed to use the previously used passwords when
resetting passwords. In this way, we guarantee the
two passwords are disparate enough that the origi-
nal brain password is not accessible to the system
configured with the new brain password. In other
words, we aim to maintain an extremely low false
acceptance rate by preventing unauthorized access.

As users viewing images sequentially, visual stimuli and
the corresponding ERP signals can be considered as time series
signals, whichwill be later described in Section 7.2 and shown
in Fig. 10. In the meantime, for a specific image, its ERP signal
can be expressed as a dot in high-dimensional space. There-
fore, the time series of ERP signals exhibit spatio-temporal
attribute. To quantify the dissimilarity of ERP signals that are
generated by the original and new selection of images, we
propose a dissimilarity metric, i.e., spatio-temporal warping
distance, and compare the two password designs (i.e., ERP
stimuli sets) in the joint spatio-temporal domain. Our goal is
to find the maximum dissimilarity between two password
design in terms of the spatio-temporal warping distance. The
concept of maximizing the dissimilarity in the joint spatio-
temporal domain in depicted in Fig. 9.

6.2 Dissimilarity Measurement Metric

In the following, we will elaborate the design of spatio-tem-
poral warping distance as the dissimilarity measurement
metric.

Spatial Domain Analysis. suppose the jth images are con-
sidered for both original and new ERP signals, and the ERP
signals can be represented in the form of vectors, as follows:

gj ¼ aTj ; t
T
j ; f

T
j

n oT

¼ pg;j1 ; pg;j2 ; . . . ; pg;j3Ns

n oT

; j ¼ 1; . . . ; N; (9)

egj ¼ eaTj ;etTj ;efTjn oT

¼ epg;j1 ; epg;j2 ; . . . ; epg;j3Ns

n oT

; j ¼ 1; . . . ; N:

(10)

where each element is as defined in Eqs. (2), (3), and (4), and
the superscript g indicates the element belongs to g. Both gj

and egj have the dimension of 3Ns.

Fig. 8. Illustration of stimuli update strategy, where the original password
design is depicted using real line and the new one is depicted using
dash line. The new triangle should also comprise of dots from those
three clusters, while it should also be far away from the original one.

Fig. 10. The time interval between images. Each image flashes for 200
milliseconds, and it takes 200 millisecond to switch to the next image.
This image sequence is shown for four times, and four brain responses
from each image are combined into an aggregated ERP response.

Fig. 9. Illustration of maximizing the dissimilarity in the joint spatio-tem-
poral domain. The original password design is depicted on the left, and
the new one is depicted on the right. The update strategy intends to max-
imize the difference (i.e., the designated distance) between the original
ERP-based biometric credential and the newly generated one.
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For the pair of gj and egj, each element in the vector is
normalized by dividing the sum of all elements in the vec-
tor, written as:

qji ¼
pg;jiP3Ns
i¼1 p

g;j
i

; eqjk ¼ epg;jkP3Ns
k¼1 epg;jk

: (11)

Here, we use qji and eqjk to denote the normalized value, and
the superscript g is removed since there is no ambiguity for
the symbol q and eq. Then we define the cost cik of transport-
ing between ith data from gj, which is qji , and kth data fromegj, which is eqjk. Specifically, we use the euclidean norm for
the cost definition.

The next task is to find a flow, F i; kð Þ ¼ fik, such that the
matching work between two datasets gj and egj will have
the least cost [51]:

minimize
X3Ns

i¼1

X3Ns

k¼1

cikfik; (12)

s:t:
X3Ns

i¼1

qji ¼
X3Ns

k¼1

eqjk; (13)

fik � 0; 1 � i � 3Ns; 1 � k � 3Ns; (14)

X3Ns

k¼1

fik � qji ; 1 � i � 3Ns; (15)

X3Ns

i¼1

fik � eqjk; 1 � k � 3Ns; (16)

X3Ns

i¼1

X3Ns

k¼1

fik ¼ min
X3Ns

i¼1

qji ;
X3Ns

k¼1

eqjk
 !

: (17)

Once the above problem is solved, and we have found the
optimal flow F, the spatial matching (SM) metric is found
as the matching work normalized by the total flow:

SM egj; gj

� � ¼P3Ns
i¼1

P3Ns
k¼1 cikfikP3Ns

i¼1

P3Ns
k¼1 fik

: (18)

Temporal Domain Analysis. Suppose the password set size
Np > 1, which means there are more than one image set
from three clusters, we can incorporate the temporal
domain analysis in addition to the spatial domain analysis.
To measure the similarity between these two sequences of
images that illustrated in Fig. 10, anNp �Np matrixD is cre-
ated, called distance matrix. The value of the ðmth; nthÞ ele-
ment in D represents the distance d fgn; gmð Þ between two
sets of ERP signals fgn and gm. Then the SM defined in
Eq. (18) is adopted as the distance metric, and we can
obtain:

D n;mð Þ ¼ d egn;gmð Þ ¼ SM fgn; gmð Þ: (19)

With the guidance of the distance matrix, the shortest
warped path through the matrix can be derived [52]:

cdðn;mÞ ¼ SM fgn; gmð Þ þmin
cdðn;m� 1Þ
cdðn� 1;mÞ ;
cdðn� 1;m� 1Þ

8<:
1 � n � Np; 1 � m � Np:

(20)

where cdðn;mÞ is the current minimum cumulative distance
for Dðn;mÞ, and the initial setting is cdð0; 0Þ ¼ 0; cdð0;mÞ ¼
cdðn; 0Þ ¼ 1.

After that, the overall minimized cumulative distance
cd Np;Np

� �
can be found. Finally, the spatio-temporal warp-

ing distance is calculated as:

Dist ¼ cdðNp;NpÞ: (21)

Overall, our aim is to find a new design that has the maxi-
mumDist to the original design.

7 PERFORMANCE EVALUATION

7.1 Participants

In the pilot study, ERP signals are obtained from total 179
adult participants with a mean age of 29.85 and standard
deviation of 7.72. These participants are comprised of
undergraduate/graduate students and faculties/staffs from
university, students from high school, and volunteers from
neighborhood with various occupations, all of who had no
brain or ocular diseases. Among 179 participants, 93 of
them are male participants, and 86 of them are female par-
ticipants. Consent forms for participation in the research
study were obtained at the time of the study, and all partici-
pants have received a comprehensive description of the
experimental procedures. As mentioned above, electroen-
cephalography is a safe monitoring method with no side
effects [53]. Moreover, our headset is in dry form that does
not require gel or other fluids. To alleviate possible eye irri-
tation that may occur due to the various stimuli used in the
procedure, we avoided the use of extremely bright colors
and flashing lights.

As described above, the system evaluation relies on a
strategically developed experiment that will involve a
cohort of participants. We hold an existing active IRB proto-
col that allows for recording brainwave from adult human
participants for user authentication. All the evaluations
tightly follow the rule of IRB regulation.

7.2 ERP Acquisition

The general procedure for ERP collection was as follows.
The ERP data collection was conducted in a normal lab
office environment with ambient sounds and noise. People
in the lab office other than participants have no obligation
to keep quiet, instead, they are free to act as normal includ-
ing talking, walking, typing, closing doors, or moving
chairs, etc. Participants were seated on a comfortable chair
wearing the HMD while ERPs were collected. They were
instructed to pay attention to the presented images without
thinking about anything else. In our ERP acquisition proto-
col, three types of images are displayed on the screen in a
certain order. The order of the stimulus presentation is from
Animal, human Face to Text (short for A-F-T). When this
stimuli sequence with certain images repeats for four times,
the acquired EEG signal undergoes the ERP processing
method (see Section 5) and produces a single stimulus-
averaged ERP, which we simply refer to an ERP signal,
for each stimulus type. Each image is flashed for only
200 ms to avoid the use of exploratory eye movements,
and 200 ms interval is applied in between two images to
make each stimulus independent of the previous stimulus
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(see Fig. 10). In our experimental protocol, the acquisition of
ERPs for the animal, human face, and text took approxi-
mately 4.8 seconds. The appropriate duration of stimulus
presentation (equivalent to number of images) is further
investigated in Section 7.4.7.

7.3 Experiment Description

The data are collected in two sessions. The data from the
first session is used to evaluate the system performance and
cancelability, and the data from the second session is used
for a longitudinal study. Among 179 participants, 80 have
participated in the second session. Because some data from
2 participants are damaged, the valid participants for the
longitudinal study is 78 with the average age of 27.36.

As there are total 179 participants, one of the subjects acts
as an owner once while the remaining subjects act as attack-
ers. This process repeats for all subjects. Here, 10-fold cross
validation is used to prevent overfitting. The data set is ran-
domly separated into 10 equal-sized subsets. For each trial,
one of the 10 subsets is used as a test set, and remaining sub-
sets are used as a training set. This cross-validation is
repeated with each of the subsets.

For each session, the data collection task is organized in a
series of 300 images with 100 images for each stimulus type.
As mentioned in Section 7.2, a series of same images repeats
for four times. Thus, there are 25 different images among 100

images for each type. In other words, the number of stimu-
lus-averaged ERP (N) in the pool of each animal, human
face, and text set is 25, which corresponds to the total number
of dots in each cluster. For the authentication, one dot for
every cluster (one triangle) is used for one-set password
(Np = 1), two dots for every cluster (two triangles) are used
for two-set password (Np = 2), and three dots (three triangles)
for every cluster are used for three-set password (Np = 3). The
maximum number of set is N , which is equivalent to 25.
We used the one-set password for all evaluations except for
Section 7.4.7. To produce multiple ERP templates, we repeat
the data collection task 20 times for each participant.

7.4 System Performance

7.4.1 F -Score Accuracy

The accuracy (ACC) [54] is predominantly used for the statis-
tical classification. However, ACC is an inappropriate accu-
racy metrics when negative and positive classes are not
balanced. Thus, to avoid an unbalanced accuracy measure-
ment, we evaluate our system performance based on f-score
accuracy (F1), which is also known as a harmonicmean of pre-
cision and recall. Particularly, f-score accuracy provides out-
standing performance with high negatives and low positives.
Considering the intrinsic unbalance of positive and negative
samples in the biometric security study, f-score accuracy is
preferred for the sake of non-sensitivity to class imbalance.

Mathematically, F1 is defined as follows:

F1 ¼ 2TP

2TP þ FP þ FN
½%�: (22)

where TP is an abbreviation of true positive, FP is a false
positive, and FN represents a false negative.

Figure 11a depicts the f-score comparison among various
stimulus types. As shown, A-F-T indicates the combination
of animal, face, and text stimuli that is designed based on
our visual stimuli model (see Section 3.2). The stimuli for ani-
mal, face, and text types are identical to the pictures used in
A-F-T. Among four types, A-F-T achieves the best accuracy
of 95.46 percent with the least standard deviation (STD) of
5.42 percent. The accuracy of A-F-T is higher than that of ani-
mal, face, and text stimuli by 4.43, 11.67, and 14.48 percent,
respectively. Moreover, the STD of A-F-T is lower than other
three types by 2.13, 15.28, and 12.67 percent, respectively.
The results prove that our visual stimuli model improves
security and robustness of the brain password by satisfying
the design diversity.

We compared our system with the widely used commer-
cial fingerprint scanning system. During the daily finger-
print authentication in mobile devices, usually only partial
area of the fingerprint will be scanned by the sensor [55].
According to references [56], [57], partial coverage area of
50 percent can achieve around 96 percent accuracy tested
on both FVC2002 DB2 [58] and NIST SD30 [59] database.
While our system achieves 95.46 percent average accuracy,
which is comparable to the performance of partial finger-
print scanning, and hence applicable in practice.

7.4.2 Half Total Error Rate

Half total error rate (HTER) is a metric method that is
widely used in brain biometric literature [60], [61]. It

Fig. 11. Performance comparison among different stimulus type. A-F-T
indicates the combination of animal, face, and text stimulus type.
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measures the detection performance by averaging the false
rejection rate and the false acceptance rate:

HTER ¼ FARþ FRR

2
½%�; (23)

where FAR refers to the false accept rate, an ability of a non-
authorized user to access a system, and FRR is the false
rejection rate that occurs when a user is not matched to own
biometrics profile [62].

In brief, our A-F-T has the average FRR of 4.30 percent
with the average FAR value of 0.22 percent. The average
HTER value is 2.26 percent, and its STD is 3.53 percent. FAR
value is lower than FRRvalue because our authentication sce-
nario contains more log-in attempts of the attacks than the
owner’s attempts. In Fig. 11b, the HTER of four stimuli types
are illustrated. The performance of A-F-T outperforms other
three types as A-F-T has lower HTER than the animal by 2.43
percent, face by 5.97 percent, and the text by 7.62 percent.
These HTER results conform to the previous f-score compar-
ison in Fig. 11a. Moreover, the STD of A-F-T is lower than the
STD of animal, face, and text by 0.73 percent, 7.45 percent,
and 6.58 percent, respectively. A relative small HTER and
STD of A-F-T prove that our visual stimuli design improves
the universality of brain biometrics upon 20 subjects.

7.4.3 Receiver Operating Characteristic Curve

For a comprehensive evaluation of the system performance, a
receiver operating characteristic curve (ROC) is investigated.
By definition, it visualizes the sensitivity or TPR (true positive
rate) against FPR (false positive rate) as the threshold is var-
ied. As the curve follows the top-left portion of the graph, the
system has a high sensitivity and specificity and ismore accu-
rate. In Fig. 12, the average ROC curve of A-F-T, animal, face,
and text stimulus type are plotted. Among four curves, A-F-T
follows the most upper-left portion of the graph, indicating
that our system is robust and feasible.

7.4.4 Equal Error Rate

The equal error rate (EER), a rate that corresponds to an
equal probability of an acceptance error and rejection error,
can be derived from the average ROC curve. Specifically,
the x-axis value of intersection point between the curve and
the diagonal of the unit square is known as EER. More spe-
cifically, the EER value of A-F-T is 2:503� 0:05% and the

EER of animal, face, and text are 3:114� 0:06%,
5:559� 0:08%, and 7:517� 0:1% with a 95 percent confi-
dence interval [63], respectively (derived from Fig. 12).
Again, A-F-T achieves lowest EER, which indicates that our
visual stimuli model increases the system performance.

7.4.5 Classifier Impact

We compared four different classification techniques to
select the best classifier for our application, including sup-
port vector machine (SVM) with a linear kernel, a polyno-
mial kernel, a radial basis function (RBF) kernel, and the
bootstrap aggregated (bagged) trees. Bagged trees is a clas-
sification method that improves the predicative accuracy by
creating multiple versions of a predictor and using these
predictors to obtain an aggregated predictor [64], [65].
Parameters of each classifier are tuned to achieve the best
performance. g and C of RBF function are 0.001 and 10000,
respectively. For bagged trees, maximum number of splits
is 20, and the number of learners is 30. The F1 and HTER
results for A-F-T are shown in Table 1. The SVM with RBF
kernel showed the best performance, which is adopted for
the classification.

7.4.6 One-Class Classification

In our user authentication described in Section 5.3, binary-
class classification is adopted by taking the training samples
from would-be attackers as well as the ones from the
authentic user. To further prove the robustness of our
approach, we model the authentication as a one-class classi-
fication that training the classifier with the patterns of just
the legal user and testing it with the data from all the
would-be impostors. One-class SVM, specifically, the sup-
port vector data description approach [66] is adopted for
the classification by using the LibSVM tool [67]. The F1 and
HTER results for A-F-T are 93.46 percent with STD of 6.27
and 4.18 percent with STD of 4.85 percent, respectively. The
results show our system has a reasonable performance with
the one-class classifier.

7.4.7 Optimization of Authentication Time Efficiency

Since our authentication system targets for the smart head-
wear application, the optimization of the authentication
time is essential. Thus, we examine several methods to opti-
mize the authentication time efficiency.

Stimulus Duration. During the experiment, each stimulus
is presented for 200 ms, and the black screen is displayed for
200 ms to separate each stimulus. By discovering the optimal
stimulus duration, the authentication time can be reduced.
As shown in Fig. 13a, the accuracy declines by 3.5 percent
and the STD increases by 4.37 percent as the stimulus dura-
tion increases from 200 ms to 400 ms. Similarly, when the

Fig. 12. The average receiver operating characteristic curve. The equal
error rate, a rate that corresponds to an equal probability of true positive
rate and false positive rate, is the x-value of intersection point between
the curve and the diagonal of the unit square.

TABLE 1
The Different Classifiers Comparison

bagged trees linear polynomial RBF

F1 (%) 90.77 89.84 93.18 95.46
HTER (%) 8.254 9.36 4.93 2.26
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duration of stimulus exceeds 600 ms, the accuracy reaches
85.46 percent, which is 10 percent lower than the accuracy of
200 ms. Also, the STD increases by 7.4 percent at 600 ms. The
reason for this phenomenon is because stimulus presented
for more than 200 ms will induce exploratory eye move-
ments, which in some extent will compromise the collected
EEG signal dedicated as a response to the visual stimuli.
Although the accuracy increases with decreasing duration,
the stimulus duration less than 200 ms is too instantaneous
for the average human reaction time to the onset of a visual
stimulus [68]. Thus, the optimal stimulus duration is 200ms.

Password Set. As described in Section 3.2, we can optimize
the authentication time efficiency by adjusting the size of
password set (see Fig. 13b). For one-set password (Np = 1),
the system accuracy reaches 95.46 percent. When two-set
password (Np = 2) is used, the accuracy increases by 1.56
percent and the STD decreases by 3.01 percent. When three-
set password (Np = 3) is employed, the accuracy is increased
by 0.71 percent and the STD is reduced by 0.4 percent. This
result indicates that the accuracy and stability of the system
increase as the size of password increases.

Time Efficiency. As the stimulus duration and size of pass-
word set increase, the authentication time increases as well.
In brief, the optimal time can be calculated as:

Time ðsÞ ¼ Np 	Navg 	 3 ðstimulus durationþ 0:20Þ; (24)

where Np indicates the size of password set, and Navg repre-
sents the number of the segments that are averaged into a
stimulus-averaged ERP, which is 4. In the formula, the inter-
val duration (0.20 second) and the number of stimulus type
(3 for animal, face, and text) are included. With the optimal
stimulus duration (200 ms), one-set password takes approx-
imately 4.80 seconds, two-set password takes 9.60 seconds,
and three-set password takes 14.4 seconds for the authenti-
cation time. Also, more computation is necessary for higher
Np value. Since the authentication for smart headwear devi-
ces must be reasonably fast, we select the one-set password
(Np = 1) and the optimized time is 4.80 seconds.

8 CANCELABILITY ANALYSIS

In order to properly revoke and reissue the credential, the
cancelability must satisfy two properties: revocability and

unlinkability [69]. First, when a biometric database is
breached, the user should be able to revoke old credential
and reissue new credential derived from the same physio-
logical trait. In other words, the system should accept new
brain password while rejecting the original password with-
out degrading the authentication performance. Second, the
adversary should not be able to link or cross-match old cre-
dentials to newly generated credential. Thus, the correlation
between old and new biometric instance must be low.
To prove that our ERP biometric is truly cancelable, we
evaluate the cancelability based on the aforementioned two
properties.

8.1 Revocability

Objectives. In this section, we verify the revocability of ERP
in two ways. First, we demonstrate that new ERP generated
according to our stimuli update strategy has a high accuracy
to serve as a new brain password. Second, we prove that
new ERP is distinguished from the original ERP, thereby
corroborating its robustness against the attack using the
original password.

Experiment Descriptions. The updated stimuli set is given
to the participants, and 20 new ERP templates are obtained
per subject. Again, each subject acts as an owner and the
rest act as an attacker. To demonstrate the effectiveness of
newly generated ERP, we compare the recall, precision, and
f-score of the updated stimuli set to those of the original
stimuli set. For the second objective, we assume the follow-
ing scenario. Once user’s original credential is counter-
feited, the user generates new ERPs according to the stimuli
update strategy and updates the user profile. The attacker
uses the replication of user’s original ERP to access the sys-
tem configured with the new ERP. For evaluation, we ran-
domly select a portion of new ERPs to create the updated
profile and test the performance by authenticating with the
remaining new ERP templates and original ERP templates
from Section 7.4. We employ SVM with a 10-fold cross-vali-
dation. This procedure repeats for each subject, and the FRR
and FAR are calculated. Lastly, we average the FRR and
FAR of all subjects.

Results and Discussions. The evaluation results are shown
in Table 2, where it reveals that the original visual stimuli
will result in true negatives when adopting them to a sys-
tem configured with new stimuli. The new ERP credential
obtained via stimuli update strategy provides the recall,
precision, and f-score of 94.64, 95.62 and 94.87, correspond-
ingly. The STD are 6.03, 5.11, and 3.69 percent. Although the
recall, precision, and f-score of the original ERPs are
slightly higher by 1.04, 0.29, and 0.59 percent, these discrep-
ancies are not significant, and the new credential still yields
high recall, precision, and f-score value. Therefore, the
updated strategy does not degrade our system perfor-
mance. As shown in Table 3, our second revocability task

Fig. 13. The authentication time optimization via stimulus duration and
password length adjustment.

TABLE 2
Performance Table for Each Stimuli Set

Trial Recall (%) Precision (%) F-score (%)

Original ERP 95.68 � 6.89 95.91 � 4.91 95.46 � 5.42
New ERP 94.64 � 6.03 95.62 � 5.11 94.87 � 3.69
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achieves a high recall and precision value of 99.20 and 99.05
percent with low FRR and FAR of 0.775 and 0.789 percent.

Fig. 14 illustrates the visual comparison of the original
and new ERP signals for each stimuli type. In the figure, a
data smoothing is applied to depict a general trend of the
brainwave and to minimize the noises. To smooth the pat-
tern, we employed a moving average filter that provides the
average of every 15 consecutive samples of the waveform.
Data points are equally weighted and contain 1/15 of the
total average. Brain responses from the original stimuli set
are colored in blue, and the signals in response to the new
stimuli set are colored in green. Dashed box in the graph
represents the stimulus duration. In comparison to the
ERPs at post-stimulus period, the signals during the stimu-
lus hit, particularly from 0 ms to 100 ms, show a larger dis-
crepancy. This discrepancy provides evidentiary support of
our hypothesis and render our argument valid; our stimuli
update strategy can stimulate distinctively different ERP
signals. To put it another way, replicated original credential
is unlikely to be used to access the system configured with
new credential. This result validates our two hypotheses.
First, the ERP biometrics are truly cancelable as the change
of the visual stimulus alters the characteristics of ERP. As
mentioned previously, the reason is that no one has exactly
the same memory on different images. For instance, the per-
son’s memory of the spider is highly likely to be different
from the memory of the dog. Hence, changing the stimulus
from the spider picture to the dog image elicits new charac-
teristics in ERP. Second, our stimuli update strategy ampli-
fies such alteration by finding the maximum dissimilarity
among ERPs in response to a larger pool of images. For
example, if the dissimilarity between the ERPs from the spi-
der image and lion image is larger than the dissimilarity
between the ERPs from the spider image and dog image,
we incorporate the lion image to evoke new ERP. In this

way, the new ERP is truly distinct from the original ERP,
and the system maintains stability after the stimuli update.

8.2 Unlinkability

Objectives. Proving unlinkability between the old and new
ERPs is equivalent to demonstrating the independence of
each other [69], [70]. In this section, we verify the indepen-
dence between the original and new ERP by performing the
correlation test with the original and new ERP features.
Here, we quantify the correlation by calculating the
Pearson’s correlation coefficient, a measure of the degree of
linear relationship between two variables. If the coefficient
is close to zero, there is no discernible relationship between
fluctuations of the variables.

Experiment Descriptions. We employ the original and new
ERP data from Section 8.1. In this experiment, we specifi-
cally use the Pearson’s correlation coefficient [71], R, which
is defined by the following:

Ri;j ¼ 1

N � 1

XN
n¼1

ðain � mai
Þ

sai

ðbjn � mbj
Þ

sbj

; (25)

where ain is a feature element of an original ERP template and
bjn is a feature element for a new ERP template. mai

and sai

represent the mean and STD of all feature elements of the cor-
responding original ERP template while mbj

and sbj signify
the mean and STD of the elements of the new ERP template.
Every template is composed of 840 feature elements as men-
tioned in Section 5.2, and thusN equals to 840.However, using
common feature extraction methods results in a similar trend
in all ERP templates and increases the overall correlation coef-
ficient value. Thus, before applying the Pearson’s correlation
coefficient, we suppress the feature trend by normalizing each
templatewith themean of all templates, obtained from the cor-
responding stimuli set and subject, as ameasure of scale.

NormalizedðAiÞ ¼ Ai

1
k

Pk
p¼1 Ap

; 1 � i � k; (26)

NormalizedðBjÞ ¼ Bj

1
k

Pk
p¼1 Bp

; 1 � j � k; (27)

TABLE 3
Authentication of the System Configured with the New ERP

Recall (%) Precision (%) FRR (%) FAR (%)

99.20 � 1.829 99.05 � 2.034 0.775 � 1.805 0.789 � 1.775

Fig. 14. The average ERP of 6 subjects. The signal in blue is evoked by the original stimuli set, and the signals in green are elicited by newly gener-
ated stimuli set. Dashed lines in red represent the duration of the stimulus hit.
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where Ai and Bj represent the original and new ERP tem-
plate, respectively. In terms of the Eq. (25), normalized(Ai)
consists of ain with 1 � n � N . Similarly, normalized(Bj) is
composed of bjn with 1 � n � N . Also, k is the total number
of templates for each subject experimented on the same
stimuli set, which is equivalent to 20 because each subject
has 20 normalized ERP templates for one stimuli set. The
correlation coefficient, R, is computed by comparing each
normalized template of the old stimuli set with every nor-
malized template of new stimuli set (k� k comparison).
Then, we combine the frequency of the correlation coeffi-
cients of all subjects and graphed them into the histogram
and normal probability plot.

Results and Discussions. The result of the correlation test is
illustrated in Fig. 15. In Fig. 15a, our result forms the Gauss-
ian curve centered at zero, which indicates that the mean of
correlation coefficients is approximately zero. The correla-
tion coefficient of zero signifies no linear relationship
between two variables, and thus the original ERP and
updated ERP are highly independent. At 95 percent confi-
dence interval (a ¼ 0:05), an estimate of the mean is 0.0130
and an estimate of the STD is 0.2212. Moreover, the lower
bound of the confidence intervals for the mean is 0.0040,
and the upper bound is 0.0219. The lower and upper bound
of the confidence intervals for the STD are 0.2151 and
0.2277, respectively. In addition to the frequency distribu-
tion histogram, Fig. 15b shows the normal probability plot
to identify any substantive departure from normality. In
this graph, a straight, diagonal dotted line in red provides
the reference for a perfect normality. The upper end of the
plot bends below the diagonal line while the lower end
bends above that line, forming an S shaped-curve, which
indicates a light-tailedness. In other words, our correlation
results have less variance than expected. In this graph, we

can also observe that approximately 90 percent of the data
has a weak association because the probability from 0.05 to
0.95 ranges from the correlation greater than �0 : 3 to the
correlation less than 0 : 3. The strength of association is con-
sidered small for R less than 0.3 but greater than �0 : 3.
Thereby, we prove the independence between the ERPs
evoked by different stimuli sets and ensure that attackers
are unlikely to link the old ERP to the new ERP.

9 LONGITUDINAL STUDY

Objectives. Stability is essential in the biometrics-based
authentication system because user’s biometric signature
may change over time. Thus, we conduct a longitudinal
study to demonstrate the stability of ERP biometrics. In our
study, both long-term and short-term performances are
evaluated with the reliability change (RC) index. The long-
term performance is observed to investigate whether indi-
vidual’s ERP signal morphs over prolonged periods of time.
The short-term performance also is evaluated to analyze the
effect of stimuli familiarity to the system performance.

Experiment Description. We follow the same experimental
settings as Section 7.4. In the enrollment phase, we randomly
select a part of owner data and use them to create a profile of
the user. Then, we test the performance of the classifier by
authenticating the user with the owner and all attackers.
Here, we refer the authentication test in Section 7.3 as a pre-
trial and re-test for a longitudinal study as a post-trial. Partic-
ipants are experimented every five days expanding five
months after the pre-trial. In this study, we focus on evaluat-
ing three performancemetrics: (1) short-term accuracy (post-
trial after first five days); (2) long-term accuracy (post-trial
after about five months); (3) accuracy stability across the
whole experimental period. For each subject, the profile of
user remains the same and newly collected data are used for
login attempts. Each subject acts as the owner once, and the
rest acts as the attacker. This test repeats for every subject.
Thus, there are total 78 tests for short-term study and 78 tests
for long-term study with each test consisting 77 user
attempts and 77 attacks from each attacker.

Reliability Change Index. To measure the change in the sys-
tem performance over time, we calculate the reliability
change index (RC) for every subject. By definition, it is a sta-
tistical method of estimating significant change. In the pres-
ent study, RC index is defined by the following formula [72]:

RC ¼ ðXpost �XpreÞ
SEdiff

; (28)

SEdiff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSEmÞ2

q
; SEm ¼ Spre

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rxx

p
; (29)

where pre indicates the test from Section 7.4, and post repre-
sents the re-test for either short-term study or long-term
study. Correspondingly,Xpre andXpost denote the individu-
al’s pre-trial and post-trial f-score. SEdiff is the standard
error of the difference between the pre-trial and post-trial
f-scores of the group, and SEm represents the standard
error of the measurement. Spre is the STD of the pre-trial
f-scores of the group. rxx is a test-retest reliability measured
by the Pearson’s correlation coefficient between the pre-trial
and post-trial f-scores of the group. In the current study,
two-sided significance test (a ¼ 0:05, z ¼ 1:96) is used since

Fig. 15. The correlation test between original and new ERP.
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our interest is in the performance stability. The absolute
value of RC index larger than 1.96 indicates a significant
performance change.

Results and discussion
(1) Long/short-term accuracy: The overall performance

change is summarized in Table 4. The f-score is increased
by only 0.02 percent during the short-term study, indicating
that individual’s acquaintance with the stimuli does not
degrade our system performance. The possible reason is
that our stimulus presentation is too fast to properly trigger
a short-term memory, and therefore an intrinsic reaction
from the semantic memory, a portion of long-term memory,
overrides the response from the short-term memory. Con-
versely, the performance is declined by 1.01 percent during
the long-term study. This change is slightly higher than the
change observed in the short-term study. However, it
should be noted that this change is still insignificant.

To statistically analyze the degree of change, we evaluate
the RC indexes and illustrate results in Fig. 16. As observed,
the frequency in y-axis indicates the number of the partici-
pants. The sum of frequencies for each graph is equivalent
to the total number of subjects who have participated in the
corresponding study. In Fig. 16a, all subjects for the short-
term study achieves the RC index greater than �1:96 and
less than 1.96. Thus, no subject experiences a statistically
significant performance degradation, and this result con-
forms to the aforementioned analysis in Table 4. In the long-
term study, only one subject has a statistically significant
f-score decrease as the RC index of the subject is above 1.96.
To be specific, the pre-trial f-score of this subject (Xpre) is
100 percent, and the post-trial f-score of this subject (Xpost)
is 90.28 percent. Yet, considering the time interval between
two trials for the long-term study (142.8 days), the post-trial
performance of 90.28 percent is not considerably low; it is
4.71 percent lower than the overall performance of the

post-trial. Also, the rest 77 subjects have the RC index that is
within the range from �1:96 and 1.96. Thus, we conclude
that our system is relatively stable considering the time
interval and actual post-trial performances.

Fig. 17 visualizes the ERP signals of 6 subjects during the
long-term study. We can see that a data smoothing method,
similar to what we adopted for Fig. 14, is applied to depict a
general trend of the brainwave without noise. The ERP sig-
nals from the pre-trial are colored in blue, and the ERP sig-
nals from the post-trial are colored in green. The dashed
box in the graph represents the stimulus duration. Although
there is a slight shift in position for some waveforms, the
general pattern of pre-trial and post-trial ERP signals are
similar. In particular, the waveforms up to 200 ms have the
closest pattern than the waveforms after 200 ms. This simi-
larity validates that an individual’s brainwave does not
morph rapidly and appreciably over prolonged periods of
time, and shows that our ERP-based authentication system
is stable.

(2) Accuracy stability: The purpose of this accuracy stabil-
ity evaluation with repeated authentication is to check
whether a user will get accustomed to the stimuli and
develop fixed behaviors when the same stimuli were
exposed frequently, which may affect the authentication
performance. The accuracy stability is evaluated by measur-
ing and comparing the post-trial f-scores every five days.
The mean of f-scores measurement is depicted in Fig. 18. In
the five months duration, mean values of f-scores are

TABLE 4
Overall Performance Change (f-Score)

Duration Pre-trial (%) Post-trial (%) Change(%)

Short-term 96.43 � 3.99 96.45 � 4.32 +0.02
Long-term 96.00 � 5.81 94.99 � 6.30 �1.01

Fig. 16. The reliability change test results for the short-term and
long-term studies. The frequency in y-axis indicates the number of the
participants.

Fig. 17. The average ERP of six subjects. The signals in both blue and yellow are evoked by the same stimuli set. However, the time interval between
two ERPs is approximately five months. Dashed lines in red represent the duration of the stimulus hit.
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between 94.99 and 96.00 percent, and the maximum varia-
tion is 1.01 percent. We can see the frequent exposure of
visual stimuli and the large time gap between the first and
last trials has no significant impact on f-scores during the
five months experiment. Therefore, the result verifies that a
user will not develop a fixed behavior towards the authenti-
cation and the ERP biometrics is stable in long-term.

10 USER EXPERIENCE STUDY

All participants are asked to fill in a questionnaire about
their experience of using the ERP-based HMD system. The
survey questions mainly concentrate on the comfort and the
usability of the system. To ensure the objectiveness, the sur-
vey is conducted anonymously and the participants score 1
(strongly disagree) to 5 (strongly agree) for each question.
Table 5 shows the statements and the average scores.

The results show an overall agreement of ERP brain sig-
nal as a secure biometric. Nearly all participants feel com-
fortable when wearing the headsets and are satisfied to use
the system. More importantly, they really believe that the
proposed cancelable biometric is more secure than the cur-
rent authentication practices, and can be seamlessly inte-
grated with VR devices. 95 percent of them are willing to
see this technique commercialized as it is very secure and
convenience in usage. All the high scores show the possibil-
ity of our system to be adopted by users as a new authenti-
cation framework.

11 DISCUSSION

Liveness Detection. To detect and prevent spoofing attacks,
the authentication system must differentiate real biometrics
from counterfeits. Most promising way to distinguish them
is to detect physiological signs of liveness. The methods to
achieve the liveness detection can be subdivided into soft-
ware-based techniques and hardware-based techniques. For
software-based techniques, one approach is to identify a
specific characteristic of fake biometric credentials. For
instance, Galbally et al. [73] distinguishes fabricated finger-
print biometrics using image quality-related measures.
However, the drawback is that this kind of approach may
not be applicable when original biometric signatures are
simply duplicated. Another software-based approach is to
request the user to provide signs of liveness or force user to
interact with the system continuously. These methods, how-
ever, often decrease the user comfort. Hardware-based tech-
niques, on the other hand, utilizes dedicated sensors to
detect dynamic features in real-time. This technique is diffi-
cult to deploy with the static credentials, such as finger-
prints, hand geometry, and iris unless additional hardware
is added to detect other properties of living traits. Extra

sensors, however, may increase the implementation cost
and lower user convenience. For example, Baldisserra
et al. [74] uses an odor sensor to detect liveness for finger-
print-based identification system. Although it is promising
for securing fingerprint scanner, implementing such sensor
adds the cost and is not feasible for smart wearables, which
must be carried along with the user. In contrast, our pro-
posed ERP-based approach is a dynamic biometric creden-
tial, which itself provides the physiological sign of liveness
as the active EEG must always come from living individu-
als. Also, unlike odor biometrics, it is not revealable because
electrodes are kept inside of the smart headwear devices
and completely in contact with user’s head. Additionally,
since the brainwave biometrics can be obtained continu-
ously while wearing, the system can automatically log out
in the absence of brainwaves.

Aging Effect. The effects of aging on biometric authentica-
tion and the solutions to minimize these effects must be
addressed. Most biometrics, such as fingerprint, iris, and
face, spontaneously morph over the course of a lifetime.
However, the aging process is often very slow, and the
degree of alteration is negligible. Similarly, age-related alter-
ations of brainwave have been recognized due to the overall
EEG power decrease, slower alpha frequency, and slight
diminution in P3 amplitude. Yet, they are negligible when
ERPs are obtained from visual stimuli [75]. Thus, the signal
alterations from aging should not significantly affect our sys-
tem performance. Raz et al. [76] also suggest that these
changes reported in many cross-sectional studies could be
overestimated due to inclusion of extreme cases like person
with pre-clinical dementia. Moreover, the degree of changes
varies from person to person. Since such changes are particu-
larly observed in the temporal lobe, one possible solution to
alleviate these effects is to avoid the use of electrodes located
in the temporal regions for authentication purpose. More-
over, as shown in the longitudinal study, a natural mutation
of brain signal does not occur rapidly, therefore the ERP pro-
file update can also be a potential solution.

Privacy Preservation. In the context of the privacy con-
cerns, one natural question is “will this brain biometrics
leak privacy information”? The answer is “No”. Previous
works indicate that brain leakage requires a satisfactory
data, such as high-fidelity brainwaves with a professional

Fig. 18. The variation of the mean of f-scores across the five month
longitudinal study.

TABLE 5
User Experience Questionnaire

No. Questionnaire Statement Score

1 Both the ERP and VR headsets are comfortable
to wear.

4.5

2 The time interval between images is suitable in
practice.

4.1

3 The cancelable brain biometric is more secure
than the traditional ones.

4.5

4 Generally, I am satisfied with the use of the
ERP-based HMD system.

4.3

5 The ERP biometrics will become the secure
and seamlessly integrated authentication for
future VR platform.

4.4

6 I’m willing to purchase this cancelable ERP
technique for more secure and convenient
authentication.

4.7
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device (e.g., BCI2000-64 channels [9]) or invasive measures
by embedding chips into brain [77]. On the contrary, our
system only requires three channels with a small informa-
tion disclosure. Moreover, our system only collects ERP P/
N200 (i.e., within 200 ms post-stimulus onset response),
while most of the semantic memory attacks require the rela-
tively long brainwaves (e.g., non-ERP sections from seconds
to minutes [78]).

12 LIMITATIONS AND FUTURE WORK

In-depth Security Evaluation. Although in general, for any
given visual stimuli, it is not possible for adversaries to
always produce the same ERP as the victim. Whether
attackers can generate similar ERPs to victim over certain
visual stimuli due to the emotion synchrony (e.g., both of
them just watched a same film, shared the similar emotional
feelings, or experienced cooperative work process) is still
unclear. In the next step, we will conduct an in-depth secu-
rity evaluation on the effect of emotion synchrony towards
the adversarial ERP generation.

Further Motion Artifacts Cancellation. Our ERP brainwave-
based authentication system is sensitive to strong motion
artifacts. To further compensate artifact noises, several
motion artifact cancellation methods can be employed.
While our method described in Section 4.4 is effective for
non-continuousmotion artifact noises, it could be vulnerable
when extreme physical activities continue throughout the
authentication. Thus, to counterbalance artifacts from the
continuous gait events, an adaptive independent component
analysis (ICA) mixture model can be applied to parse the
EEG signals into maximally independent components (IC),
which undergoes the component-based template regression
procedure. The feasibility of this approach is proved by the
data collected during the treadmill walking and running. In
addition, our system can incorporate head accelerations to
cancel motion artifacts. With a three-dimensional accelerom-
eter, the system can detect artifacts induced by head move-
ments and remove the brainwave synchronous with the
recorded acceleration above certain threshold [79]. To
describe in a more detailed way, head accelerations are mea-
sured relative to the initial position, and independent com-
ponent analysis (ICA) identifies EEG components that are
statistically independent. Then, components that correlate
with the recorded acceleration above certain threshold are
removed [79]. By doing so, clean signals reconstructed from
the contaminated EEG data can be extracted and used for
authentication credential.

Statistical and Frequency Domain Features. To further rem-
edy the sensitivity to noise, we can include statistical fea-
tures into the feature vectors. The statistical features, such
as mean, median, standard deviation, root mean square,
mean derivative, average first order derivative, skewness,
kurtosis, interquartile range, zero crossing rate, and mean
crossing rate, can be calculated at the primitive level. Since
the frequency domain features are extremely correlated
with variance and standard deviation, we can also employ
energy, dominant frequency, and spectral entropy. Thus, 14
features need to be extracted for each channels, adding 42
features to each feature vector.

Comprehensive Evaluation. Though we have utilized the
Pearson’s correlation analysis for the unlinkability property

assessment, we plan to provide a more comprehensive eval-
uation to prove that the reissued brainwave biometrics is
indeed unlinkable. Specifically, Spearman’s rank order cor-
relation [80], Kendall rank correlation [81], and Hausdorff
distance [82] will be employed for the analysis. At the cur-
rent stage, we validated the feasibility of our brain pass-
word with 179 adult participants, a further study with a
much larger sets of participants to verify the uniqueness
and stability of the brain biometrics is in our plan. Another
promising research direction to pursue is to investigate the
impact of visual stimuli protocols, such as full color versus
black and white, designated visual stimuli under other dif-
ferent categories.

13 RELATED WORK

Headwear Authentication. Several authentication methods
using behavioral biometrics for head-mounted displays
have been researched in the past. For instance, Chauhan
et al. [22] developed a touch gesture-based continuous
authentication for wearable devices like Google Glass.
Although such devices have limited hardware resources,
their results indicate that gesture-based authentication is still
feasible. Similarly, Li et al. [21] proposed an authentication
system for head-worn devices using user’s unique head
movement patterns in response to music. Their approach
was able to accurately authenticate users with an average
true acceptance rate of 95.57 percent. Also, Rogers et al. [20]
have presented the method to identify an HMD user based
on the user’s unconscious blinking and head-movement that
achieves the accuracy of 94 percent. However, such physio-
logical and behavioral characteristics can easily be observed
and thus can be surreptitiously duplicated and counter-
feited. Other existing techniques, such as eye movement bio-
metrics [83], can be conveniently integrated into HMD
devices. However, such physiological and behavioral char-
acteristics are prone to compromise in daily life and thus can
be surreptitiously duplicated and counterfeited.

Authentication using Brainwaves. Most past attempts at neu-
rofeedback based authentication have used EEG as a biomet-
ric measure. For example, Chuang et al. [61] presented an
authentication scheme based on single-channel EEG signals,
demonstrating that brainwave could be successfully
exploited for purposes of subject authentication. Similarly,
Ashby et al. [60] employed EEG signals for person authenti-
cation with ARmodel and power spectral density. However,
since regular EEG is collected without stimulation, EEG is
lack of experimental control. This means that the perfor-
mance of EEG biometrics is highly unstable as it depends on
individual’s condition at the moment of authentication.
Thus, in contrast to previous attempts, we presented more
efficient and feasible solution by utilizing the ERP signal,
which represents a stimulus-averaged signal time-locked to a
specific event. Armstrong et al. [34], Ruiz-Blondet et al. [25],
andGupta et al. [84] adopted ERP as the brain biometrics, but
they never considered the cancelability of the system. While
this work focuses on the biometrics cancelability including
update strategy design and cancelability analysis.

Cancelable Biometric Systems. The common approaches
to generate a cancelable biometric are characterized by
two stages: feature extraction and transformation. Connie
et al. [85] proposed a method which uses existing biometric
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palmprint features with a set of pseudo-random data to gen-
erate a unique discretized code for every individual.
Similarly, Paul et al. [2] developed a cancelable biometric
template generation algorithm using random projection and
transformation-based feature extraction for multi-modal face
and ear biometrics. This approach is unique due to its use of
cancelable multimodality. Further, Ouda et al. [86] exploited
the feature domain transformation for protecting IrisCode.
The feature transformation is accomplished by IrisCode gen-
eration, consistent bits extraction, and cancelable BioCode
generation. This proposed method retains the advantages of
revocability, diversity, and non-invertibility without deterio-
rating the recognition performance. However, these methods
are based on a soft-cancellation, which generates a cancelable
biometric through the alteration and transformation of exist-
ing templates. For the first time, we introduced the notion of
hard-cancellation, a generation of totally new bio-features,
through themanipulation of visual stimuli.

14 CONCLUSION

In this paper, we presented the first study to explore secure
and usable authentication to headwear devices using cancel-
able ERP biometrics. The evaluation results show that our
approach achieves the f-score accuracy of 95.72 percent, half
total error rate (HTER) of 2.261 percent, and equal error rate
(EER) of 2.503 percent. Thus, for the first time, we have vali-
dated the feasibility of using unique, non-volitional compo-
nents of brainwave response for authentication of smart
headwear users. Also,we introduced the notion of cancelabil-
ity to the brainwave biometrics through a novel stimuli
update strategy. A further cancelability analysis in terms of
revocability and unlinkability is conducted to prove the effec-
tiveness of the reissued biometrics credential.
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