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Abstract—Due to the premise of uniqueness and acceptance, fingerprint has been the most adopted biometric technologies in high-

impact applications (e.g., smartphone security, monetary transactions and international-border verification). Although there are an

array of commercial fingerprint scanners across different sensing modalities including optical, capacitive, thermal and ultrasonic,

existing fingerprint technologies are vulnerable to spoofing attacks via fake-finger in Kang et al., 2003. In this paper, we investigate a

new dimension of fingerprint sensing based on the friction-excited sonic wave (in simpler words, ”voice of fingerprint”) from a user

swiping his fingertip on everyday surfaces. Specifically, we develop SonicPrint to leverage the intrinsic fingerprint ridge information in

sonic wave for user identification. First, the complex ambient noise is isolated from the sonic wave using background isolation and

adaptive segmentation models. Afterward, a series of multi-level friction descriptors that highlight the target fingerprint information is

extracted. These descriptors are fed to a specially designed ensemble classifier for user identification. SonicPrint is practical as it

leverages in-built microphones in smart devices, requiring no hardware modifications. As the first exploratory study, our experimental

results with 31 participants over three different swipe actions on 12 different types of materials show up to a 98 percent identification

accuracy.

Index Terms—Adoptable biometrics, fake-finger spoofing, surface friction, fingerprint-induced sonic effect, user identification
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1 INTRODUCTION

THIS paper asks the following question: can we enable
everyday surfaces in the daily environment as finger-

print scanners, while ensuring security against spoofing
attacks? Such a capability can transform the biometric
domain by removing the dependency on special fingerprint
hardware and reshape our interaction with surrounding
objects. For instance, common surface materials (e.g.,
leather, plastic, fabric) could enable user identification while
having resilience against fingerprint phantoms, i.e., fake-fin-
gers [2], [3]. The smart-devices (e.g., smartwatch, voice
assistant, curved smartphone) that have unique designs can
now provide fingerprint sensing without any hardware
modifications. Even more, we could enable biometrics with-
out borders by allowing the users to transfer fingerprint-
related attributes over communication platforms.

Till date, various types of fingerprint scanners have been
proposed utilizing optical, capacitive and thermal sensors
[4]. However, these scanners share a fatal weakness:

vulnerability to fake-finger spoofing [1]. Even the upcoming
in-display ultrasound sensors, targeted towards enhancing
usability, are susceptible to 3D finger models [5]. As a coun-
termeasure, researchers have suggested a secondary dimen-
sion of security (e.g., blood flow [6], precipitation [7]), yet
they have poor generalization across spoof materials besides
introducing additional hardware overhead. Other biomet-
rics, including voice [8], [9] and faceID [10] can also be com-
promised using replay and impersonation attacks and thus
fail to achieve high user acceptance.

Taking a step back, the requirement for our target bio-
metric application is four-fold: (1) Cost-effective: the new
scanner-less method should utilize low-cost off-the-shelf
sensors that are widely used in smart-devices; (2) Accessible:
the biometric trait should be available from surfaces with
diverse flexibility, texture and composition; (3) Easy-to-use:
we hope to enhance the user acceptance by providing free-
form sensing; (4) Secure: compared to the traditional finger-
print methods, our proposed approach should be resilient
against spoofing attacks using fake-fingers.

It is a known fact that when two objects slide against each
other, kinetic energy is released in the form of sonic and heat.
The harmonics of this friction-excited sonic are dependent on
the surface characteristics of objects and their internal compo-
sition. Our key contribution is the observation that the sonic
wave from a user swiping his fingertip on a surface can serve
as biometric traits. Since every person has a unique finger-
print, we hypothesize that the sonic waves resulting from two
users swiping their fingertips on a common surface should be
different. Although the statistical properties of sonic may
change depending on user’s swiping speed, pressure or sur-
face roughness, the inherent uniqueness is dependent on the
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surface texture (i.e., fingerprint ridge patterns) and the fin-
ger’s constitution. If this hypothesis holds, the fingerprint-
induced sonic effect (FiSe) can be acquired from the micro-
phone in smart devices. The goal of this work is to explore the
knowledge and validation of a new fingerprint sensing
modality and open discussions for emerging mobile security
research.

Our goal is to transform everyday surfaces into finger-
print scanners. To achieve this, three challenges need to be
addressed: (1) The FiSe is typically of low power and sub-
merged in dynamic background noises. How to acquire the
target FiSe without any information loss? (2) To enable high
accessibility and acceptance, it is important to provide free-
dom to the users while swiping the surface. In the case
where user’s swiping speed and pressure is not controlled,
how to select appropriate features which closely resemble
the fingerprint? (3) For real-world applications, it is critical
that the FiSe cannot be compromised. How to evaluate the
vulnerability of our system which relies on characteristics of
both fingerprint and audio domain?

In this work, we propose a systematic framework that lev-
erages the FiSe of a user swiping on smartphone and other
surfaces as a new biometric (see Fig. 1). We first validate the
uniqueness of sonic patterns by comparing the resulting spec-
trumof fingerprintswith different textures. Then,we leverage
the underlying microphone in a smartphone to acquire the
FiSe and investigate a sequence of spectral and wavelet
denoising approaches for background isolation. An adaptive
segmentationmethod is designed to remove the tap noise and
other entities which can be easily misinterpreted as the target
signal. Afterward, we propose a novel taxonomy that high-
lights the semantic relationship between fingerprint and
audio domain, and identifies multi-level features that funda-
mentally share the same concept as fingerprint. Based on
these insights, we design and implement our system, Sonic-
Print, to facilitate secure sensing of FiSe for user identification.
Finally, a comprehensive evaluation is performedwith 31 par-
ticipants on 12 surfaces across six sessions over twomonths to
validate the effectiveness and inclusiveness of SonicPrint
under real-world scenarios.

Summary. Our contribution in this work is four-fold:

� We explore a novel fingerprint-based biometric
approach for user identification. We find that when a
user swipes his fingertip on a surface, the sonic wave
contains intrinsic fingerprint information.

� We design and implement SonicPrint, an end-to-end
biometric system to facilitate secure, accessible and
user-friendly fingerprint sensing on everyday surfaces
in practice.

� Wevalidate the effectiveness and inclusiveness of Son-
icPrint through extensive experiments with results
showing up to 98 percent accuracy. We conduct com-
prehensive studies to show the resilience of SonicPrint
against fake-finger, replay, side-channel and ultra-
sonic attacks.

� We perform two case studies to demonstrate the
promising applications of SonicPrint for group authen-
tication and object identification.

2 BACKGROUND AND PRELIMINARIES

In this section, we provide a background on friction-excited
sonic waves and the rationale behind its uniqueness in terms
of human-to-material interaction. We also perform a feasibil-
ity study to prove this concept.

2.1 Fingerprint-Induced Sonic Effect

Friction develops from two surfaces sliding against one
another irrespective of the intensity of their relative motion.
This friction leads to distinct waves and oscillations within
the interacting mediums resulting in the emission of sonic
waves to the ambient environment [11]. In daily life, there
are several instances of friction-excited sonic waves from an
interaction between sneakers on the floor or chalk on the
blackboard. In this paper, the context of sonic wave differs
from the roughness noise, which is generally random (e.g.,
rubbing of two sandpapers). Under strong contact condi-
tions, the sliding surfaces become a coupled system and
generate an intricate and often nonlinear response. Previous
studies have shown that physical parameters, including
speed and pressure, only affect the magnitude of power
spectral density to a certain extent, but not the overall distri-
bution [12]. The roughness of the sliding surfaces impacts
the sound pressure level (SPL) as

DSPL ¼ 20log 10

R2

R1

� �m

; (1)

where R2 and R1 correspond to the roughness of friction pair
andm is an empirical factor varying based on the surface tex-
ture. The SPL of sonic waves can be similar between different
friction pairs and thus impacts its sensing rather than unique-
ness. A person with rough fingertip would produce a more
audible sonic wave when rubbing a surface, in contrast to a
soft skin fingertip. More importantly, for different friction
pairs (e.g., finger against metal versus finger against plastic),
the uniqueness of sonic waves arise from the interface proper-
ties (i.e., texture) and the constitution of objects (e.g., weight
distribution). The surface deformation during contact is
highly minute [13] and its intensity is inconsequential to sur-
face roughness.

Hypothesis.When a user swipes his fingertip on any surface
(refer to Fig. 2), the resulting friction-excited sonic wave
depends on the intrinsic fingerprint patterns, underlying
structure of finger and opposing material. Since every user
has a unique fingerprint, the FiSe from two users swiping on

Fig. 1. SonicPrint: A new dimension of fingerprint sensing by using sonic
wave from surface-swipes for secure user identification.
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the same surface should be different. Moreover, the low SPL
of FiSe provides a strong resilience against spoofing attacks.

2.2 A Feasibility Study

Proof-of-Concept Setup. For studying the relationship between
FiSe resulting from different fingerprints, we organize a pre-
liminary study with 5 subjects between age group of 21�30
years. Each subject is asked to use their right index finger for
performing straight-downward swipes, 40 times each, on the
back surface (aluminum) of a commodity smartphone. The
subjects are told to swipe naturally without exerting intense
pressure or speed, thereby controlling the bias from behav-
ioral or soft characteristics. During the second trial, we cover
the subject’s fingertip with a scotch tape and repeat the swipe
actions. In another experiment, we ask two subjects to repeat
15 swipes with gradually increasing pressure and speed in
each trial. For the sake of isolating environmental depen-
dency, this study is performed in a conference room (21�C)
with low ambient noise. After processing the fingerprint-
induced sonic waves, we aim to extract features that can pro-
vide a clue towards the inherent fingerprint.

Level I Friction Descriptors. Level I characteristics of the fin-
gerprint depend on its macro details, i.e., the pattern and ridge
flow and can be visually perceived through naked eye [14].
Similarly, in the audio domain, power-based temporal fea-
tures highlight the changes in signal over time and perceptual
features (e.g., pitch, loudness) have semantic meaning to a
human listener. Therefore, we select eight features including
harmonicity, pitch and spectral features (e.g., centroid, crest,

decrease, entropy, flatness) as Level I friction descriptors. For
ease of the comparison, Fig. 3 illustrates the variations against
average and standard deviation of descriptors after normaliza-
tion. Each FiSe yields a data point on the graph and the points
frommultiple FiSe by the same fingerprint exhibit a cluster.

Multi-DimensionalAnalysis. For identifying relevant patterns
in the high-dimensional features from FiSe, the Level I friction
descriptors need to be strategically converted to a lower
dimension space while preserving the distance between the
samples. T-distributed Stochastic Neighbor Embedding
(TSNE) [15] is a promising technique that can preserve the local
structure, implying that the samples which are closer in the
high-dimensionwould tend to be close even after dimensional-
ity reduction. To do this, it converts the similarity between
samples to joint probabilities and aims to minimize the Kull-
back-Leibler divergence between the joint probabilities of
high-dimensional data and lower dimensional embedding.
We set the initialization for embedding to be computed from
Principal ComponentAnalysis (PCA) to retain the global struc-
ture while considering the nearest neighbors, i.e., perplex-
ity=30 [16], [17]. For a more detailed representation of Fig. 3a,
Fig. 4 illustrates the three-dimensional graph of descriptors.

Insights and Summary. The feasibility study reveals that
(1) every user has a unique fingerprint pattern (e.g., loop,
whorl pattern in Figs. 3a and 4) which generates a unique

Fig. 2. FiSe arises from the friction between fingerprint and surface and
can be sensed by a conventional microphone.

Fig. 3. A proof-of-concept (three subjects) for FiSe-based identification under the impact of (a) different fingerprint patterns; (b) fingerprint and cov-
ered finger interaction with surface; (c) human dynamics (i.e., swiping speed and pressure).

Fig. 4. A multidimensional representation of Level I friction descriptors
from five unique fingerprints.
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FiSe during the swipe action; (2) Fig. 3b proves that distinc-
tiveness of FiSe is dependent on the fingerprint rather than
the overall geometry of the fingertip; (3) variation in pres-
sure and speed has a limited effect on the identifiability of
FiSe (see Fig. 3c) However, only Level I descriptors are
insufficient to differentiate multiple subjects in presence of
contrasting behavioral traits (e.g., swiping speed, fingertip
roughness) during the sensing process. To summarize, we
prove that FiSe depends on the underlying fingerprint. For
improving the accuracy, we continue to recruit appropriate
features highlighting the intrinsic fingerprint information
(Level II and Level III) from the sonic waves. The applica-
tion of FiSe is discussed for smartphone security while eval-
uating different interacting surfaces in Section 9.1.

3 THREAT MODEL

We consider a scenario where an innovate attacker, namely
Alice, intends to steal intellectual property (IP) from the vic-
tim’s smartphone. The smartphone is integrated with a sin-
gular defense system, i.e., SonicPrint. Unlike a traditional
attacker who primarily focus on zero-informed attacks,
Alice studies the fundamental operation of SonicPrint and
even explores the past literature for proven methods to
compromise the security of fingerprint and audio channel.
Specifically, we consider the following attack scenarios:

� Fingerprint phantom attack: Typically, Alice can either
exploit the social media of victim or leverage high-
resolution cameras to remotely capture the target fin-
gerprint. Afterward, the fingerprint and overall fin-
ger geometry can be utilized to create a fingerprint
phantom (i.e., fake-finger). This fake-finger is highly
identical to the victim’s live-finger and can be used
to spoof the system. It is worth mentioning that con-
ventional fingerprint scanners can be compromised
using this stealthy attack [18].

� Replay and Side-Channel attack: Without the victim’s
knowledge, Alice places a high-sensitive micro-
phone near the smartphone and records the FiSe
during an access attempt. This recording is replayed
to the target device through direct FiSe matching or
vibration injections by leveraging sophisticated
hardware. Studies show that this attack can compro-
mise the security of traditional voice authentications
within five trials [19].

� Denial-of-Service attack: If Alice is unsuccessful even
after launching aforementioned attacks, she aims to
decrease the trust of victim towards the defense
mechanism, ultimately leading the victim to either
change or turn off the device security features. To do

this, Alice can leverage additional speakers to project
white noise towards the target while victim is per-
forming swipe action. Instead of audible white noise,
”hidden” ultrasound signals (f = 20 KHz) can be uti-
lized. This attack has been recently shown to compro-
mise the security of speech recognition systems (e.g.,
Siri, Alexa) [20].

To this end, we make a few practical assumptions. First,
Alice cannot position the recording microphone in immedi-
ate proximity of victim’s smartphone (i.e., < 20cm) consid-
ering the malicious device would be within line-of-sight of
the victim, raising his suspicion. Second, Alice does not pos-
sess the advance manufacturing knowledge or economic
capability to leverage organic 3D printers for developing
biological replica of victim’s finger.

4 SONICPRINT SYSTEM OVERVIEW

By analyzing the FiSe caused by fingertip and surface interac-
tion, SonicPrint can reveal fingerprint dependent characteris-
tics in the received signal. Fig. 5 illustrates four primary
modules of SonicPrint: (1) Background isolation; (2) Friction
event detection; (3) Acoustic fingerprint analysis; (4) Ensem-
ble classification. First, when a user swipes his fingertip on the
smartphone surface, the inbuilt microphone is used to capture
the FiSe. A series of pre-processing techniques including clut-
ter suppression, target enhancement and ambient denoising
are applied to acquire the precise sonic wave. Once its posi-
tion is verified, a multi-level representation of acoustic finger-
print is obtained from specific features of the target signal.
Finally, the representation is input to an ensemble classifier to
precisely identify the legitimate user.

5 FISE PROCESSING SCHEMES

In this section, we discuss the nature of friction excited sonic
waves from a coupled system consisting of fingertip and
material. When a user swipes his fingertip on the smart-
phone surface, a FiSe is generated, which can be captured
by the inbuilt microphone and can span the entire frequency
band (0-22 KHz).

5.1 Pre-Processing

The sonic wave is typically submerged in the dynamic ambi-
ent noises (e.g., human talking, music) due to its low power.
Considering the diverse and known frequency bands in the
noise spectrum, it is effective to use high-order cutoff in one-
pass filters. However, this also eliminates the intrinsic finger-
print information in the lower frequency bands. To remove
the low frequency noise from human speech and music, we
employ a high-pass filter with cutoff 2.2 KHz to remove the

Fig. 5. The overview of SonicPrint, a fingerprint-biometric based user identification system.
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arbitrary clutter and recover the signal with a frequency range
from 2.2 to 22KHz.

5.2 Sonic Effect Enhancement

The recent development in voice biometrics indicates that
excessive background clutter, retained during preprocess-
ing, makes it difficult to localize the phoneme [21].
Although the human voice and background clutter can be
separated based on information content, FiSe might be per-
ceived as generic noise due to its low power. The spectral
subtraction [22] is a widely used method to enhance the tar-
get signal that is degraded by additive noise. However, it
also introduces a distortion in the signal, referred as a musi-
cal note. A multi-band spectral subtraction technique was
proposed as a countermeasure to deal with distortion [23].
Given that noise does not affect the entire frequency band
of FiSe uniformly, we need to ideally subtract the appropri-
ate noise spectrum from each frequency bin. This would
restrict any excessive subtraction of intrinsic fingerprint
information. We acquire the clean and enhanced spectrum
of FiSe in the ith frequency band by

jŜiðkÞj2 ¼ jYiðkÞj2 � aidijD̂iðkÞj2 bi < k < ei; (2)

where Yi is the power spectrum of noisy FiSe signal, D̂i is
the noise estimate, bi and ei are starting and ending fre-
quency bins. ai is an over-subtraction factor and di is empiri-
cally chosen for each frequency band. For calculating di, we
leverage a pre-recorded two second audio sample in daily
environment with human voices as noise estimate. We
update over-subtraction factor ai as

ai ¼ c1 � log10
Pei

k¼bi
jYiðkÞj2Pei

k¼bi
jD̂iðkÞj2

 !
þ c2; (3)

where c1; c2 are empirically chosen values. After nonlinear
power spectrum subtraction, the enhanced FiSe is derived
from its spectrogram. However, there still exists residual
clutter between the intervals of FiSe.

5.3 Denoising-Aware Wavelet Reconstruction

In the past decade, wavelet-based noise removal has gained
immense recognition due to two primary advantages: (1) it
provides an optimal resolution of time-series signal in both
the frequency and time domain; (2) it facilitates a precise
multi-scale analysis [24]. Therefore, we employ wavelet
denoising to eliminate the residual noise from the FiSe that
remains even after sonic effect enhancement. Using maxi-
mal overlap discrete wavelet transform (MODWT) [25], the
signal is first subjected to decomposition to acquire detail
coefficients (ak) and approximation coefficients (bk)

a
ðJÞ
k ¼

X
n2Z

xng
ðJÞ
n�2Jk

b
ðlÞ
k ¼

X
n2Z

xnh
ðlÞ
n�2lk; (4)

where the levels J 2 Z and l 2 f1; 2; 3; . . . Jg. We choose the
Daubechies 3 wavelet (dB3) and reduce the FiSe to 6 levels.
Afterward, we apply the detail coefficient threshold for
each level to discard the ambient clutter. Finally, a level-
dependent reconstruction is employed using all the coeffi-
cients as

xn ¼
X
k2Z

a
ðJÞ
k g

ðJÞ
n�2Jk

þ
XJ
l¼1

X
k2Z

b
ðlÞ
k h

ðlÞ
n�2lk; (5)

where g and h are rescaled discrete orthogonal functions.
The spectrogram of FiSe before and after the processing
stage is shown in Fig. 6 with the signal-to-noise ratio (SNR)
significantly improved from �3 to 23 decibels.

5.4 Friction Event Detection

Considering the FiSe is caused by a user swiping his finger-
tip on the smartphone surface, there are three challenges in
tracing the target’s precise location in the measured signal:

� The duration of FiSe would vary among intra-ses-
sions (same user with different swipes) and inter-
sessions (different users with different swipes) and
typically lies between 0.05 and 0.3 seconds.

� The traditional segmentation approaches in speech
recognition rely on threshold-based separation of
speech versus non-speech frames [26] � such meth-
ods are inadequate without optimization due to the
fluctuations in sound pressure level from roughness
or speed during the swipe action (see Section 2.1).

� The ideal signal would only comprise of the sonic
wave. However, there may be an initial tap sound (i.e.,
finger collidingwith the surface) or closing drag sound
(i.e., finger slipping during lifting) enclosing the FiSe.
Since the amplitude of the tap anddrag sound are arbi-
trary, peak detectionmethods are ineffective.

To this end, we specially design our segmentation pro-
cess (see Fig. 7), to address the above challenges and isolate
the starting and ending periods of each FiSe.

i) Adaptive Detection via HMM model: The hidden Markov
Model (HMM) has proven to be an effective method for
acoustic event detection [27]. It computes the probability of an
occurrence of FiSe in every segment of the recorded signal
and only consider those with high probability as friction
events. Specifically, we first divide the recorded sample in
non-overlapping frames, where each frame is 0.01 second
period. A discrete fourier transform (DFT) is applied to each
frame, after which an unbiased noise variance is calculated
based on the optimally smoothed power spectral density esti-
mate and spectral minima from each frequency band [28].
Finally, a widely used log-likelihood ratio test and HMM-
based hang-over scheme [29] is used to determine the proba-
bility of friction event. To regulate the prior SNR [30] in log-
likelihood, we define two additional parameters, i.e., Target-
ToSilence (TTS) probability and SilenceToTarget (STT) proba-
bility. For ensuring the identification of FiSe with even low

Fig. 6. The spectrogram of (a) original and (b) denoised FiSe from three
swipe actions.
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audibility, we design an adaptive technique that ranks the
roughness of user’s fingertip based on the statistical analysis
of the signal. In particular, the roughness can be categorized
as dry, balanced or soft by comparing the number of detected
FiSe versus the expected FiSe based on overall period.
Depending on the predicted roughness, the TTS and STT
probabilities are optimized to retrace the optimal friction
events. In scenarios where the SPL of FiSe is very low, our
adaptive detection can raise the number of identified events
bymore than 84 percent (countedmanually).

ii) Phase-based Detection: The tap sound and drag sound are
of arbitrary characteristics and challenging to remove by con-
ventional statisticalmethods (e.g., maximumamplitude,mean,
standard deviation). Previously, phase-based detection
schemes have been proposed to suppress the impact noise [31].
The acoustic signal is first divided into non-overlapping frames
of 0:01s. Considering that there is only one dominant pulse of
magnitude a at n0 in the current frame, the signal xðnÞ ¼ 0
except at n ¼ n0. Afterward, a DFT is applied to individual
frameswith the kth frequency bin and the phase slope as

XðkÞ ¼ jXðkÞjejuðkÞ ¼ ae�j2pkn=N; (6)

DuðkÞ ¼ tan �1 ImðXðkÞ �X�ðk� 1ÞÞ
ReðXðkÞ �X�ðk� 1ÞÞ XðkÞ ¼ XðkÞ

jXðkÞj ;

(7)

where � represents the complex conjugate. Lastly, based on
the phase slope and the n0 position in current frame, a lin-
earity index is defined as

LIuðkÞ ¼ DuðkÞ � �2pn0

N
: (8)

The linearity index varies significantly between the FiSe
and residual noise. However, its magnitude for tap/drag
sound is similar to the FiSe, implying that they are of similar
phase. Therefore, we employ the last processing step to select
optimal FiSe events.

iii) Duration Verification: The sequence of occurrences
with a high magnitude linearity index differs between the
tap/drag sound and the FiSe. Based on the insights from
HMM model and the linearity index, we conduct a final
check by removing the segments whose duration does not
lie from 0.05 to 0.3 seconds. Our notable contribution is that
the aforementioned event detection is applicable for acquir-
ing FiSe across different smart devices and surfaces (see Sec-
tion 9.1) by making limited to no assumption with respect to
the swiping behavior of users.

6 TAXONOMY OF ACOUSTIC FINGERPRINT

The uniqueness of friction-excited sonic wave is dependent
on the texture of contact surface, i.e., the fingerprint. The
traditional fingerprint recognition relies on three-level
vision-based characteristics [14]. As shown in Section 2.2,
Level I friction descriptors are not sufficient since they can
only relate to Level I optical fingerprint patterns. Therefore,
we ask a question: which features of FiSe can profoundly
describe Level II and Level III fingerprint information? To this
end, we propose a novel taxonomy (see Fig. 8) that bridges
the gap between fingerprint and acoustics to select valid fea-
tures for FiSe classification.

6.1 Level II Friction Descriptors

In the fingerprint domain, Level II features involve Galton
characteristics, also known as minutiae points (e.g., hooks
and bifurcations). These features possess a high variance
between fingerprints of different users and are actively used
in classificationmodels. For the discrimination of audio sour-
ces, features such as the mel-frequency cepstral coefficients
(MFCC) are essential since they can capture the timbral char-
acteristics. Other cepstral features generally employ the per-
ceptual filter bank and autoregression model to approximate
the spectral envelope. Based on this semantic relationship,

Fig. 7. Roughness-aware sonic detection.

Fig. 8. A taxonomy of multi-level friction descriptors corresponding to intrinsic fingerprint.
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for the Level II friction descriptors, we select 14 MFCC (with
D and DD), 12 linear prediction cepstral coefficients (LPCC)
and 27 perceptual linear predictions (RASTA-PLP [32]).
These descriptors can provide insights into the minutiae fea-
tures of the fingerprint.

6.2 Level III Friction Descriptors

Although being unique, Level II fingerprint features are
prone to spoofing since they could be visually perceived
through the naked eye or even in low-resolution images.
Thus, Level III fingerprint features are proposed based on
the dimensional ridge information, including width, pores
and edge contour. Similarly, short-time fourier transform
and adaptive time-frequency decomposition can reveal var-
ious physical attributes of FiSe. These features have inferior
meaning to human perception [33] and thus are difficult to
spoof. To reveal the intrinsic fingerprint from FiSe, we select
12 linear prediction coefficients (LPC), 12 linear spectral fre-
quencies (LSF), 26 log filter bank, spectral statistics (i.e.,
flux, kurtosis, skewness and slope) and 16 wavelet cross-
level coefficients as Level III friction descriptors. The overall
feature vector composed of 162 friction descriptors is fed to
our classification model.

6.3 SonicPrint Identification

Ensemble Classifiers.As the first exploratory study using FiSe
for biometrics, we employ the following prediction models
which have shown superior performance in user identifica-
tion [34], [35], [36], [37]:

� Logistic Regression (LR): It models the outcome
through logistic sigmoid function to deliver a proba-
bility measure which is further mapped to a specific
class. We set the maximum iterations as 1,000 and a
cross-entropy loss for multi-class problem.

� Support Vector Machine (SVM): It is a statistical learn-
ing method that determines an optimal hyperplane to
divide classes by maximizing the margin between
closest points. The points lying on the boundary are
referred to as support vectors. We choose a linear
kernel.

� Random Forest (RF): It fits specific decision tree clas-
sifiers on the sub-samples and employs averaging to
reduce overfitting. We set the estimators as 200 and
use an entropy criterion for prediction.

� Linear Discriminant Analysis (LDA): By utilizing the
Bayes’ rule and approximating class conditional den-
sities to samples, it creates a linear decision bound-
ary to separate the classes. We select singular value
decomposition as the solver.

� Gaussian Mixture Model (GMM): It provides a
parametric probability distribution of audio signal
and related features and characterizes the weighted
sum of Gaussian components as a density function.
We assume 5 components in our model.

From our empirical analysis, LDA is most suited for FiSe
classification, followed by RF and SVM. Therefore, we assign
a weight to each classifier (LR, SVM, RF, LDA, GMM) as 1, 2,
2, 3, 1, respectively. Finally, we perform hard voting on the
observations generated from the classifiers to decide the legiti-
mate user.

7 EVALUATION SETUP

7.1 Experimental Settings

We conduct a pilot study to validate the uniqueness of FiSe
caused by the swipemotion on a smartphone. From reviewing
the recent development in touch-based biometrics [38], we
observe that two swipe actions are the most convenient and
acceptable among users, as shown in Fig. 9. 1Hand Swipe: a
user holds his phone naturally in right-hand and uses the
index finger of the same hand to swipe on the surface. 2Hand
Swipe: left-hand firmly holds the phone while the other is used
to perform the swipe. The 2Hand swipe is more robust to arti-
facts and allows for precise stroke capture. To provide a better
understanding of the experimental process, we create a code
to describe the performed swipe action. The code comprises of
three parts, i.e., Swipe-Sensing Distance-Surface. The swipe
could vary between 1Hand and 2Hand; sensing distance dif-
fers among 1cm, 7cm or 11cm from inbuilt microphone; and
surface could be aluminum, glass or others. Our experimental
setup for the pilot study involves the participants to sit on a
chair in a conference roomwith low ambient noise. The partic-
ipants are asked to perform 1Hand-7cm-aluminum swipes in a
straight-downward direction on the back of the smartphone.
Afterward, they are required to complete 2Hand-1cm-glass
swipes at the front of the smartphone.To ensure that the obtained
insights are applicable in real-world scenarios, physical attributes
(i.e., speed, pressure or roughness) of the finger are not controlled
during the swipe action, throughout the remainder of this paper.We
employ the Google Pixel 2 smartphone with a 0-22 KHz range
microphone to record the FiSe caused by the swipe action. It is
14:4cmð5:7inchÞ x 6:8cmð2:7inchÞ x 1:5cmð0:6inchÞ in size and
weighs only 161:5g, which is lightweight for easy use in daily
life. It works on a Qualcomm Snapdragon 835 with an Octa-
Core processor. The recorded signal is fed to SonicPrint for fur-
ther analysis.

7.2 FiSe Collection and Partition

As the first exploration of utilizing FiSe for user identification,
we recruit 31 subjects (25males and 6 females) within the age-
group of 18-50 years in our study. None of the subjects have
any damage to their fingerprint. For both the experiments
involving 1Hand and 2Hand swipes, every subject performs
six trials each. In each trial, the subject swipes at the specific
position 30 times continuously. A 15min break separates
every two consecutive trials to ensure non-uniform speed and
pressure during swipes. Furthermore, the six trials for each
experiment are spread across three weeks. A trial consists of
1min recording for each person. In total, every subject

Fig. 9. The evaluation setup with subject performing 1Hand and 2Hand
swipe on the smartphone surface with right index finger.
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performs 180 1Hand-7cm-aluminum and 180 2Hand-1cm-glass
swipe actions. The generated FiSe is recorded by the inbuilt
microphone (sampling rate of 44.1 KHz) and later fed to Sonic-
Print. After denoising and segmentation, a total of 4099 1Hand
swipes (�130 per participant) and 4405 2Hand swipes (�140
per participant) are selected for training and testing. A 10-fold
stratified cross-validation approach is applied to normalized
features during user identification. The reason behind choos-
ing stratified approach relates to the bias in classificationmod-
els. During prediction, every instance is weighted equally,
implying that a few over-represented classes can dominate
the evaluation metrics. Thus, a stratified model ensures that
each fold in cross-validation is representative of the whole
dataset, thereby optimizing the bias and variance [39]. We
employ other cross-validation and direct matching algo-
rithms, in Section 9, to evaluate the inclusiveness of SonicPrint
in real-world scenarios.

Evaluation Metrics. We introduce balanced accuracy
(BAC), F-score, equal error rate (EER) and receiver operat-
ing characteristics (ROC) curve [40], [41] as metrics in our
evaluation model. They are insensitive to class distribution
which is critical for identification schemes. We also consider
two additional metrics, i.e., Precision and Recall in Section 9
for robustness against unbalanced dataset.

7.3 SonicPrint Usability and Social Acceptance

SonicPrint requires the users to naturally swipe on their smart-
phone cover to acquire the unique FiSe. To assess the practi-
cality and acceptance of SonicPrint in the real-world, we
surveyed the 31 participants recruited in our pilot study. Of
all the 31 participants, 80 percent are male and 20 percent are
female. The participants are requested to answer multiple-
choice questions belonging to the following two categories:

Smartphone Usability. We first ask the participants about
the duration they operate smartphone in daily life. 41 per-
cent of the participants spend 3 to 5 hours on their smart-
phone while 32 percent spend less than 2 hours. Within the
spent time, 83 percent of the respondents primarily commit
to communication (call or text) while 61 percent allocate the
time on social media. On a per day basis, 54 percent of the
participants unlocks their smartphone for more than
30 times. It is worth noting that among the unlock attempts
by participants, around 60 percent are either performed
multiple times or resorted to the password mechanism due
to the insensitivity of fingerprint mechanism.

Security Awareness. We inquire the participants about
their preferred biometric platform on the smartphone and
their opinion on its security. 87 percent of the participants
opt for fingerprint recognition while others evenly preferred
the voice, face and password-based mechanism. From the
total 31 participants, 64 percent think that fingerprint bio-
metrics is not secure, 29 percent mentioned were unsure
and 6 percent believed in its resilience against spoofing
attacks. After informing them about the security risks, the
perception of majority of participants shifted considerably
towards taking cautionary steps to mitigate the threats.
Only one participant still believed that the current state of
fingerprint biometrics is reliable.

After completing the experiments, we ask the participants
a few questions regarding their experience with our system.

71 percent of them preferred to perform 2Hand swipes on the
front surface of the smartphone, while 29 percent preferred
1Hand swipes on the back cover. On a scale of 1 to 10, all the
participants are requested to rate the comfortabilitywhile per-
forming multiple swipe actions. We record an average score
of 9.35, validating the ease-of-use of SonicPrint. Furthermore,
we employ a 4-point Likert scale (ranging from Strongly Dis-
agree to Strong Agree) [42]. This scale determines the partic-
ipant’s willingness to adopt SonicPrint in daily life for
unlocking a smartphone or accessing protected information.
80 percent of the participants answered with a score of 4
points, while the rest gave a score of 3 points. These results
show high acceptance of SonicPrint among subjects, especially
when made aware of the threats in traditional fingerprint
scanners.

8 ACCURACY AND RELIABILITY STUDY

As a potential breakthrough technology, it is critical to eval-
uate the performance and reliability of SonicPrint. Our
smartphone-based pilot study comprises user identification
using FiSe obtained from two actions: (1) Action1: 1Hand-
7cm-aluminum swipes; (2) Action2: 2Hand-1cm-glass swipes.
For each action, we make a comparison of evaluation met-
rics by increasing the number of swipes per sample per-
formed by the user.

i) Action1 performance: After performing 10-fold stratified
cross-validation on 4099 samples, the observed BAC and F-
score are shown in Fig. 10a. The number of inputs, i.e.,
swipes per sample is increased from one to three and the
variation in performance is recorded. The BAC for 1, 2 and
3 inputs is 82.3, 87.3 and 88.2 percent while the F-score is
84.8, 89.1 and 90.2 percent respectively. From ROC curve,
the area-under-curve (AUC) is observed to be 85.3, 89 and
88.6 percent as swipes per sample increases.

ii) Action2 performance:We report the BAC and F-score for
10-fold stratified cross-validation on 4,405 samples in
Fig. 10a. The BAC for 1, 2 and 3 inputs is 84.15, 88.9 and
89.2 percent while the F-score is observed as 86.1, 90.6 and
90.9 percent respectively. We compute AUC as 85.8, 88.2
and 88.7 percent for increasing inputs. For Action1 and
Action2, the performance improves by augmenting more
swipes per access attempt.

Performance Reliability. To ensure that the observed perfor-
mance is not dependent on the size of training and testing
dataset, we vary the number the splits in K-fold (from 3 to 10)
and note the results. For both Action1 and Action2, the BAC
and F-score remain stable, within amargin of�2%, exhibiting
the reliability of SonicPrint even under less amount of training
samples.

Insights. While the previous results demonstrate the
uniqueness of FiSe as a biometric trait, they also provide
vital clues to improve SonicPrint. One reason for the lower
performance of 1Hand (Action1) to 2Hand (Action2) swipes
is due to its sensing distance from the microphone. A close
proximity of swipe action with microphone ensures high
SNR and allows for more precise capture of the FiSe. The
2Hand swipes provide a superior control to the users to
ensure that their fingerprint properly interacts with the
opposing surface. A rich textural material facilitates strong
coupling between the fingerprint and surface to produce a
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more distinct FiSe. Since the glass material in Action2 is a
smooth surface, the performance can be enhanced by select-
ing a more suitable material to interact with the fingerprint.

iii) Action3 performance:Based on these insights, we conduct
another experiment, Action3, to analyze the SonicPrint perfor-
mance under ideal conditions. We place the smartphone in a
common protective case made from synthetic leather and ask
the 31 subjects to perform 2Hand-1cm-leather swipes. We col-
lect 4,572 FiSe during swipe events and perform 10-fold strati-
fied cross-validation. The BAC and F-score for one swipe per
sample is 98.3 and 98.4 percent, respectively. Fig. 10b shows
the ROC curve where the observed EER and AUC are 0.03
and 97.5 percent. We examine the performance reliability by
changing the splits in K-fold from 3 to 10, with results show-
ing a�1% variation in scores.

Alien Fingerprint.To examine the vulnerability of SonicPrint
against alien fingerprints (i.e., samples not trained in
advance), we randomly choose 16 subjects and train the
model using their 2Hand-1cm-leather swipes. The remaining
15 subjects are used for testing in Fig. 10c. Our system can suc-
cessfully reject the alien fingerprints using the threshold value
of classification score. The results prove our insights and con-
firm that the users can be precisely recognized by SonicPrint.

Identification vs Recognition. A conventional fingerprint
scanner in smart devices grant access to a user by matching
his input to a pre-trained template. This task is similar to
binary classification in authentication problems [43]. Our
previous results show the capability of SonicPrint to per-
form a more challenging task of user identification (in other
words, multi-class classification) which is desirable in the
IoT environment (e.g., smarthome). Nevertheless, we also
evaluated Action1 and Action2 performance for user recog-
nition (i.e., each subject is compared against others, in a
one-against-one fashion) to observe comparable evalua-
tion metrics (+2%). Furthermore, we vary the number of
randomly selected subjects from 2 to 30 and note the BAC
score in Fig. 11. As the number of subjects increase, the
performance decreases. An interesting observation is that
after 15 subjects, our model learns to effectively determine
features that can accurately differentiate the subject-spe-
cific FiSe. A comprehensive evaluation of relative entropy
in FiSe can be a lucrative venue for future work.

9 INCLUSIVENESS STUDY

To provide further insights about SonicPrint capability for
user identification,we considermultiple scenarios thatmight
contrast during real-world deployment. In the following, we

recruit 5 subjects (vary between the experiments) to perform
swipes actions using their right index finger. We evaluate the
base performance by considering one swipe per sample
through 10-fold cross validation.

9.1 Surface Exploration

We envision that SonicPrint can be integrated with not only
the smart devices but also commonmaterials or commodities
found in the daily environment. To achieve this, it is vital to
evaluate a wide variety of interacting surfaces and their
impact on the uniqueness and SPL of FiSe. Each of the 5 sub-
jects are asked to perform 150 swipe actions on 10 diverse
materials, i.e., paper, foam, coarse leather, polycarbonate, sili-
con, engraved plastic, smooth plastic, rubber, fiber, smooth
leather. The BAC, F-score, precision and recall are illustrated
in Fig. 12.

Insights. A high textural surface ensures a more robust
coupling with the fingerprint during the swipe action. Fur-
thermore, a smooth surface has lower roughness measure
leading to low SPL (see Section 2.1), raising the challenge
for preprocessing module to differentiate between FiSe and
generic noise. Either a high sensitive microphone or shorter
sensing distance can elevate the system performance; FiSe is
the first promising biometric trait which can be accessible
and adoptable across wide range of materials with satisfac-
tory texture.

9.2 Multi-Fingerprint Sensitivity

To achieve high acceptance among users, it is vital for Sonic-
Print to possess higher degree of freedom than traditional
fingerprint biometrics. Furthermore, a user may prefer for
SonicPrint to be capable in recognizing FiSe generated from

Fig. 11. The trend of balanced accuracy with increasing number of
subjects.

Fig. 10. The performance comparison between (a) Action1 ; Action2 ; (b) Action3 ; and (c) Action3 (unsupervised).
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multiple fingertips during a single access attempt. We ask
the subjects to vary the number of fingers (from one to
three) while performing 150 2Hand-1cm-glass swipe actions.

Insights.Our initial assumption states that cohesively using
multiple fingers, with individual unique fingerprint, would
increase the randomness of sonic waves. However, Table 1
demonstrates a uniqueway to increase the entropy of biomet-
ric trait. It is worth mentioning that no modifications were
required for SonicPrint to facilitate this experiment; whereas,
popular biometrics such as face or fingerprint would require
either wider sensing region or advanced processing algo-
rithms. Building on this multi-fingerprint approach, we aim
to further evaluate its robustness against real-world chal-
lenges (e.g., fingertipswith differentmoisture states ormotion
patterns) in our futurework.

9.3 Skin Condition

Previous studies demonstrate that elderly users suffer from
statistically lower finger friction coefficient,moisture and elas-
ticity [44] as compared to younger age group. Equation (1)
states the relation between the roughness of surface to the SPL
of sonic wave, making it crucial to confirm that FiSe from
diverse age groups, with different skin conditions, can be rec-
ognized by our system. We randomly choose 5 subjects from
different age group (i.e., 18�60 years) to perform 150 2Hand-
1cm-glass swipes.

Insights. Considering elderly users have dry fingertips,
their FiSe recordings comprised of high SPL making it easier
for SonicPrint to trace the sonic wave in overall measured
signal. This is evident from the stable performance observed
among different age groups in Fig. 13. The lower perfor-
mance for age group of 20-30 years is due to the subject
using lotion on their fingertip prior to the experiment
(thereby leading to highly smooth fingertip). We further dis-
cuss the potential improvements in Section 12.

9.4 Swipe Stability

In a real-world setup, it is unlikely that the swipe action per-
formed by user is regulated and monitored as in our pilot
study. It would be ideal if FiSe is sufficiently resilient to

human artifacts. To this end, the subjects perform 200 1Hand-
7cm-aluminum and 200 2Hand-1cm-glass on the smartphone.
During the later 100 swipes in each experiment, the subjects
are periodically pushed on their back body at random inter-
vals. The intensity of these artifacts are controlled to prevent
huge disruption in the entire body (e.g., pushing with both
hands forcefully) but are sufficient to influence the upper
body posture of the subject. The results are shown in Fig. 14.

Insights. Human artifacts have limited influence on the
performance of SonicPrint. Intuitively, the 2Hand swipes
should have minimal impact since holding the smartphone
with one-hand and using the opposing finger to swipe
ensures a more continuous flow. However, the influence of
artifacts on 2Hand is more severe when compared to 1Hand
due to the variations in magnitude of artifacts within experi-
ment. Nevertheless, these findings are valuable as we can
envision similar results for users with movement disorders
(e.g., parkinson).

Fig. 12. SonicPrint performance on diverse and accessible surfaces found in smart devices or commodities.

TABLE 1
SonicPrint Adaptability to Multi-Fingerprint Swipe Actions

Fig. 13. Evaluation among age groups (years). The subject in each
group possess different skin condition in terms of roughness, elasticity.

Fig. 14. Evaluation under controlled and unstable swipe actions.
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9.5 Device Temperature

In traditional biometrics (e.g., fingerprint, face, voice), device
temperature is rarely considered as a factor of evaluation. Yet,
recent studies demonstrate the adverse influence of tempera-
ture on embedded sensors (e.g., stability of cameras [45]). Son-
icPrint relies on conventionalmicrophones in smart devices to
sense the FiSe which may be influenced from temperature.
For evaluation, the subjects are required to individually con-
duct 600 2Hand-1cm-glass swipes. After every 150 swipes, we
increase the temperature of smartphone by using an off-the-
shelf hot-air blower for 15, 30 and 45 seconds duration.

Insights. Fig. 15 shows that high temperature has an
adverse effect on the sensitivity of in-built microphone,
leading to decrease in system performance. These results
matches with the known fact that MEMS microphone expe-
rience a loss of sensitivity and frequency response while
suffering from distortion above the operating limit [46],
[47]. Nevertheless, the FiSe signals can still be recognized if
SonicPrint is sufficiently trained to tackle adverse conditions
without requiring modifications in the sensing hardware. A
more comprehensive study on the effect of temperature on
material surface and FiSe is retained for future work.

10 CASE STUDY

10.1 Group Authentication

Over the last decade, biometric technologies has transformed
the user security by analyzing diverse physiological and
behavioral traits via unique frameworks, e.g., multimodel,
unobtrusive and continuous authentication [48]. Yet, one
problem remains to be addressed: conventional biometrics
provides a one-to-one connection between the measured sig-
nal and user’s identity. For instance, if users belonging to a
group (e.g., family, colleagues) needs be authenticated at a
single timestep (e.g., border verification in airports), multiple
sensors are required with increased resolution and field-of-
view. Moreover, the software algorithms need to individually
assess each biometric trait making the computational time
complexity similar between identifying the group together
versus each person separately. Considering the promising
results shown by SonicPrint using multi-fingerprint approach
(see Section 9.2), it can lead to a breakthrough if FiSe from dif-
ferent groups of users can be identifiedwithout any change in
system architecture.

To this end, we recruit 3 subjects (namely, Alice,
Bob, Jack) and organize them into four groups (Alice-Bob,

Bob-Jack, Alice-Jack and Alice-Bob-Jack). Subjects in the
same group are requested to sit next to each other and place
their right index finger on a common blank paper. The
smartphone measures the FiSe resulting from each group
while they concurrently perform 150 2Hand-2cm swipes. By
using a visual cue (i.e., pointer traversing across the smart-
phone screen at fixed speed), the swipes of users are con-
trolled to have consistent start and end time. The results of
identifying a group in comparison to others are illustrated
in Fig. 16. The average BAC is 96.3 percent. SonicPrint can
not only perform accurate group authentication but is also
robust to the number of users in a group.

10.2 Object Identification

The uniqueness of FiSe relates to the fingerprint minutiae,
surface texture and the underlying composition of human
fingertip. Its dependency on surface texture raises an inter-
esting question whether SonicPrint can be applied for object
identification. Recently, object tagging without Near Field
Communication (NFC) tags have received immense atten-
tion for robotics [49] and mobile applications [50].

Building on this, we ask subjects to perform swipe actions
on six different types of objects (i.e., paper, Bose headphone,
AppleWatch Series 4, Google voice assistant (Echo), Logitech
mouse and Google Pixel 2 smartphone). An overall of 3,109
sonic waves are processed and analyzed for this experiment.
For classification, instead of assigning unique class label to
each subject, swipes performed on each object would have
same class label irrespective of source fingerprint. Fig. 17

Fig. 16. SonicPrint performance to simultaneously identify multiple users
from their integrated sonic wave.

Fig. 17. SonicPrint performance to identify interacting object based on
swipe actions.

Fig. 15. Evaluation under different duration of heating.
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demonstrates a high performance with precision, recall, F-
score and BAC of 97.9, 97.1, 97.6 and 97.4 percent respectively.
We envision that SonicPrint ability to sense the nature and
type of object that users are touching can have revolutionary
impact on accessibility services.

11 VULNERABILITY STUDY

In this section, we examine the security of SonicPrint against
the sophisticated attacks that are known to compromise the
security of traditional fingerprint scanners and voice recog-
nition systems.

11.1 Fingerprint Phantom Attack

We assume that Alice has access to the fingerprint and other
geometrical characteristics (e.g., width, thickness) of left index
finger of a legitimate user. Based on this information, she aims
to build a replica of the victim’s finger and breach the biomet-
ric security. There are two methods to achieve this goal. First,
she can utilize an advanced 3D printer to replicate the precise
texture patterns of a fingerprint on a finger model. Yet, these
printers are economically infeasible and often inaccessible to
general public. Furthermore, considering the extensive detail
of fingerprint, simulating the minutiae characteristics is com-
putationally expensive, where the complexity increases expo-
nentially with the level of features. Second, Alice can utilize
materials commonly found in the household to build a fake-
finger. Considering these materials have shown sufficient
capability to spoof the fingerprint scanners [51], this is the
most plausible attack scenario. Alice utilizes gelatin which
can most closely relate the texture of live finger [2] and can
even spoof capacitive fingerprint scanners [1].

We recruit 5 subjects with fingers of different sizes and
perform the following steps:

� We ensure that the entire finger of each subject is cov-
ered bymultiple layers (5 to 8) of latexmaterial.

� Between each successive layer, we wait for 10 minutes
to lose the moisture; the finger is kept still so that no
pressuremarks or creases occur on the coating.

� Once the latex coating becomes firm,we gently enclose
it with baking powder as we remove the latex from the
finger. The baking powder do not harm the target fin-
gerprint since it is placed on the outside while the fin-
gerprint features are on the inside of the coating.

� We prepare a mixture of one part gelatin, glycerin
and water and use a conventional microwave to heat
the mixture. Finally, we pour the mixture inside the
recovered latex coating and leave it to dry for
24 hours. The latex coating is then discarded to
obtain the gelatin fake-finger, as illustrated in Fig. 18.

We ask each subject to use their live left index finger and
perform 100 2Hand-7cm-aluminum and 100 2Hand-1cm-glass
swipes on the smartphone. Afterward, we repeat the process
by informing subjects to utilize their fake-fingers to complete
swipe actions. We train the SonicPrint on recordings from live
fingers and test fake-fingers during identification. For the
fake-finger recordings, we observe that our pre-processing
module discards 300 (out of 500) aluminum and 450 (out of
500) glass FiSe. Out of the remaining, only 32 (6.4 percent) alu-
minum and 21 (4.2 percent) glass FiSe are misclassified as live

fingers. These results provides a promising start regarding
the sensitivity of our background isolation module to identify
the live sonic wave and the resilience of SonicPrint against
fake-fingers.

11.2 Replay and Side-Channel Attack

We assume that Alice knows the underlying mechanism of
SonicPrint to sense the sonic waves for user identification.
Through a high-resolution camera, Alice can acquire the
victim’s fingerprint from a distance of 2m [52]; however, no
FiSe can be obtained from a similar distance due to its low
SPL. Therefore, we envision an unrealistic scenario where
she leverages a high-sensitive microphone (i.e., Fifine-K670)
and positions it at very close proximity of 20cm and 30cm
facing the target smart device. The microphone captures the
FiSe during an access attempt by a legitimate user.

Attack via Microphone. the recording is replayed to the
inbuilt microphone of target smartphone by direct FiSe
replay. Overall, 4 subjects conduct 500 2Hand-7cm-aluminum
swipes onGoogle Pixel 2 and the inbuilt and secondarymicro-
phone concurrently records the FiSe. For attack through a
direct transfer, merely 4.8 and 3.2 percent of replayed FiSe
match with the original recording, even at a close distance of
20cm and 30cm respectively. During the sensing phase, all
microphones pick up two sounds, “on-axis” from the direc-
tion they are designed to pick up and “off-axis” from all other
directions which cannot be modelled and follows behavior of
microphone. This can have different effects such as change in
frequency response, relative volume or character of sound,
especially in dynamic environments [53]. The original FiSe is
of low sound pressure level and our preprocessing module is
designed to be extensive during filtering (wavelet denoising)
and selecting friction events (Hidden-Markov Model) from
overall signal. During the experiments, we observed majority
of replay samples to not pass through the preprocessingmod-
ule of our system.

Attack via Vibration Channel. we consider a scenario where
Alice attempts to forge the swipe action of legitimate user as
vibration signals for identification. When the previously
recorded audio signal is passed through the coil of transducer,
a dynamic electromagnetic field is generated that makes the
actuator vibrate the smartphone (see Fig. 18). The intensity of

Fig. 18. (a) Gelatin fake fingers with multi-level fingerprint textures;
(b) vibration injections via audio transducer.
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these vibrations are controlled through an amplifier to drive
its amplitude closer to that of sonic wave. Although these
vibrations are propagated from a very close distance (i.e., top
of smartphone), all are rejected by SonicPrint, making side-
channels attacks via hidden transmitters ineffective.

11.3 Hidden Denial-of-Service Attack

Upon realizing the unsuccessful attempts to compromise Son-
icPrint via fake-finger, replay and side-channel attack, Alice
aims to manipulate victim’s trust in the biometric system by
leveraging inaudible noise (i.e., audio signal with frequency
of 20 KHz). Specifically, while victim is accessing his smart
device through swipe action, Alice would project inaudible
noise towards the in-built microphone. She envisions that
FiSewould suffer from samedeterioration in information con-
tent as human voice under the influence of inaudible noise
[54]. To evaluate this, we ask 5 subjects to perform 150 2Hand-
1cm-glass swipes each on Google pixel 2. During the sensing
process, we project a tone with 20 KHz frequency of highest
volume supported by the speakers in IPhone 6S smartphone
towards themicrophone. The recorded FiSe is fed to the back-
ground isolation module of SonicPrint for further processing.
From Fig. 19, the noise at 20 KHz can be clearly observed in
the measured signal. However, the MODWTwavelet denois-
ing algorithm in the background isolationmodule is robust to
inaudible noise and provides a more finer and regularized
discretization of the signal [55]. The traces of noise of lower
frequency between concurrent FiSe can be further discarded
via the friction event detection algorithm (see Section 5.4).
While the observed results are favorable, this experiment can
be improved by considering higher frequency noise (i.e.,
above 25/40/60 KHz) thus serving as an valuable exploration
opportunity formobile security research.

12 DISCUSSION

Microphone Sensitivity. SonicPrint leverages the low-cost
microphone of smartphone for FiSe acquisition. Although our
system shows a satisfactory performance under ideal condi-
tions, the overall results can be significantly improved by
adopting high sensitivemicrophones. Thesemicrophones can
precisely detect FiSe from even swipe actions on smooth sur-
faces in a noisy environment. Users would not be required to
perform the swipe as close to the microphone, increasing the
level of freedom and user acceptance.

Accuracy and Improvements. SonicPrint achieves 84 and
98 percent identification rates with a single trial on standard

andhigh-texture smartphone surface, respectively. This is com-
parable to recent low-cost solutions using vibrations [56], [57],
gait patterns [58] and passive sensing [59] for authentication.
Yet, the most significant contribution of SonicPrint is its adopt-
ability across diverse surface materials (refer to Section 9.1)
which is not supported by existing solutions. Our proposed
approach can also be used as secondary biometrics; improve-
ments in microphone frequency response and deep learning
approaches can be considered for our future exploration.

System Considerations. As a starting point, SonicPrint is a
promising biometric with high adoptability and anti-spoofing
capabilities.However, a practical deployment in the real-world
requires reflection on following criteria: (1) Privacy: The audi-
ble nature of FiSe makes it prone to theft via a conventional
recording device. For a countermeasure, the user can be asked
to perform a specialized gesture (e.g., zig-zag or star pattern)
during the training process. These gestures are uncommon in
normal user behavior, thereby increasing the difficulty for an
attacker to acquire the target FiSe outside the recognition
period. (2)Power consumption:Thepower consumption primar-
ily depends on the sensing and processing algorithms used for
SonicPrint implementation. Both of the sensing and processing
are light and can be managed by a digital signal processor
(DSP). For instance, a 5.8 mW 48-kHz recording supported by
TLV320AIC3212 AudioCodec [60] and a TMS320C553x DSP
[61] with 64 to 320 KB memory and 0.15 mW/mHz active
power at 1.05 V and 0.15 mW standby power are sufficient for
standard audio filtering. In case a CPU is employed, since each
authentication takes less than 2 seconds, the power consump-
tion is limited and can be further decreased by using co-pro-
cessors [62]. The use of statistical classifiers would limit the
memory consumption compared to Tensorflow Lite (0.85 W
on EdgeTPU [63]). Given that our solution is locally-hosted
and do not require heavy computational resources, it can be
more energy-efficient than voice assistants such as Alexa, Siri
which consumes less than 2W [64] on standby despite actively
listening. In case DSP has limited memory for continuous lis-
tening, a touch trigger [65] can be employed to activate FiSe
recording, thereby limiting battery usage in smart devices.
(3) Recognition time: By employing computationally inexpen-
sive algorithms, SonicPrint can identify a user within 2 second
period, further facilitating its deployment in smart devices.

User’s Perspective. In a real-world application, SonicPrint,
at its current capability, would require users to swipe up to
60 times during the training phase (1 minute duration) and
1-3 swipes during the login attempt. There are two consider-
ations: (1) The widely-used biometrics (e.g., fingerprint,
face) also require users to follow special instructions during
the training process, i.e., input biometric trait from multiple
orientations and locations which can consume more than a
few minutes for non-technical audience. (2) Instead of per-
forming multiple swipes during login attempt, users can
perform a single swipe with multiple fingers having higher
precision during identification (as shown in Section 9.2).

13 RELATED WORK

Touch-Based Biometrics. Touch-based implicit authentication
relies on the unconstrainedmovement patterns of users when
they interact with their smartphone. The location of finger
taps could be inferred from the motion sensors [66], [67].

Fig. 19. The time domain representation and spectrogram of (a) original
and (b) denoised FiSe from three swipe actions.
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Based on this insight, the touch dynamics was explored as a
soft biometric trait for user authentication [68], [69]. Different
parameters such as the rhythm, strength, angle of applied
force [70] or the size and axis length of finger touch area [71]
can depict the user’s individuality. Despite the enhancements
in security [72], [73], [74], it was shown that mimicry attacks
have a bypass rate of 86 percent, even with partial knowledge
of the underlying features of touch biometric [75]. Recently,
researchers have employed induced body electric potentials
(iBEP) or body guided communications as a new biometric
[76], [77]. However, it requires the user to continuously wear
a token device and can be spoofed through injection attacks.
Our method relies on the uniqueness of fingerprint and can-
not be spoofed viamimicry or side-channel attacks.

Acoustic Sensing. In 2011, researchers proposed that the
acoustic signatures caused by an object impacting with a
screen surface could identify its type (i.e., fingernail, knuckle,
tip) [78]. Afterward, the domain of acoustics-based touch
interaction was enhanced by monitoring continuous sound
via structure-borne sound propagation [79] for inferring the
finger tapping and movements of the user [80]. When a
vibrationmotor excites a surface, the presence of devices [81]
or user-specific gestures [56] can be sensed by the inertial
sensors. However, these approaches have limited accessibil-
ity due to the requirement of additional vibration transmit-
ters and receivers and more importantly, are vulnerable to
the Denial-of-Service (DoS) attacks. The latest advancement
in the field of photoacoustics [82], [83] provides multidimen-
sional insight to human palm while researchers have shown
to utilize wireless signals for extracting precise audio signals
for authentication [84], [85]. Yet, these systems cannot sup-
port adoptability in smart devices. A recent study captures
the finger sound caused by thumb rubbing the finger for ges-
ture recognition [86], yet requires the user to wear a ring dur-
ing the sensing process. To the best of our knowledge, we
provide the first study on exploring the intrinsic fingerprint
information in friction-excited sonic waves for secure user
identification.

14 CONCLUSION

Existing fingerprint biometric is vulnerable to spoofing
attacks (e.g., fake-fingers) and cannot be adopted in upcoming
smart devices due to hardware constraints. In this paper, we
introduce a new dimension of fingerprint sensing using the
friction-excited sonic wave caused by a fingerprint to surface
interaction.We develop SonicPrint that utilizes the FiSe from a
user swiping his fingertip on everyday smart devices for iden-
tification. The system is adoptable, user-friendly and difficult
to counterfeit with an identification accuracy up to 98 percent.
We also show the inclusiveness of SonicPrint under human
artifacts, skin conditions, multi-fingerprint and device tem-
perature. Furthermore, SonicPrint shows immense potential
for applications in group authentication and object identifica-
tion. In the future, we aim to consider users having damaged
fingerprints while exploring high-sensitive microphoneswith
ultrasonic range to improve the system accuracy.
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