
56Schedulability Analysis of Preemptive
and Nonpreemptive EDF on Partial
Runtime-Reconfigurable FPGAs

NAN GUAN and QINGXU DENG

Northeastern University, China

ZONGHUA GU

Hong Kong University of Science and Technology, China

WENYAO XU

Zhejiang University, China

and

GE YU

Northeastern University, China

Field Programmable Gate Arrays (FPGAs) are very popular in today’s embedded systems design,
and Partial Runtime-Reconfigurable (PRTR) FPGAs allow HW tasks to be placed and removed
dynamically at runtime. Hardware task scheduling on PRTR FPGAs brings many challenging
issues to traditional real-time scheduling theory, which have not been adequately addressed by the
research community compared to software task scheduling on CPUs. In this article, we consider
the schedulability analysis problem of HW task scheduling on PRPR FPGAs. We derive utilization
bounds for several variants of global preemptive/nonpreemptive EDF scheduling, and compare the
performance of different utilization bound tests.

This work was partially sponsored by the National Natural Science Foundation of China under
Grant No. 60773220, Hong Kong RGC CERG Grant No. 613506, the National High Technology
Research and Development Program of China (863 Program) under Grant No. 2007AA01Z181, the
Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education
of China under Grant No. 706016, the National Basic Research Program of China (973 Program)
Grant No. 2006CB303000, and the National Natural Science Foundation of China under Grant
No. 660503036.
Authors’ addresses: N. Guan, Q. Deng, G. Yu, Institute of Computer Software, North-
eastern University, Shenyang, China, 110004; email: guannan0609@hotmail.com, {dengqx,
yuge}@mail.neu.edu.cn; Z. Gu, Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, China; email: zgu@cse.ust.hk; W. Xu, College of Electronic
Engineering, Zhejiang University, Hangzhou, China, 310027; email: wenyao.xu@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/09-ART56 $5.00 DOI 10.1145/1391962.1391964 http://doi.acm.org/
10.1145/1391962.1391964

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:2 • N. Guan et al.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD)

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Real-time scheduling, reconfigurable devices, FPGA

ACM Reference Format:
Guan, N., Deng, Q., Gu, Z., Xu, W., and Yu, G. 2008. Schedulability analysis of preemptive
and nonpreemptive EDF on partial runtime-reconfigurable FPGAs. ACM Trans. Des. Autom.
Electron. Syst. 13, 4, Article 56 (September 2008), 43 pages, DOI = 10.1145/1391962.1391964
http://doi.acm.org/10.1145/1391962.1391964

1. INTRODUCTION

Field Reconfigurable Gate Arrays (FPGAs) are very popular in today’s embedded
systems design due to their low-cost, high-performance and reconfigurability.
FPGAs are inherently parallel, that is, two or more tasks can execute on a FPGA
concurrently as long as they can both fit on it. Partial Runtime-Reconfigurable
(PRTR) FPGAs, such as the Virtex family of FPGAs from Xilinx, allow part of
the FPGA area to be reconfigured while the remainder continues to operate
without interruption. In other words, HW tasks can be placed and removed
dynamically at runtime. This is a very important and useful feature, since a
FPGA is just used as an expensive and power-hungry ASIC without runtime
reconfiguration. The task scheduler and placer must find an empty area to place
a new task, and recycle the occupied area when a task is finished while making
sure all task deadlines are met. In addition to the usual attributes such as
computation time and deadline, each HW task has an additional attribute of
area size that it occupies on the FPGA. Figure 1 shows the typical architecture
consisting of a FPGA, a configuration controller, memory, and some other I/O
devices. Besides the embedded software and data sections, the external memory
stores the configurations for the FPGA.

Current commercial FPGA technology, for example, Xilinx Virtex-4, supports
both 1D reconfiguration, where each task occupies a contiguous set of columns,
and 2D reconfiguration, where each task occupies a rectangular area. Real-
time scheduling for 1D reconfigurable FPGAs shares many similarities with
global scheduling on identical multiprocessors [Carpenter et al. 2004], where
all processors in the system have identical processing speed, and different task
invocation instances may run on different processors. Similarly, a task can be
relocated to a different position on the FPGA at runtime, with the associated
reconfiguration overhead. But HW task scheduling on FPGA is a more general
and difficult problem than multiprocessor scheduling, since each HW task may
occupy a different area size on the FPGA while a SW task always occupies one
and only one CPU. In fact, we can view multiprocessor scheduling as a special
case of HW task scheduling on a 1D reconfigurable FPGA where all tasks have
width equal to 1.

Similar to CPU scheduling, we can identify several approaches to FPGA
scheduling:

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:3

Fig. 1. Typical architecture of FPGA-based systems.

(1) For soft real-time tasks with unknown arrival times and execution times,
online scheduling with optimization goals such as minimizing task rejection
ratio while guaranteeing all tasks to meet their deadlines [Steiger et al.
2003] or deadline miss ratio [Lu et al. 2002] if no task is rejected.

(2) For hard real-time periodic tasks, static offline scheduling in the time in-
terval with length equal to the hyper-period (least common multiple of all
task periods).

(3) For hard real-time periodic tasks, priority-driven scheduling with well-
known algorithms such as Rate Monotonic (RM) or Earliest Deadline First
(EDF).

We focus on the third approach in this article. This article is an extension of
our previous conference paper [Guan et al. 2007], which addressed preemptive
EDF scheduling. The main enhancement of this article includes:

(1) A new pseudo-polynomial schedulability test condition for preemptive EDF
scheduling.

(2) Additional analysis techniques for nonpreemptive EDF scheduling.
(3) Implementation of a prototype system for preemptive multitasking on

FPGA.

Same as multiprocessor scheduling, there are two paradigms for FPGA
scheduling: partitioned and global scheduling. Partitioned scheduling for FPGA
has been studied by Danne and Platzner [2006b], where the FPGA is divided
into several areas, and tasks are divided into several groups, each assigned to
one area. Each task occupies one area while it is running regardless of its actual
size. One key advantage of partitioned scheduling is its simplicity of analysis:
the schedulability test of each area can be treated as a single processor problem.
But partitioned scheduling may lead to poor resource utilization. For example,
the taskset shown in Table I, is unschedulable using partitioned scheduling
in Danne and Platzner [2006b], while it can be easily scheduled using global
scheduling. On the other hand, schedulability analysis for global scheduling is
more challenging and interesting, which is the topic of this paper.

Unlike CPU scheduling, where task context switch overhead is often small
enough to be ignored, FPGA reconfiguration carries a significant overhead in
the range of milliseconds that is proportional to the size of area being reconfig-
ured. Each task invocation consists of two distinct stages: reconfiguration and

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:4 • N. Guan et al.

Table I. A Taskset with Low Utilization Yet Unschedulable
with Partitioned EDF. δ is a Very Small Number

Task C D T A
τ1 δ 10 10 A(H) − 1
τ2 10 − δ 10 10 1
τ3 5 + δ 10 10 1
τ4 5 10 10 1

computation. We do not consider configuration prefetch [Li and Hauck 2002], a
technique for hiding the large reconfiguration delay by allowing a task’s con-
figuration to be loaded on the FPGA sometime before the start of its actual
computation. Instead, we assume there is no gap between a task’s reconfig-
uration stage and execution stage. This allows us to add a task’s reconfig-
uration time to its execution time as its overall execution time [Gu et al.
2007]. Since reconfiguration overhead on FPGAs is quite high, it is preferable
to use scheduling algorithms that minimize the number of context-switches.
As EDF generally leads to few task preemptions than static priority schedul-
ing algorithms [Buttazzo 2005], we consider two variants of preemptive EDF
scheduling algorithms in this paper. In addition, we also consider nonpreemp-
tive EDF scheduling since it leads to fewer number of context switches than
preemptive EDF scheduling.

For clarity of presentation in this article, we assume that the entire FPGA
area is uniformly reconfigurable without any fixed area, and each task can be
flexibly placed anywhere on the reconfigurable area as long as there is enough
empty space to contain it. In reality, only part of the FPGA area is reconfig-
urable while the rest has fixed configuration. We use A(H) to denote size of a
FPGA H in terms of number of columns, which can be considered as size of the
reconfigurable area if part of the FPGA is not reconfigurable. Inter-task com-
munication for 1D reconfigurable FPGAs can be achieved with a logical shared
memory that spans the entire width of the FPGA [Banerjee et al. 2007], while
it is more difficult for 2D reconfigurable FPGAs, which we do not consider in
this paper.

This article is structured as follows: we introduce related work in Section 2,
and present the detailed theorem derivation process in Section 3. We present
the terminology used in Section 3.1; the work-conserving concept for FPGA
scheduling in Section 3.2, which forms the foundation for theorem derivations
in later parts of this paper; utilization bound tests for preemptive and non-
preemptive EDF scheduling in Sections 3.3 and 3.4, respectively. In Section 4
we consider the placement strategy and the reconfiguration overhead issue. In
Section 5, we present our HW prototype for preemptive multitasking system
on a Virtex-4 FPGA. We present performance evaluation results in Section 6,
and conclusions in Section 7.

2. RELATED WORK

2.1 Schedulability Analysis for Multiprocessors and FPGAs

For single-processor scheduling, there are mainly two approaches to schedu-
lability analysis: utilization bound tests and response time analysis. Take

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:5

fixed-priority Rate Monotonic (RM) scheduling for example. The well-known Liu
and Layland utilization bound test [Liu and Layland 1973] states that a taskset
with N tasks is schedulable if the total utilization does not exceed N (21/N − 1).
This is a sufficient but not necessary condition, and rejects some tasksets that
are schedulable. Lehoczky et al. [1989] presented a polynomial-time algorithm
for calculating a task’s Worst-Case Response Time (WCRT) by performing
processor demand analysis when the task and all other higher-priority tasks
are initially released at time 0, the critical instant. A task is schedulable if its
WCRT is less than its deadline, and the taskset is schedulable if all tasks are
schedulable. This is a necessary and sufficient condition for schedulability.

For multiprocessor scheduling, an analogous algorithm for WCRT calcula-
tion does not exist since there may not be a critical instant anymore, that is, it is
generally unknown what task release phase offsets cause the WCRT. Therefore,
we are forced to rely on pessimistic utilization bound tests for schedulability
analysis. As an example, Baker [2006a] presented a utilization bound for deter-
mining schedulability of a periodic taskset with fixed-priority scheduling on a
multiprocessor platform, which rejects a significant fraction of tasksets that are
actually schedulable. In order to gauge the tightness of this bound, Baker ob-
tained a coarse upper bound on the fraction of the tasksets that might be schedu-
lable by simulating system execution when all tasks are initially released at
time 0. He stated that “this coarse bound is used because there is no known
computationally feasible algorithm for determining with certainty whether or
not each taskset is schedulable.” Indeed, we will need to exhaustively simu-
late all possible task release offsets in order to determine schedulability of a
taskset on a multiprocessor platform. Schedulability analysis for FPGAs faces
the same problem, for example, Danne and Platzner [2006a] presented a uti-
lization bound for schedulability analysis of global EDF scheduling on FPGAs,
which also rejects a lot of feasible tasksets. This pessimism is the price we have
to pay for making hard real-time guarantees.

For multiprocessor scheduling using preemptive EDF, several authors have
presented utilization bound tests. Goossens et al. [2003] presented a utiliza-
tion bound test, referred to as GFB in this paper, assuming that tasks have
relative deadlines equal to the period. Baker [2003] presented another utiliza-
tion bound test, referred to as BAK1 in this paper, that can handle relative
deadlines less than or equal to the period. Baker [2005a] extended BAK1 to
include tasks with post-period deadlines, and showed that EDF-US[1/2], which
gives higher priority to tasks with utilizations above 1/2, is optimal. Bertogna
et al. [2005] presented an improved test, referred to as BCL in this paper, and
showed that GFB and BAK1 are incomparable to each other, and each test can
accept tasksets that the other test rejects. For tasksets with different timing
characteristics, they have different performance in terms of acceptance ratio.
Baker [2006b] further showed that all three tests, GFB, BCL and BAK1, are
incomparable to each other, that is, no one consistently outperforms the oth-
ers. GFB performs better than BCL if the taskset only consists of tasks with
low time utilization (time-light tasks), while BCL performs better if there are
tasks with high time utilization (time-heavy tasks) [Baker 2003]. Baker [2005c]
further improved upon BCL, and presented another utilization bound test,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:6 • N. Guan et al.

referred to as BAK2 in this paper, which combines BCL with the busy-interval
analysis of BAK1 to obtain a tighter bound than either method could achieve
alone. Recently, Baruah [2007] developed a pseudo-polynomial run-time test,
referred to as BAR, which can efficiently account for the “carry-in.” It is shown
that BAR can outperform the previous tests when the number of tasks is signif-
icantly greater than the number of processors, or when parameters of different
tasks differ by several orders of magnitude. Since BAR has higher complexity,
the following steps are suggested to determine schedulability of a taskset: first
apply the polynomial-time tests, and then apply the pseudo-polynomial BAR
test only if the system is determined to be unschedulable by any of these tests.

There are two possible variants of global preemptive EDF scheduling for
FPGAs, as discussed in Danne and Platzner [2006a]. Let A(H) denote the total
number of columns of the FPGA, and Ai denote the area occupied by the task
instance Ji.

Definition 2.1 (EDF-FkF). Let Q be the queue of all active task instances
sorted by nondecreasing deadlines (sorted by release times if deadlines are the
same). Let Ji denote the ith task instance in Q . The scheduling algorithm EDF-
First-k-Fit (EDF-FkF) selects at any time the first k task instances R of Q for
execution, with the largest k for which

∑
Ji∈R Ai ≤ A(H) holds.

Definition 2.2 (EDF-NF). Let Q be the queue of all active task instances
sorted by nondecreasing deadlines (sorted by release times if deadlines are
the same). Let Ji denote the ith task instance in Q . The scheduling algorithm
EDF-Next-Fit (EDF-NF) determines the set of running tasks R with the fol-
lowing algorithm: start with an empty set R and visit all active task in-
stances Ji ∈ Q in order of non-decreasing deadlines. Add Ji to R if and only if∑

Jk∈R∪Ji
Ak ≤ A(H) .

Perhaps EDF-NF is a misnomer because it does not process tasks in strict
deadline order. Danne and Platzner [2006a] showed that EDF-NF is superior
to EDF-FkF in the sense that if a taskset � is schedulable using EDF-FkF, then
it is also schedulable using EDF-NF. Intuitively, EDF-FkF must process tasks
in strict deadline order, while EDF-NF can process tasks out of deadline order
by skipping any tasks that cannot fit on the FPGA and processing a task with a
longer deadline but can fit on the FPGA. Therefore, EDF-FkF may leave some
HW resources idle if there are ready task instances that can fit on the FPGA
but are blocked by a task instance Jk that cannot fit on the FPGA, while EDF-
NF can exploit these idle resource by skipping Jk and place the task instances
behind it in the queue. Our definitions are a little different from Danne and
Platzner [2006a] by adding the constraint that if two task instances have the
same deadline, then the one with earlier release time has the higher priority.
This is a necessary condition for EDF-NF to be always superior to EDF-FkF,
and it agrees with the practical implementation of priority queues.

For EDF-based global scheduling on FPGAs, Danne and Platzner [2006a]
presented a utilization bound test (referred to as DP) based on Goossens et al.
[2003] (GFB). Danne and Platzner [2006b] also discussed partitioned schedul-
ing for FPGAs, where each task is restricted to executing on a given partition of

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:7

the FPGA, and task execution on each partition is serialized, so the problem is
reduced to task allocation followed by single-processor schedulability analysis.
We focus on global EDF scheduling in this article, which is a more challenging
and interesting problem.

Compared with preemptive EDF, multiprocessor scheduling with non-
preemptive EDF has drawn much less attention from the research commu-
nity, since the response time performance of nonpreemptive EDF is gener-
ally worse than preemptive EDF. Baruah [2006] presented a utilization bound
test for global nonpreemptive EDF scheduling on identical multiprocessor. His
method is similar to GFB, but takes into account blocking time caused by non-
preemption. Similar to preemptive EDF scheduling, we can define two variants
of global non-preemptive EDF for FPGAs: NP-EDF-FkF and NP-EDF-NF. In
this article, we only consider schedulability analysis of NP-EDF-FkF.

2.2 HW Multitasking on FPGAs

HW is inherently parallel, and we can have multiple HW tasks executing in true
concurrency on a FPGA (as opposed to interleaving concurrency on a CPU), even
if we do not consider dynamic reconfiguration. It is desirable to provide a high-
level API to hide the complexities of HW multitasking from the application
programmer. A number of operating systems for FPGAs have been developed
for this purpose, for example, Hybrid Threads [Agron et al. 2006], where each
HW task is configured at a fixed location on the FPGA, and no dynamic recon-
figuration is allowed; that is, time-multiplexing of different HW tasks at the
same FPGA location is not allowed. Therefore, a taskset is schedulable on the
FPGA if all tasks can fit on it, and each task’s execution time is less than its
deadline. This approach eliminates most of the complexities associated with
real-time scheduling, but may be inefficient if some HW tasks with low uti-
lization occupies too much HW space. Some operating systems for dynamically
reconfigurable FPGAs have also been developed, for example, ReconOS [Lub-
bers and Platzner 2007] and the work of Steiger et al. [2004]. These operating
systems manage online HW task queuing, dispatching and placement on the
FPGA, and typically do not allow task preemption.

In this section, we focus on related work on implementing preemptive multi-
tasking on FPGAs,1 which is more relevant to this paper. To implement preemp-
tive multitasking on a FPGA, we need to be able to suspend the execution of an
ongoing task, save its context, and restore the context of another task that was
previously interrupted. The state information of a HW task consists of values
of its state registers. There are mainly two ways of doing this, as discussed in
Sections 2.2.1 and 2.2.2.

2.2.1 Bitstream Readback via Configuration Port Access (CPA). Xilinx-II
Pro and later products provide a Internal Configuration Access Port (ICAP), a
parallel port for the on-chip processor hardcore to configure the task frames.
One approach [Kalte and Porrmann 2005] of saving and restoring a task’s
context is to read back the configuration bitstream through ICAP, parse and

1Non-preemptive multitasking is already well-supported by current commercial products.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:8 • N. Guan et al.

filter it to extract values of the task state registers and save them using a
bitstream manipulation tool such as JBits [Guccione et al. 2000], PARBIT
[Hortaa et al. 2002], JPG [Raghavan and Sutton 2002], JBitsCopy [Dyer et al.
2002] and BitLinker [Silva and Ferreira 2006]. The state information is typi-
cally a small fraction (<10%) of the size of the entire configuration bitstream.
When the task needs to be resumed later, the state information is merged with
the configuration bitstream and downloaded to the FPGA through its configu-
ration port. This approach often incurs excessive delays due to readback and
filtering of the configuration bitstream. The time it takes to read back a task’s
bitstream is proportional to its size in terms of the number of FPGA columns
it occupies. Here are some representative examples of this approach:

—Claus et al. [2007] developed a framework for reducing reconfiguration delays
by using the combitgen tool to generate efficient bitstreams, along with a
new ICAP controller connected directly to the high-speed PLB (Processor
Local Bus) as a master and equipped with DMA (Direct Memory Access).
The configuration speed can be 20 times faster compared to the OPBHWICAP
approach from Xilinx, where the ICAP controller is a slave attachment on the
low-speed OPB (On-Chip Peripheral Bus). The reconfiguration flow is based
on EAPR (Early Access Partial Reconfiguration) from Xilinx.

—Kalte and Porrmann [2006] developed the REPLICA2Pro (Relocation per on-
line Configuration Alteration in Virtex-2/-Pro) filter for performing HW task
relocations at runtime. It allows relocation of pre-synthesized HW tasks along
the horizontal communication infrastructure by manipulating the task’s bit-
stream data during the bitstream download process. The filter parses the
bitstream during the download process and replaces the column addresses
within the bitstream according to the desired location of the HW task.

—Danne et al. [2006] developed an all-HW runtime system for server-based
preemptive multitasking on the CELOXICA RC203 board, which consists
of a Xilinx Virtex-II 3000 FPGA, a CPLD, a flash memory card and two
banks of SRAM. CPLD acts as a reconfiguration controller that reads/writes
configuration bitstreams from/to the flash memory card on request of the logic
implemented in the FPGA. Since partial reconfiguration is not supported,
the entire reconfigurable area is configured every time, including the user
tasks and the runtime system. The Save System Context (SSC) phase saves
the context of user tasks and runtime system to the external SRAM, and
Restore System Context (RSC) phase restores the context from the external
SRAM. Although the Virtex II 3000 could be reconfigured within 20 ms via
the SelectMap interface, the speed of the SmartMedia flash memory card
limits the reconfiguration time on the RC203 board to 180 ms.

2.2.2 Task Specific Access Structures (TSAS). A more efficient approach is
to use Task Specific Access Structures (TSAS) [Kalte and Porrmann 2005] to
avoid reading back and filtering the bitstream by adding some HW resources to
add read/write interfaces to task state registers, so that they can be accessed di-
rectly by the configuration circuitry during context saving and restoring. There
are several ways of implementing this interface, for example, as a scan chain

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:9

or an addressable RAM structure on the FPGA. When the task needs to be re-
sumed later, the configuration bitstream is downloaded and the state register
values are restored. State saving and restoring are all on-chip. This approach is
much faster than the bitstream readback approach, since task registers can be
read/written directly, while the CPA approach involves reading back, parse and
filter the entire bitstream of the HW task. The disadvantage is that additional
HW resources must be allocated to implement the register read/write interface.
One way to reduce the number of registers is to implement a shutdown process
for each task [Kalte and Porrmann 2005], which we do not consider in this
paper.

The majority of related work falls into the CPA category, but several authors
have developed techniques for the TSAS category:

—Koch et al. [2007] developed an efficient technique for extracting and restor-
ing the state of a HW module with low delay and HW resource overhead,
which can be used both for preemptive scheduling and for HW checkpoint-
ing. Several HW mechanisms are developed, including memory-mapped state
access (MM), scan chain based state access (SC), and shadow based scan state
access (SHC).

—Jovanovic et al. [2007] developed a HW task preemption mechanism based on
scan-path register structures. The main advantage of the proposed method
is that it allows context saving and restoring of a HW task without freezing
other tasks during preemption phases.

3. DERIVATION OF UTILIZATION BOUND TESTS

3.1 Problem Definition and Terminology

We consider a 1D reconfigurable FPGA H with A(H) columns and a taskset
� consisting of N periodic or sporadic tasks to be scheduled on H. Each task
τk = (Ck , Dk , Tk , Ak), k ∈ 1, . . . , N is characterized by its execution time Ck ,
period or minimum inter-arrival time Tk , a relative deadline Dk and an area
size Ak , which represents the number of contiguous columns that τk occupies.
Without losing generality, we set Ck < Dk and Ck < Tk . A taskset � has pre-
period deadlines if for each task τk ∈ �, the relative deadline is not larger than
its period (Dk ≤ Tk); a taskset has post-period deadlines if there is some τk ∈ �,
the relative deadline is larger than its period (Dk > Tk). A task τk consists of
a sequence of task instances J j

k (Jk), each characterized by its release time r j
k

(rk) and finish time f j
k (fk), and d j

k (dk) denote its absolute deadline.
We define two notions of workload done by a task to measure its progress:

—The time workload W T
i (t − δ, t) done by task τi over a time interval [t − δ, t)

is the sum of the lengths of all subintervals during which a task instance J j
i

executes. The total time workload W T (t −δ, t) done in a time interval [t −δ, t)
is the sum of time work of all task instances in the interval.

—The time-by-area workload W S
i (t − δ, t) done by task τi over a time interval

[t−δ, t) is the product of the time work of the interval and the area of the task:
W S

i (t − δ, t) = W T
i (t − δ, t) × Ai. The total time-by-area workload W S(t − δ, t)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:10 • N. Guan et al.

done in a time interval [t − δ, t) is the sum of time-by-area work of all task
instances in the interval.

For multiprocessor scheduling, each task occupies one processor when it is ex-
ecuting, so we evaluate the work done by a task instance only based on its
execution time, which corresponds to the time workload concept. But for FPGA
scheduling, each task can occupy a different area size, so we define time-by-area
workload to evaluate the work done by a task instance based on its area size in
addition to its execution time.

As in Danne and Platzner [2006a], we define two utilization metrics: the time
utilization of a task τi is defined as

U T (τi) = Ci/Ti (1)

and for the complete taskset � as

U T (�) =
∑
τi∈�

U T (τi). (2)

The time-by-area utilization of a task τi is defined as

U S(τi) = U T (τi)Ai (3)

and for the complete taskset � as

U S(�) =
∑
τi∈�

U S(τi). (4)

Similarly, we define two density metrics: the time density of a task τi is de-
fined as

δ(τi) = Ci/Di (5)

and for the complete taskset � as

δT (�) =
∑
τi∈�

δT (τi). (6)

The time-by-area density of a task τi is defined as

δS(τi) = δT (τi)Ai (7)

and for the complete taskset � as

δS(�) =
∑
τi∈�

δS(τi). (8)

For nonpreemptive scheduling, we introduce two additional utilization
concepts.

The time blocked utilization of a task τi is defined as

V T (τi) =
{

Ci/(Di − Cmax) if Di > Cmax
∞ if Di ≤ Cmax

(9)

and for the complete taskset � as

V T (�) =
∑
τi∈�

V T (τi). (10)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:11

The time-by-area blocked utilization of a task τi is defined as

V S(τi) = V T (τi)Ai (11)

and for the complete taskset � as

V S(�) =
∑
τi∈�

V S(τi). (12)

Loosely speaking, V T (τi) and V S(τi) play the roles of δT (τi) and δS(τi) of
task τi, respectively, when τi is subject to blocking for an amount of time of
the maximum computation time of all tasks Cmax . Our definition of V T (τi) is a
little different from the one in Baruah [2006], where V T (τi) = Ci/(Ti − Cmax).
The reason that we replace Ti by Di is to consider Di ≤ Ti for tasksets with
pre-period deadlines.

The interference Ik(t − δ, t) suffered by a task τk over a time interval [t − δ, t)
is the sum of the lengths of all the sub-intervals in [t − δ, t) during which a
task τk is preempted. The interference contribution Ii,k(t − δ, t) of a task τi to
Ik(t − δ, t) is the amount of interference caused by τi to τk .

The block busy interval is any time interval during which the idle area of the
FPGA is less than or equal to A(H) − Amax + 1, where Amax is the largest area
size of all tasks in the taskset �.

The block busy time B(t − δ, t) of a time interval [t − δ, t) is the sum of the
length of all block busy intervals in [t − δ, t). The block busy time Bi(t − δ, t)
of task τi is the total amount of time during which τi is executing in the block
busy time B(t − δ, t).

The τk-busy interval is the interval during which τk always has active in-
stances executing or waiting to execute. For each task τk , a unique maximal
τk-busy interval exists, since at the start of the system it is not τk-busy.

3.2 Work-Conserving Concept for FPGA

If a multiprocessor CPU scheduling algorithm is work-conserving, it means
that it never leaves any processor idle when there are any task instances in
the ready queue. For example, global EDF scheduling is work-conserving on
identical multiprocessor systems [Goossens et al. 2003]. This fact is the basis
for derivation of the utilization bound tests of global EDF scheduling.

Unlike multiprocessor CPU scheduling, it is possible for parts of the FPGA
area to be idle when there are task instances in the ready queue, because the
idle area may not be large enough to fit any of the task instances in the ready
queue. Therefore, we need an extended notion of work-conserving algorithms.
Danne and Platzner [2006a] defined the concept of α-work-conserving schedul-
ing algorithms, which guarantee that at least α × A(H) area of the FPGA is
occupied (busy) when there are task instances in the ready queue. Next, we
present two definitions of α-work-conserving algorithms, and the correct α val-
ues for EDF-FkF and EDF-NF.

Definition 3.1 (Global-α-work-conserving). A scheduling algorithm is
global-α-work-conserving if at least α × A(H) area of the FPGA H with total
area A(H) is occupied whenever there are task instances in the ready queue.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:12 • N. Guan et al.

LEMMA 3.2. EDF-FkF, EDF-NF and NP-EDF-FkF are all global-α-work-
conserving algorithms, and α = 1 − (Amax − 1)/A(H), where Amax is the largest
area of all tasks.

PROOF. Assume more than Amax − 1 of the FPGA area is idle in an overload
situation. Since the area (number of columns) is an integer value, the idle area
is equal to or larger than Amax . Using any one of EDF-FkF, EDF-NF or NP-
EDF-FkF, the next task instance in the waiting queue can start to execute
immediately since its area size is not larger than Amax . Hence the assumption
must be wrong.

Our definition of global-α-work-conserving is similar to the α-work-
conserving concept in Danne and Platzner [2006a], in which a task τi ’s area
Ai is assumed to be a real number instead of an integer for the purpose of
generality, and α is determined to be 1 − Amax/A(H). We believe it is more rea-
sonable to assume Ai is an integer, since it refers to the number of columns that
τi occupies. In this case, α should be 1 − (Amax − 1)/A(H). Intuitively, if an area
of size Amax is idle, then it is still possible to fit another task on the FPGA; but
if an area of size (Amax − 1) is idle, then it may not be possible to fit another
task. Therefore, in an overload situation, that is, when the task queue is not
empty, at least A(H) − (Amax − 1) area of the FPGA must be occupied, hence
α = 1 − (Amax − 1)/A(H).

Danne and Platzner [2006a] derived a schedulability condition for periodic
tasksets based on GBF. Since GBF has been generalized to the case of spo-
radic tasksets with constrained deadlines (Di ≤ Ti), and with the integer task
area assumption, we can easily generalize Danne and Platzner [2006a]’s test
condition.

THEOREM 3.3. (DP) Any periodic taskset � can be feasibly scheduled by
EDF-FkF on a FPGA H with area A(H) having A(H) ≥ Amax if:

∀Tk ∈ T : δS(�) ≤ (A(H) − Amax + 1) × (1 − δT (Tk)) + δS(Tk) (13)

where Amax is the largest area of all tasks in � respectively.

Next, we define another notion of work-conserving algorithm in order to
obtain tighter utilization bounds:

Definition 3.4 (Interval-α-work-conserving). A scheduling algorithm is
interval-α-work-conserving during a time interval [a, b) if at least α × A(H)
area size of the FPGA H with total area size A(H) is occupied during [a, b).

A global-α-work-conserving algorithm guarantees a lower bound of time-by-
area utilization whenever there are task instances in the ready queue, but an
interval-α-work-conserving algorithm only guarantees a lower bound of time-
by-area utilization during certain time intervals. We define this concept in order
to obtain a tighter α bound for EDF-NF:

LEMMA 3.5. EDF-NF is an interval α-work-conserving algorithm with

α = 1 − (Ak − 1)/A(H) (14)

in any time interval during which the task instance Jk is in the ready queue.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:13

In EDF-NF, when a task instance cannot fit on the idle area of the FPGA, we
can first allocate some other task instance with a longer deadline and smaller
area that can fit on the FPGA. Therefore, at least (A(H) − (Ak − 1)) area of the
FPGA must be occupied when a task instance Jk with area Ak is in the ready
queue. But in EDF-FkF, we must allocate task instances in strict deadline order,
therefore a task instance with a large area can block other task instances behind
it in the wait queue from being allocated, so we must be pessimistic and use
Amax instead of Ak .

3.3 Utilization Bound Test for Preemptive EDF

In this section, we derive utilization bound tests for preemptive EDF. We first
derive a utilization bound test (GDG-1) with complexity O(n2) for EDF-NF
and tasksets with preperiod deadlines, then a test (GDG-2) with complexity
O(n3) for EDF-FkF and tasksets with post-period, and at last a test (GDG-3)
with pseudo-polynomial complexity for EDF-NF and tasksets with pre-period.
deadlines.

3.3.1 EDF-NF for Tasksets with Pre-Period Deadlines. The derivation is
based on the utilization bound test of multiprocessor scheduling [Bertogna et al.
2005] (referred to as BCL). BCL is derived by analyzing the upper bound of
the interference time suffered by a given task during its execution. For a task
τk to meet its deadline, the total interference suffered by it must not be larger
than its slack Dk − Ck .

If the interference that τi causes to τk in the time interval [r j
k , d j

k) is greater
than Dk − Ck , then it is sufficient to only consider the portion Dk − Ck in the
response time calculation of task τk . This is because if τk can finish its work
during [r j

k , d j
k), then the portion of τi ’s workload that exceeds Dk − Ck must be

executed in parallel with τk and does not contribute to τk ’s interference.
Here are the key steps of the derivation: suppose a instance J j

k of task τk

misses its deadline d j
k , then we can find the lower bound of the interference Ik

that the task instance must suffer in the interval [r j
k , d j

k) to cause the deadline
miss. Since the precise interference in any interval is impossible to obtain,
we can derive an upper bound of the interference using the workload in the
interval.

The worst-case interference suffered by task τk is I∗
k = max j (Ik(r j

k , d j
k)) =

Ik(r j∗
k , d j∗

k), where j ∗ is the task instance in which the total interference is
maximal. We also define I∗

i,k = Ii,k(r j∗
k , d j∗

k).

LEMMA 3.6. The taskset is schedulable if the following condition is true for
each τk: ∑

i
=k

Ai min(I∗
i,k , Dk − Ck) ≤ (A(H) − Ak + 1)(Dk − Ck). (15)

PROOF. We use proof by contradiction. Suppose the taskset is not schedula-
ble, then there must exist a task instance J j

k that misses its deadline at time t.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:14 • N. Guan et al.

The total interference on the task should be larger than the slack time of τk , so
we have:

Ik(t − δ, t) > Dk − Ck . (16)

Let x = Dk − Ck , ξ = ∑
i:Ii,k≥x Ai and � (i, x) = ∑

i Ai min(Ii,k(t − δ, t), x), so
we have

� (i, x) = ξx +
∑

i:Ii,k<x

Ai Ii,k(t − δ, t). (17)

Let Abnd = (A(H) − Ak + 1). Based on the value of ξ , one of the two cases
must be true:

—Case 1: ξ > Abnd . Obviously, it follows that

� (i, x) > (A(H) − Ak + 1)(Dk − Ck), (18)

which causes a contradiction with the lemma.
—Case 2: ξ ≤ Abnd . The time-by-area work done by all tasks in τ ′

ks interference
interval of [t − δ, t) is

∑N
i=1 Ai × Ii,k(t − δ, t). From Lemma 3.5, we know that

for EDF-NF, the occupied area cannot be less than A(H)− Ak +1 in any given
time point when τk is in the ready queue. Therefore, the time-by-area work
done by all the tasks in τ ′

ks interference is no less than (A(H) − Ak + 1)Ik(t −
δ, t), i.e.∑

i:Ii,k≥x

Ai Ii,k(t − δ, t) +
∑

i:Ii,k<x

Ai Ii,k(t − δ, t) ≥ (A(H) − Ak + 1)Ik(t − δ, t).

(19)

By Equation (17) and (19), we have

� (i, x) ≥ ξx + Abnd Ik(t − δ, t) −
∑

i:Ii,k≥x

Ai Ii,k(t − δ, t) (20)

Because Ik(t − δ, t) > Ii,k(t − δ, t), so we have

� (i, x) > ξx + Abnd Ik(t − δ, t) − ξ Ik(t − δ, t) (21)

Because ξ ≤ Abnd and x ≤ Ik(t − δ, t), we have

� (i, x) > Abnd ∗ x (22)

i.e.
N∑

i=1

Ai min(Ii,k(t − δ, t), x) > (A(H) − Ak + 1)(Dk − Ck) (23)

which also contradicts the lemma, so the assumption cannot hold.

Figure 2 illustrates Lemma 3.6. The white rectangles represent execution of
the task instance Jk that we want to check, and the gray rectangles represent
execution of other task instances. If we can guarantee the whole time-by-area
work done by these task instances to be less than the total size of the shadowed
area, then the interference certainly cannot cause Jk to meet its deadline. If
the interference contribution of some task instance is larger than Dk − Ck , we
only need to consider the (Dk − Ck) part, since the rest of it must be executed
in parallel with Jk and does not contribute to Jk ’s interference.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:15

Fig. 2. Illustration of Lemma 3.6.

To apply the schedulability test of Lemma 3.6, the most straightforward
approach is to compute the interference Ii,k(r j

k , d j
k) for each task τi in every

interval [r j
k , d j

k] until the end of the hyper-period. This is infeasible without
running a simulation of the system, so we derive an analytical upper bound on
the interference. Since the interference Ii,k(r j

k , d j
k) cannot be larger than the

time work W T
i (r j

k , d j
k), the upper bound of W T

i (r j
k , d j

k) is also the upper bound
of Ii,k(r j

k , d j
k).

For multiprocessor scheduling, the worst case for the time workload is when
the deadlines of task instance J j

k and its interfering task τi are aligned, be-
cause in this case the number of instances of τi that interfere with τk is maxi-
mized [Baker 2003]. This conclusion also holds for FPGA scheduling, since the
interference that J j

k suffers from task τi in some given time interval is only
related to their execution times, not to their area size.

LEMMA 3.7. An upper bound on the time workload of τi in the interval[
r j

k , d j
k

)
is:

Wi
(
r j

k , d j
k

) ≤ NiCi + min(Ci, max(Dk − NiTi, 0))

in which Ni = (�(Dk − Di)/Ti
 + 1).

The proof of Lemma 3.7 comes from Bertogna et al. [2005] and Baker [2003].

PROOF. The time workload Wi(r
j

k , d j
k) done by τi in an interval [r j

k , d j
k) may

include the following components:

(1) A portion of the execution times of the task instances that are released
before r j

k but unable to complete by that time, called the carry-in, as defined
in Baker [2003].

(2) The full execution time Ci of the task instances released on or after r j
k and

completed by time t.
(3) A portion of the execution time of at most one task instance released at

some time d j
k − δ, 0 < δ ≤ d j

k − r j
k but is unable to complete by time d j

k .

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:16 • N. Guan et al.

We consider only the worst case mentioned above. In this situation, the
time workload Wi(r

j
k , d j

k) ≤ NiCi + εi(r
j

k , d j
k), where εi(r

j
k , d j

k) is the carry-
in of task τk in interval [r j

k , d j
k). Ni = (�(Dk − Di)/Ti
 + 1) is the maximum

number of instances of τi that can be completely contained in [r j
k , d j

k) in this
situation.

Now we look for the upper bound of the carry-in. Obviously, We have
εi(r

j
k , d j

k) ≤ Ci. When Ti > Di and Dk − NiTi > 0, we can see that the carry-
in will never be larger than Dk − NiTi in the worst-case situation mentioned
above.

We can then prove Theorem 3.8 based on Lemma 3.6 and Lemma 3.7.

THEOREM 3.8. (GDG-1) A taskset � is schedulable using EDF-NF if, for each
τk ∈ � ∑

i
=k

Ai min(βi, Dk − Ck) < (A(H) − Ak + 1)(Dk − Ck) (24)

where βi = NiCi + min(Ci, max(Dk − NiTi, 0))

3.3.2 EDF-FkF for Tasksets with Post-Period Deadlines. From Lemma 3.2,
we know that EDF-FkF is global-α-work-conserving, where α = (1 − (Amax −
1))/A(H)). As a result, the lower bound of time-by-area utilization in the anal-
ysis interval [t − δ, t) for task τk is not related to the area size Ak of τk . This
fact offers us an opportunity to take advantage of Baker’s problem window
extension [Baker 2003] to get a tighter bound of the carry-in. Furthermore,
Baker’s method can deal with tasksets with post-period deadlines as well as
those with pre-period deadlines. Next, we will use a similar idea to derive the
schedulability test of EDF-FkF for tasksets with arbitrary deadlines.

LEMMA 3.9. If t is the time of τk’s first deadline miss and [t − δ, t) is the
corresponding maximal τk-busy interval then:

Ik(t − δ, t) > δ − (δ + Tk − Dk)Ck/Tk . (25)

To bound the carry-in time contribution by τi, the maximal τk-busy interval
is extended downward, i.e., keeping the right endpoint fixed and moving the
left endpoint earlier, as far as possible while still maintaining a lower bound
on block busy time as in Lemma 3.9.

Definition 3.10. τλ
k -busy interval. An interval [t − δ, t) is τλ

k -busy for a
given constant λ ≥ Ck/Tk if B(t − δ, t) > δ −λ(δ + Tk − Dk). An interval [t − δ, t)
is a maximal τλ

k -busy interval if it is τλ
k -busy and there is no δ′ > δ such that

[t − δ′, t) is also τλ
k -busy.

LEMMA 3.11. If t is the time of the first deadline miss of τλ
k and λ ≥ Ck/Tk,

then there is a unique maximal τλ
k -busy interval [t − δ, t), and δ ≥ Dk.

We call the unique interval [t −δ, t) guaranteed by Lemma 3.11 the maximal
τλ

k -busy interval, denoted by [t − δ, t). The next step is to find an upper bound
on the time workload W T

i (t − δ, t) done by each task τi in a τλ
k -busy interval

[t − δ, t).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:17

LEMMA 3.12. If t is the time of the first deadline miss of task τk, and λ ≤
Ck/Tk and [t − δ, t) is the corresponding τλ

k -busy interval, then for any task τi
such that i
= k

W T
i (t − δ, t)

δ
≤ βi

k(i), (26)

where

βλ
k (i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
(

Ci

Ti
,

Ci

Ti

(
1 − Di

Dk

)
+ Ci

Dk

)
if

Ci

Ti
≤ λ

Ci

Ti
if

Ci

Ti
> λ ∧ λ ≥ Ci

Di
Ci

Ti
+ Ci − λDi

Dk
if

Ci

Ti
> λ ∧ λ <

Ci

Di

(27)

The proof of Lemma 3.9, 3.11 and 3.12 can be found in Baker [2005c].

LEMMA 3.13. If the interval [t − δ, t) is a block busy interval, then

∀i(A(H) − Amax + 1)B(t − δ, t) ≤
N∑

i=1

Ai Bi(t − δ, t), (28)

where Amax is the largest area of all tasks in �.

PROOF. The time-by-area work done by all the tasks in a τk-busy interval
[t−δ, t) is

∑N
i=1 Ai Bi(t − δ, t). By the concept of block busy interval, the occupied

area cannot be less than A(H) − Amax + 1 in any given time point in [t − δ, t).
Therefore, the time-by-area work done by all the tasks in a τ ′

ks-busy interval is
no less than (A(H) − Amax + 1)B(t − δ, t).

LEMMA 3.14. If the interval [t−δ, t) is block busy interval and B(t−δ, t) > x,
then

N∑
i=1

min(Bi(t − δ, t), x) > (A(H) − Amax + 1)x, (29)

where Amax is the largest area of all tasks in �.

PROOF. Let ξ = ∑
i:Bi≥x Ai, Abnd = A(H) − Amax + 1. Let � (i, x) =∑

i Ai min(Bi(t − δ, t), x), and � (i, x) = ξx + ∑
i:Bi<x Ai Bi(t − δ, t). According

to the comparison of ξ and Abnd , one of the two cases must be true:

(1) ξ > Abnd . Obviously, it follows that � (i, x) > (A(H) − Amax + 1)x.
(2) ξ ≤ Abnd . According to Lemma 3.13, we have

� (i, x) ≥ ξx + Abnd B(t − δ, t) −
∑

i:Bi≥x

Ai Bi(t − δ, t). (30)

Because B(t − δ, t) ≥ Bi(t − δ, t), we have
� (i, x) ≥ ξx + Abnd B(t − δ, t) −

∑
i:Bi≥x

Ai B(t − δ, t), (31)

that is,
� (i, x) ≥ ξx + Abnd B(t − δ, t) − ξ B(t − δ, t). (32)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:18 • N. Guan et al.

Because ξ ≤ Abnd and B(t − δ, t) > x, we have

� (i, x) > Abnd x, (33)

that is,
N∑

i=1

min(Bi(t − δ, t), x) > (A(H) − Amax + 1)x. (34)

The lemma is proved.

LEMMA 3.15. If the interval [t − δ, t) is τk-busy, then we have:

W S(t − δ, t) > (A(H) − Amax + 1 − Amin)B(t − δ, t) + Aminδ, (35)

where Amax is the largest area of all tasks in �.

PROOF. Let Abnd = A(H) − Amax + 1. The interval [t − δ, t) can be divided
into two parts: the blocked part with length B(t − δ, t), and the unblocked part
with length δ − B(t − δ, t). The time-by-area work done in [t − δ, t) is sum of the
work done in these two parts.

By the definition of blocking time, the work done in the blocked part is never
less than (A(H) − Amax + 1)B(t − δ, t). Since [t − δ, t) is a τk-busy interval, the
FPGA cannot be idle at any time, so there must be at least one task instance
executing in the unblocked part. So the work done in the unblocked part is
never less than Amin(δ − B(t − δ, t)).

It follows that

W S(t − δ, t) > Abnd B(t − δ, t) + Amin(δ − B(t − δ, t)), (36)

so we have

W S(t − δ, t) > (A(H) − Amax + 1 − Amin)B(t − δ, t) + Aminδ. (37)

The lemma is proved.

Now we present Theorem 3.16 and its proof:

THEOREM 3.16. (GDG-2) Let βλ
k (i) be as defined as in Lemma 3.12 and let

λk = λ max(1, Tk/Dk). A taskset � is schedulable using EDF-FkF if, for every
task τk, there exists λ ≥ Ck/Tk such that one or more of the following conditions
are satisfied:

1)
N∑

i=1

Ai min
(
βλ

k (i), 1 − λk
)

< Abnd (1 − λk) (38)

2)
N∑

i=1

Ai min
(
βλ

k (i), 1
) ≤ (Abnd − Amin)(1 − λk) + Amin (39)

where Abnd = A(H) − Amax + 1, Amax and Amin is the largest and smallest area
of all tasks in �, respectively.

PROOF. We use proof by contradiction. Suppose the taskset � with a release
time assignment r is not schedulable, then there must be some task τk that

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:19

misses its deadline for the first time at time t. Let [t − δ, t) be the τλ
k -busy

interval guaranteed by Lemma 3.11. By the definition of τλ
k -busy,

B(t − δ, t)
δ

> 1 − λ + λ
Tk − Dk

δ
. (40)

There are two cases:
(1) If Tk ≤ Dk , then the value of the expression on the right-hand side of the

inequality above is nondecreasing with respect to δ, and since δ ≥ Dk ,
B(t − δ, t)

δ
≥ 1 − λ + λ

Tk − Dk

Dk
= 1 − λ

Tk

Dk
. (41)

(2) If Tk > Dk , then the value of the expression on the right-hand side of
Equation (40) is decreasing with respect to δ, and so

B(t − δ, t)
δ

≥ 1 − λ. (42)

Since λk = λ max(1, Tk
Dk

), Equations (41) and (42) can be combined into

B(t − δ, t)
δ

≥ 1 − λk . (43)

Since [t − δ, t) is τk-busy, from Lemma 3.15,
W S(t − δ, t) > (Abnd − Amin)B(t − δ, t) + Aminδ. (44)

Since W T
i (t − δ, t) ≤ δ, we have

N∑
i=1

Ai min
(
W T

i (t − δ, t), δ
) = W S(t − δ, t). (45)

It follows from Equations (43), (44), and (45):
N∑

i=1

Ai min

(
W T

i (t − δ, t)
δ

, 1

)
> (Abnd − Amin)(1 − λk) + Amin. (46)

It follows from Lemma 3.12 that
N∑

i=1

Ai min(βλ
k , 1) > (Abnd − Amin)(1 − λk) + Amin. (47)

Therefore condition 2) of the theorem must be false. Next, we show that condi-
tion 1) must also be false.

By Lemma 3.14 with x = (1 − λk)δ and using Equation (43), it must hold
that:

N∑
i=1

Ai min
(

Bi(t − δ, t)
δ

, 1 − λk

)
> Abnd (1 − λk). (48)

Combining Lemma 3.12 and Equation (48), and since Bi(t − δ, t) ≤ Wi(t − δ, t),
we have

N∑
i=1

Ai min
(
βλ

k (i), 1 − λk
)

> Abnd (1 − λk). (49)

This contradicts condition 1) of the theorem.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:20 • N. Guan et al.

Fig. 3. Images of β
λ(i)
k and min(βλ(i)

k , 1 − λk).

So the assumption cannot hold, and the taskset � must be schedulable.

It seems that we should check every possible value of λ with GDG-2, which
is not feasible in practice. Next, we will show how to implement GDG-2 by
checking a limited number of values of λ.

First, we consider Condition (38). By its definition, we know β
λ(i)
k is a linear

and monotonic function respect to λ in each segment of its domain. Figure 3(a)
is one possible graph of β

λ(i)
k . Now we apply the min(βλ(i)

k , 1 −λk), and the result
function is shown in Figure 3(b) (the bold line). We observe that the slope of
the function may change at the points with β

λ(i)
k = 1 − λk (a and b), besides the

original endpoints of each segment according to β
λ(i)
k ’s definition. So min(βλ(i)

k , 1−
λk) is still a piecewise linear and monotonic function respect to λ. Since the sum
of a set of linear and monotonic functions is also linear and monotonic, the left
side of Condition (38) is a piecewise linear and monotonic function. To compare
it with the right side of Condition (38), which is also linear and monotonic with
respect to λ, we only need to consider the endpoints of the segments and the
points at which β

λ(i)
k = 1 − λk . And since β

λ(i)
k is a constant with the first two

cases of its definition, we only need consider the following points for λ:

—λ = Ci/Ti, i = 1, ..., N
—λ = Ci/Di, i = 1, ..., N if Di > Ti

—λ |= (Ci/Ti + (Ci − λDi)/Dk = 1 − λk ∧ λ < Ci/Ti ∧ λ < Ci/Di), i = 1, . . . ,N

The consideration of Condition (39) is similar to (38), and we only need to
consider same points as shown above. So the utilization bound test GDG-2 is
of complexity O(N 3).

3.3.3 A Pseudo-Polynomial Schedulability Test for EDF-NF. In this sec-
tion, we introduce a pseudo-polynomial schedulability test of EDF-NF for a
taskset with post-period deadlines. This approach is based on the technique for
multiprocessor systems by Baruah [2007], which only needs to consider carry-
in from m−1 tasks, where m is the number of processors, while all the previous
tests must account for carry-in from all tasks.

Consider any legal sequence of job requests of task system � that is scheduled
with EDF-NF and misses a deadline. Suppose a job of task τk is the first one to

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:21

Fig. 4. Illustration of the notations.

miss a deadline, and this deadline miss occurs at time instant td , as shown in
Figure 4. Let ta denote this instance’s arrival time: ta = td − Dk . Let to denote
the latest time instant ≤ ta at which at least Amax area of the FPGA is idle. Fk
is defined as ta − t0. For τk to miss its deadline, it must execute for strictly less
than Ck time units during [ta, td), that is, the FPGA executes jobs other than τk ’s
jobs for strictly more than (Dk −Ck) during [ta, td). Let Zk denote a collection of
intervals, not necessarily contiguous, of cumulative length (Dk−Ck) over [ta, td),
during which the FPGA is executing task instances other than τk ’s instance. Let
I T (τi) denote the contribution of τi to the time work done during [to, ta)

⋃
Zk ,

and I S(τi) = I T (τi)Ai denote the contribution of τi to the time-by-area work
done during [to, ta)

⋃
Zk .

Since EDF-NF is interval-(1-Ak − 1/A(H))-work-conserving during Zk , at
least A(H) − Ak + 1 area must be occupied at any time instant in Zk . By the
definition of to, at least A(H) − Amax + 1 area must be occupied at any time
instant in [to, ta). The following condition must be satisfied if a deadline miss
occurs:∑

τi∈�

I S(τi) > (A(H) − Amax + 1) × Fk + (A(H) − Ak + 1) × (Dk − Ck) (50)

where Fk = ta − t0.
Equation (50) shows the necessary condition for a deadline miss to occur

with EDF-NF scheduling. Conversely, in order for all deadlines of τk to be met,
it is sufficient that Equation (50) is violated for all values of Fk . Lemma 3.17
follows immediately:

LEMMA 3.17. Taskset � is schedulable with EDF-NF upon a FPGA with area
A(H), if for all tasks τk and all Fk ≥ 0:∑

τi∈�

I S(τi) ≤ (A(H) − Amax + 1) × Fk + (A(H) − Ak + 1) × (Dk − Ck) (51)

Baruah [2007] has shown how to compute the upper bound of the
∑

τi∈� I T (τi)
in the context of multiprocessor systems. We will compute

∑
τi∈� I S(τi) in the

context of a FPGA system by following Baruah [2007]’s idea.
A task instance that arrives before to and has not completed execution by

to is called a carry-in instance. The set of tasks with no carry-in instances is
denoted as �1 and their contribution in

∑
τi∈� I S(τi) is denoted as I S

1 (τi), while
the set of tasks with carry-in instances is denoted as �2 and their contributionin

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:22 • N. Guan et al.

∑
τi∈� I S(τi) is denoted as I S

2 (τi). So we have∑
τi∈�

I S(τi) =
∑
τi∈�1

I S
1 (τi) +

∑
τi∈�2

I S
2 (τi). (52)

Baruah [2007] showed that I T
1 (τi) is computed as follows:

I T
1 (τi) =

{
min(DBF(τi, Fk + Dk), Fk + Dk − Ck) if i
= k
min(DBF(τi, Fk + Dk) − Ck , Fk) if i = k,

(53)

in which DBF(τi, t) is demand bound function. For any interval length t, the
demand bound function DBF(τi, t) of a sporadic task τi bounds the maximum
cumulative execution requirement by instances of τi that both arrive in, and
have deadlines within, any interval of length t. It has been shown [Baruah et al.
1990] that:

DBF(τi, t) = max
(

0,
(⌊

t − Di

Ti

⌋
+ 1

)
Ci

)
. (54)

And I2(τi) is computed as follows:

I T
2 (τi) =

{
min(DBF’(τi, Fk + Dk), Fk + Dk − Ck) if i
= k
min(DBF’(τi, Fk + Dk) − Ck , Fk) if i = k,

(55)

in which DBF’(τi, t) denotes the amount of work that can be contributed by τi
over a continuous interval of length t, if some job of τi has its deadline at the very
end of the interval and each job of τi executes during the Ci units immediately
preceding its deadline, and it is shown that:

DBF’(τi, t) =
⌊

t
Ti

⌋
× Ci + min(Ci, t mod Ti). (56)

Let I T
dif(τi) denote the difference between I T

2 (τi) and I T
1 (τi), and I S

dif(τi) denote
the difference between I S

2 (τi) and I S
1 (τi):

I S
dif(τi) = I S

2 (τi) − I S
1 (τi) = (

I T
2 (τi) − I T

1 (τi)
)
Ai = I T

dif(τi)Ai. (57)

And we have: ∑
τi∈�

I S(τi) =
∑
τi∈�

I S
1 (τi) +

∑
τi∈�2

I S
dif(τi). (58)

By definition of to, at most (A(H)− Amax +1) area of the FPGA is occupied at
to. To identify the taskset with total area not exceeding (A(H) − Amax + 1)
and having largest

∑
τi∈�2

I S
dif(τi) is similar to bin-packing, which is known

to be NP-hard. Algorithm 1 shows an efficient approach to obtaining an
approximate upper bound Bdif for

∑
τi∈�2

I S
dif(τi), based on the following ob-

servation: By I S
dif(τi) = I T

dif(τi)Ai , we know that tasks with larger I T
dif(τi)

will lead to larger I S
dif(τi) with same hardware resource area, so we sort

the tasks in decreasing order of the value of I T
dif(τi), as shown in Figure 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:23

Fig. 5. Illustration of the algorithm in Algorithm 1.

Algorithm 1 Computing Bdif

Bdif = 0
a = A(H) − Amax + 1
TaskQueue Q = all tasks sorted in the decreasing order of Ci

τi = the first task in Q
WHILE (true)

IF (a > τi .A)
a = a − τi .A
Bdif = Bdif + τi .I S

dif
τi = next task in Q

ELSE
Bdif = Bdif + τi .I T

dif ∗ a
return Bdif

ENDIF
ENDWHILE

Actually, τ3 can not be active along with τ1 and τ2, but we can guarantee the∑
τi∈�2

I S
dif(τi) will never exceed the total area of the shadowed part. So we have:

Bdif = I S
dif(τ1) + I S

dif(τ2) + I T
dif(τ3)(A(H) − Amax + 1 − A1 − A2)

By solving the bin-packing problem, we know the exact maximum
∑

τi∈�2
I S

dif(τi)
is (I S

dif(τ1) + I S
dif(τ4) + I S

dif(τ5)), which is smaller than the area of the shadowed
part Bdif.

By Lemma 3.17 and the computation of the upper bound of
∑

τi∈� I S(τi), we
have the schedulability test condition for EDF-NF:

THEOREM 3.18. (GDG-3) Taskset � is schedulable with EDF-NF upon a
FPGA with area A(H), if for all tasks τk and all Fk ≥ 0:∑

τi∈�

I S
1 (τi) + Bdif ≤ (A(H) − Amax + 1) × Fk + (A(H) − Ak + 1)) × (Dk − Ck)

(59)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:24 • N. Guan et al.

in which I S
1 (τi) is defined in Equation (53) and Bdif is obtained by the algorithm

in Figure 1.

For given τk and Fk , it is easy to see that Condition (59) can be evaluated in
time that is linear to task number n:

—Compute I T
1 (τi), I T

2 (τi) and I T
dif(τi) for each τi: total time is O(n).

—Sorting tasks in decreasing order of I T
dif(τi) by Radix Sort [Knuth 1973] and

computing Bdif is also in linear time.

Next, we will show how many values of Fk must be tested in order to make
sure that Condition (59) is satisfied for all Fk ≥ 0.

THEOREM 3.19. For the taskset � with U S(�) < A(H)− Amax +1, if Condition
(59) is false for any Fk, then it must be false for some Fk satisfying the condition
below:

Fk ≤ W� + DkU S(�) + ∑
τi

Ci Ai − (A(H) − Ak + 1)(Dk − Ck)
A(H) − Amax + 1 − U S(�)

, (60)

in which W� is computed with the Algorithm 2.

PROOF. W� is the upper bound of the sum of Ci ∗ Ai of all tasks that can be
simultaneous active with HW resource A(H) − Amax + 1. It can be computed
with algorithm in Figure 2, which is similar to the calculation of Bdif.

It is known that I T
1 (τi) ≤ DBF(τi, Fk +Dk) and I T

2 (τi) ≤ DBF(τi, Fk +Dk)+Ci
[Baruah 2007], so it directly follows that:

I S
1 (τi) ≤ DBF(τi, Fk + Dk)Ai (61)

and

I S
2 (τi) ≤ (DBF(τi, Fk + Dk) + Ci)Ai. (62)

Algorithm 2 Computing W�

W� = 0
a = A(H) − Amax + 1
TaskQueue Q = all tasks sorted in the decreasing order of Ci

τi = the first task in Q
WHILE (true)

IF (a > τi .A)
a = a − τi .A
W� = W� + τi .C ∗ τi .A
τi = next task in Q

ELSE
W� = W� + τi .C ∗ a
return W�

ENDIF
ENDWHILE

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:25

So it can be obtained that∑
τi∈�

I S(τi) ≤ W� +
∑
τi∈�

DBF(τi, Fk + Dk)Ai. (63)

Since we assume Condition (59) is violated, we have:

W� +
∑
τi∈�

DBF(τi, Fk + Dk)Ai > (A(H) − Amax + 1) × Fk + (A(H) − Ak + 1))

× (Dk − Ck) (64)

is the necessary condition for the deadline miss to occur.
We can bound the

∑
τi∈� DBF(τi, Fk + Dk)Ai by:

∑
τi∈�

DBF(�, Fk+Dk)Ai ≤
∑
τi∈�

(⌊
Ti

Fk+Dk

⌋
+ 1

)
Ci Ai

≤ (Fk + Dk)U S(�) +
∑
τi∈�

Ci Ai. (65)

By Equation (64) and (65) and U S(�) < A(H) − Amax + 1 we have

Fk <
W� + Dk · U S(�) + ∑

τi
Ci Ai − (A(H) − Ak + 1)(Dk − Ck)

A(H) − Amax + 1 − U S(�)
. (66)

So for the taskset with U S(τi) < A(H)− Amax +1, Condition (59) can be tested
in time pseudo-polynomial to the task parameters. For taskset with U S(τi) ≥
A(H) − Amax + 1, GDG-3 3.18 is not applicable.

3.4 Utilization Bound Test for Nonpreemptive EDF

In this section, we derive a utilization bound test for NP-EDF-FkF for tasksets
with pre-period deadlines. The derivation is based on an existing scheduling
test for nonpreemptive EDF on multiprocessors [Baruah 2006]:

THEOREM 3.20. A taskset with pre-period deadlines � can be feasibly sched-
uled by EDFnp on an identical multiprocessor of m (m > 1) unit capacity pro-
cessors, if:

V T (�) ≤ m − (m − 1) × V T
max(τ), (67)

where V T
max(τ) is the maximal V T (τ) of all tasks in �.

The proof follows the resource augmentation approach proposed in Phillips
et al. [1997]. Note that there is an important restriction of m > 1 for this
theorem, since the item (m−1) was used to multiply both sides of an inequality
in the proof.

Next, we generalize Theorem 3.20 to single processor scheduling (m = 1),
which will turn out to be useful later.

THEOREM 3.21. A taskset with pre-period deadlines � can be feasibly sched-
uled by EDFnp on a single processor with unit capacity if

V T (�) ≤ 1. (68)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:26 • N. Guan et al.

The proof of Theorem 3.21 is similar to that in Baruah [2006] and omitted
here.

Now we can derive the utilization bound test for NP-EDF-FkF and tasksets
with pre-period deadlines on HRDs.

THEOREM 3.22. (GDG-NP). Any taskset � can be feasibly scheduled by NP-
EDF-FkF on an FPGA H with area A(H) ≥ 2Amax or Amax + Amin −1 ≥ A(H) ≥
Amax, if for ∀τi ∈ �:

V S(�) ≤ (A(H) − Amax + 1) · (1 − V T (τi)) + V S(τi) (69)

where Amax and Amin denote the largest and smallest area of all tasks in �,
respectively.

The proof of Theorem 3.22 consists of two parts for different value ranges
of A(H), presented in Sections 3.4.1 (Lemma 3.23) and 3.4.2 (Lemma 3.30),
respectively.

3.4.1 Case 1: Amax + Amin − 1 ≥ A(H) ≥ Amax

LEMMA 3.23. (Case 1 of Theorem 3.22). Any taskset � can be feasibly sched-
uled by EDF-FkF on an FPGA H with area Amax + Amin − 1 ≥ A(H) ≥ Amax, if
for ∀τi ∈ �:

V S(�) ≤ (A(H) − Amax + 1) · (1 − V T (τi)) + V S(τi). (70)

where Amax is the largest area of all tasks in �.

PROOF. From the condition Amax + Amin − 1 ≥ A(H) ≥ Amax , we know that
there will never be two or more HW tasks executing on the FPGA simultane-
ously, so we can treat the HW taskset as a SW taskset with the same execution
time on a single processor.

Let τk be the task with the smallest area size Amin, then we have:

V S(�) ≤ (A(H) − Amax + 1) · (1 − V T (τk)) + AminV T (τk) (71)

Since Amax + Amin > A(H), we have:

V S(�) ≤ Amin (72)

Since V S(�) = ∑
τi∈� V T (τi)Ai and

∑
τi∈� V T (τi)Ai ≥ ∑

τi∈� V T (τi)Amin, we
have V T (�) ≤ 1.

By Theorem 3.21, taskset � is schedulable.

3.4.2 Case 2: A(H) ≥ 2Amax. For this case, the proof follows the resource
augmentation approach [Phillips et al. 1997] and is closely related to the non-
preemptive EDF utilization bound on multiprocessors in [Baruah 2006]. We
proceed in three steps:

—Construct a theoretically feasible nonpreemptive blocked multi-FPGA ma-
chine π .

—Calculate the required condition such that, for all t ≥ 0, the NP-EDF-
FkF algorithm will never do less work by time t + Cmax than the OPT

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:27

algorithm on the theoretical machine constructed in the last step by
time t.

—Prove that NP-EDF-FkF produces a feasible schedule for � on H.

In Danne and Platzner [2006a], a reference feasible multi-FPGA model is
used to simulate the case of executing every task on its corresponding FPGAs
simultaneously, in which each FPGA has the same area size as its corresponding
task’s area size, and has the speed of U T (τi). An algorithm OPT assigning each
task to its corresponding FPGA can guarantee all the task instances to meet
their deadlines. Here are the two definitions from Danne and Platzner [2006a]:

Definition 3.24 (FPGA). An FPGA H is a processing device with area A(H)
and speed S(H). It can execute a set of task instances R simultaneously, iff∑

ji∈R A(Ji) ≤ A(H). If a task instance Ji is in execution on H for t units of
time, it completes S(H) · t units of its computation time Ci. The computing
capacity of H is defined as Cap(H) = A(H) · S(H).

Definition 3.25 (Multi-FPGA). A multi-FPGA π is a set of FPGAs
H1, H2, . . ., each with its own area A(Hj) and speed S(Hj). At each point of
time, each FPGA Hj can execute its individual set R j of task instances, iff∑

Ji∈R j
A(Ji) ≤ A(Hj) for all Hj ∈ π . The computing capacity of π is defined as

Cap(π) = ∑
Hj ∈π Cap(Hj).

Since we are concerned with nonpreemptive scheduling, we will construct
a new reference feasible multi-FPGA model, named nonpreemptive blocked
feasible multi-FPGA, which takes into account tasks’ blocking time due to
non-preemption.

Definition 3.26 (Non-preemptive blocked feasible multi-FPGA). For a given
periodic taskset �, we define a nonpreemptive blocked feasible multi-FPGA π

with capacity Cap(π) = V S(�) such that for any task τi ∈ � there is an FPGA
Hj ∈ π with A(Hj) = Aj and S(Hj) = V T (τi). Algorithm OPT assigns each
task τi to its corresponding FPGA Hj .

LEMMA 3.27. For any taskset � running on its corresponding nonpreemp-
tive blocked feasible multi-FPGA, algorithm OPT defined in Definition 3.26 can
guarantee that each task instance J j

i completes its work by the time instance
r j + Di − Cmax, where r j is the release time of task instance J j

i and Di is the
relative deadline of J j

i .

The proof of Lemma 3.27 directly follows from the definition of V T (τi) and
Definition 3.4.2.

In Danne and Platzner [2006a], a function W is defined to capture the amount
of work done on a given task instance or task instance set by some algorithm
on some machine:

Definition 3.28. Work-done function. A task instance with computation
time Ci and area Ai represents Ci · Ai work. If the job has been executed for t
time units on an S(H) speed FPGA, the work that has been done on this task

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:28 • N. Guan et al.

instance is t·S(H)·Ai. Let I denote any set of task instances and π any hardware
platform. For any algorithm alg and time instance t ≥ 0, W (alg, π, I, t) denotes
the amount of work done on task instances of I over the interval [0, t), when I
is scheduled by alg on π .

Now we will show that on a specific single FPGA H, the NP-EDF-FkF algo-
rithm will never do less work by time t + Cmax than the OPT algorithm on the
reference platform π defined in Definition 3.26 by time t, for all t ≥ 0.

LEMMA 3.29. Let � be a periodic taskset with at least two tasks. Let I be the
related set of task instances produced by �. Let π and OPT be the nonpreemptive
blocked feasible multi-FPGA machine and the scheduling algorithm according
to Definition 3.26. Further, let H be a single F PG A with speed S(H) = 1. If for
∀τi ∈ �, the following two conditions are both true:

V S(�) ≤ (A(H) − Amax + 1) · (1 − V T (τi)) + V S(τi) (73)

A(H) − Amax + 1 > Ai (74)

for any t ≥ 0, the work done on I by algorithm NP-EDF-FkF on FPGA H
during [0, t + Cmax) is never less than the work done on I by algorithm OPT on
the nonpreemptive blocked feasible multi-FPGA π :

W (NP − EDF − FkF, H, I, t + Cmax) ≥ W (OPT, π, I, t) (75)

PROOF. We use proof by contradiction. We assume that Inequality (75) is vio-
lated, and prove that this contradicts the assumption that � satisfies Condition
(73).

Let t0 denote the earliest value of t at which Inequality (75) is violated. Since
the total amount of work done on all task instances in I over [0, t0 + Cmax) by
NP-EDF-FkF is strictly less than the total amount of work done on all task
instances in I over [0, t0) in OPT, there must exist at least one task instance J j

i
that has received less service by time t0 + Cmax in NP-EDF-FkF than by time
t0 in OPT.

W
(
NP − EDF − FkF, H, J j

i , t0 + Cmax
)

< W
(
OPT, π, J j

i , t0
)
. (76)

Let r j
i < t0 denote the release time of task instance Jk

i . By our choice of t0
as the first time instant at which Inequality 75 is violated, it must be the case
that:

W
(
NP − EDF − FkF, H, J j

i , r j
i + Cmax

) ≥ W
(
OPT, π, J j

i , r j
i

)
. (77)

Therefore, the amount of work done on I in OPT over [r j
i , t0) is strictly greater

than the amount of work done on task instance in I in NP-EDF-FkF over the
interval [r j

i + Cmax , t0 + Cmax).
The single FPGA H is either overloaded, when the ready queue is not empty,

or underloaded, when the ready queue is empty. In a given time interval [r j
i +

Cmax , t0 + Cmax), let x be the amount of time when H is overloaded, and y the
amount of time when H is underloaded such that:

x + y = (t0 + Cmax) − (
r j

i + Cmax
) = t0 − r j

i . (78)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:29

We make the following observations concerning work of task instance T j
i

done by OPT during time interval [r j
i , t0) and by NP-EDF-FkF during interval

[r j
i + Cmax , t j

0 + Cmax),

—During [r j
i + Cmax , t0 + Cmax), algorithm NP-EDF-FkF executes J j

i on H for
at least y time units, i.e., it does at least y · Ai work on J j

i .

—During [r j
i , t0), algorithm OPT executes J j

i for t0 − r j
i time units, i.e. OPT

does (t0 − r j
i) · S(Hi) · Ai work on J j

i .

—By our assumption Inequality (76), OPT performs more work on J j
i than

NP-EDF-FkF, and by Equation (78):

(x + y) · S(Hi) > y (79)

Now we consider the work on the entire set of task instances I done by OPT
during time interval [r j

i , t0) and by NP-EDF-FkF during interval [r j
i +Cmax , t j

0 +
Cmax). We make these observations:

—Since NP-EDF-FkF is (1− Amax − 1/A(H))-work-conserving, at least A(H)−
Amax + 1 area of the FPGA is utilized during the overload portion. By our
assumption Inequality (76), J j

i must not have finished until t0 + Cmax , so
during the underload portion, at least J j

i must be executing. So the overall
work done with algorithm NP-EDF-FkF on H during [r j

i + Cmax , t0 + Cmax)
is at least (A(H) − Amax + 1) · x + Ai · y .

—The overall work done by algorithm OPT on I is at most (t0 − r j
i) ·

Cap(π), that is, (x + y) · Cap(π), which corresponds to full utilization of all
FPGAs.

—As shown above, the amount of work done on I in OPT over [ri
j , t0) is strictly

greater than the amount of work done on I in NP-EDF-FkF over the interval
[ri

j + Cmax , t0 + Cmax):

(x + y) · Cap(π) > x · (A(H) − Amax + 1) + y · Ai (80)

Now we show that Inequalities (79) and (80) contradict Conditions 73 and
74.

Since A(H) ≥ 2Amax , we have A(H) − Amax + 1 − Ai > 0. Multiply Equation
(79) by A(H) − Amax + 1 − Ai and add it to Equation (80). Let Abnd denote
(A(H) − Amax + 1). From (74), we have:

(x + y)(S(Hi)(Abnd − Ai) + Cap(π)) > (x + y)Abnd (81)

By Definition 3.26 we have S(Hi) = V T (τi) and Cap(π) = V S(�), so we
have

(V T (τi)(Abnd − Ai) + V S(�)) > Abnd (82)

i.e.

V S(�) > (A(H) − Amax − 1) · (1 − V T (τi)) + V S(τi) (83)

which contradicts Condition (73). Hence, the assumption must be wrong, and
the lemma is proved.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:30 • N. Guan et al.

Now we have the conclusion of the second case of Theorem 3.22:

LEMMA 3.30. (Case 2 of Theorem 3.22). Any taskset � can be feasibly sched-
uled with EDF-FkF on an FPGA H with area A(H) ≥ 2Amax, if for ∀τi ∈ �:

V S(�) ≤ (A(H) − Amax + 1) · (1 − V T (τi)) + V S(τi) (84)

where Amax is the largest area of all tasks in �.

The proof of Lemma 3.30 is similar to that of Theorem 1 in Baruah [2006].

PROOF. We prove the lemma by induction on the number of task instances.
We sort the jobs in the nondecreasing deadline order.

The base case is an empty set of task instances: all deadlines are met trivially.
For the inductive step, we prove that for each integer k ≥ 1, if the task

instances with the first k − 1 deadlines have completed by their deadlines by
NP-EDF-FkF, then the k’th-earliest deadline task instance (Jk) completes by
its deadline by NP-EDF-FkF.

Let dk denote the deadline of the kth-earliest deadline task instance.

—By Lemma 3.27, OPT completes Jk by time-instant rk + Dk − Cmax , where rk
and Dk denote the release time and relative deadline of Jk . So Jk is completed
by OPT by the time-instant dk − Cmax .

—By Lemma 3.29, NP-EDF-FkF performs at least as much work on Jk by time
instant dk as OPT does by time-instant dk − Cmax . But since OPT completes
all these task instances by time-instant dk − Cmax , it must be the case that
NP-EDF-FkF also completes all these task instances by time-instant dk .

To summarize, there are two key differences between the derivations of non-
preemptive EDF (GDG-NP) and preemptive EDF (DP):

—When we construct the reference multi-FPGA platform, we assign a different
speed for each referenced single-FPGA, that is, V T (τi) instead of U T (τi).

—Preemptive EDF never “falls behind” the OPT, which means that by any given
time t, preemptive EDF never does less work than OPT. But nonpreemptive
EDF can “fall behind” OPT by a bounded amount, which means that for any
given time t, work done by nonpreemptive EDF by time t + Cmax is never
less than work done by OPT by time t. This is because each task instance
may suffer a maximum interference time of Cmax due to the blocking nature
of non-preemptive scheduling.

4. TASK PLACEMENT STRATEGY AND RECONFIGURATION OVERHEAD

We adopt the task placement policy proposed in Danne and Platzner [2006a],
referred to as PLC1, for preemptive EDF scheduling. If we pick one side of
the FPGA as the bottom and the other side as the top, then tasks are stacked
on the FPGA from bottom to top in priority order. Whenever a task finishes,
all tasks above it are shifted downwards by a relocation process; when a task
starts or resumes from preemption, it is placed on the FPGA according to its
priority. Therefore, each time a task is added or removed from the FPGA, the
entire reconfigurable area may have to be reconfigured in the worst case. We

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:31

define the reconfiguration factor r f such that the time it takes to reconfigure
the entire FPGA is r f ∗ A(H). Due to our assumption described in Section 1 that
there can be no gaps between a task’s reconfiguration stage and computation
stage, we can account for the reconfiguration overhead by adding it to a task’s
computation time.

Danne and Platzner [2006a] also derived the worst-case time overhead due
to reconfiguration in the preemptive EDF scheduling with this scheme, and
showed that the time overhead can be accounted for by increasing the compu-
tation time of each task to:

Cp
i = Ci + (1 + 2 × Ni + Oi) × r f × A(H), (85)

in which

Ni =
∑
τ j ∈�

⌊
Ti

Tj

⌋
− 1 (86)

Oi = max
∀Rl ⊆�−τi

|Rl | :
∑

τk∈Rl

Ak ≤ A(H) − Ai. (87)

We propose a different task placement policy for nonpreemptive EDF as
follows, referred to as PLC2:

—Tasks are stacked on the device from bottom to top sorted with their start
times, so that a new task is stacked on top of all currently running tasks.

—When a task terminates, all tasks on top of it are shifted downwards, and
tasks below it are not affected.

PLC2 performs task shifting when a task finishes, while PCL1 performs
task shifting both when a task starts and when it finishes. Figure 6 compares
the schedules of the taskset in Table II using either EDF-FkF+PLC1 or NP-
EDF-FkF+PLC2. The number of time instants when reconfiguration occurs is
8 using EDF-FkF+PLC1 and 5 using NP-EDF-FkF+PLC2.

We can reduce the reconfiguration overhead in the test condition for NP-
EDF-FkF+PLC2 than EDF-FkF/EDF-NF+PLC1: Since tasks are stacked in
the order of their start times, a task is only affected by tasks that are already
running when it starts, the worst-case number of which is Oi as discussed in
Danne and Platzner [2006a]. So for NP-EDF-FkF+PLC2, we can account for
the reconfiguration overhead by increasing the computation time of each task:

Cnp
i = Ci + Oi ∗ r f ∗ A(H) (88)

Both PLC1 and PLC2 use the full device reconfiguration time to derive the
bounds, since one task start or termination event can potentially lead to several
task preemptions, resumes or shifts. As most FPGAs only have a single recon-
figuration port, all tasks’ reconfiguration stages must be serialized. To account
for the worst case, we must make the pessimistic assumption that the whole
device undergoes reconfiguration.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:32 • N. Guan et al.

Fig. 6. Scheduling of the taskset in Table II with EDF-FkF+PLC1 and NP-EDF-FkF+PLC2.

Table II. A Taskset with Low Utilization
but Nonschedulable with Partitioned EDF

Task C D T A
τ1 2 6 6 3
τ2 3 5 5 4
τ3 2 3 3 2

5. HW PROTOTYPE FOR PREEMPTIVE MULTITASKING ON FPGA

Preemptive multitasking on FPGAs is somewhat controversial, since many peo-
ple believe the reconfiguration delay is too large for preemptive multitasking to
be practical. However, with the rapid advancement in HW capabilities, the re-
configuration delay may no longer be a serious issue. For example, Virtex-II Pro
provides an ICAP with an 8-bit wide interface working at 50MHz; Virtex-4 pro-
vides an ICAP with a 32-bit wide interface working at 100MHz. This means that
the theoretical upper limit of reconfiguration throughput has been increased
from 50KB/ms to 400KB/ms from Virtex-II Pro to Virtex-4. Considering that
most HW tasks have bitstream size in the range of a few hundred KBs, the
configuration delay can be potentially lower than 1ms.

Table III lists Xilinx Virtex-4 FX series device parameters obtained from
the Virtex-4 configuration guide [Xilinx 2007]. The Total Reconfiguration Time
and Reconfiguration Factor are obtained using the theoretical upper limit of
reconfiguration throughput of 400KB/ms, and assuming that the entire FPGA
area is reconfigurable. In reality, only part of the FPGA area is reconfigurable

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:33

Table III. Xilinx Virtex-4 FX Series Device Parameters

Device #Columns #Rows Config. Mem.(KB) Total Reconfig. Time(ms) Reconfig. Factor
XC4VFX12 64 24 590.400 1.48 0.023
XC4VFX20 64 36 900.032 2.25 0.035
XC4VFX40 96 52 1588.544 3.97 0.041
XC4VFX60 128 52 2660.064 6.65 0.052
XC4VFX100 160 68 4127.880 10.32 0.064
XC4VFX140 192 84 5876.816 14.69 0.077

while the rest has fixed configuration, so the total reconfiguration time would
be less. The total reconfiguration time is the worst-case context-switch delay for
both nonpreemptive and preemptive EDF, and its effect in schedulability tests
is discussed in Section 4. As we will show in Figure 11, the schedulability test
acceptance ratio for all the tests considered in this paper deteriorates rapidly
with increase of the reconfiguration delay, so the reconfiguration time places
severe constraints on the task execution rates. If we assume the task period
to be 100-200ms, then it is only realistic to use preemptive or non-preemptive
EDF scheduling on small devices, that is, XC4VFX12, XC4VFX20, XC4VFX40,
or large devices with smaller reconfigurable areas. Of course, applications with
larger task periods can tolerate larger reconfiguration times, and the designer
needs to carefully consider the reconfiguration time when choosing a suitable
HW device for a given application. With emerging of new techniques for speed-
ing up reconfiguration, for example, multiport reconfiguration, higher task ex-
ecution rates can be expected to be achievable in the future.

We have implemented a simple prototype system for preemptive multitask-
ing on a Xilinx Virtex-4 FPGA (XC4VFX12) based on the TSAS (Task Specific
Access Structures) approach.2 Of the 64 columns on the FPGA, 24 columns are
used for the reconfigurable area, and 40 columns are used as fixed configura-
tion for the HW overheads of our prototype system (ICAP controller, TSA, IFIP,
memory drive device and other overheads). Since this is a very preliminary pro-
totype, we did not perform any optimizations to further reduce the fixed config-
uration area, but the HW overhead can be much smaller in a realistic system.
As discussed in Section 2.2, this approach has lower delay than the CPA ap-
proach, which is the main reason for choosing it, since the reconfiguration delay
can have a large negative impact on schedulability tests. The TSAS approach
has another benefit that we do not need to know the detailed bitstream format,
while the CPA approach using JBits requires it. Unlike Virtex-II Pro, detailed
documentation of the bitstream format for Virtex-4 is not publicly available, so it
is inconvenient to use the CPA approach for Virtex-4. Xilinx supports two basic
styles of partial reconfiguration: module-based and difference-based. Module-
based partial reconfiguration uses modular design concepts to reconfigure large

2We would like to emphasize that we are not claiming original research contribution with this
simple HW prototype, since its implementation is not very complicated using Xilinx Virtex-4 and
related SW tools. Our main purpose is to develop a proof of concept system and obtain some per-
formance numbers to support the premise of this paper, i.e., preemptive multitasking on FPGAs
is indeed feasible with todays technology, not to develop a full-fledged OS for FPGA, or novel HW
reconfiguration mechanisms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:34 • N. Guan et al.

Fig. 7. HW architecture of our prototype system.

blocks of logic. The distinct portions of the design to be reconfigured are known
as reconfigurable modules. Difference-based partial reconfiguration is a tech-
nique for making small changes in an FPGA design, so that if we would like to
let task τi preempt task τ j , and these two tasks have similar bitstreams, then
we can offline compute and store a difference bitstream that can be downloaded
to the FPGA, which is often much smaller than the full bitstream. We can see
that the difference-based approach has a much smaller bitstream file size, and
consequently faster reconfiguration time. Our experience shows that the dif-
ference bitstream is typically much smaller than the original bitstreams, even
when the two HW tasks do not look similar at all. However, the difference-based
approach requires multiple bitstream files to be stored for all possible ordered
task pairs, for example, if we have 3 tasks τ1, τ2 and τ3, and any task can pre-
empt any other task, then we need to store 6 difference bitstreams: Diff(τ1, τ2),
Diff(τ2, τ1), Diff(τ1, τ3), Diff(τ3, τ1), Diff(τ2, τ3), Diff(τ3, τ2). In general, if we have
n tasks, then we need to store n∗(n−1) difference bitstreams. This is acceptable
to us, since our main goal is to minimize reconfiguration delay.

For simplicity of implementation, we impose the restriction that all HW tasks
be pin compatible, that is, the TSAS Controller should have a uniform interface
to connect to the registers of different HW tasks.

Our HW prototype addresses the following issues:

—On-chip runtime system. We would like the OS to run on the PowerPC
core on-chip instead of an off-chip processor for performance reasons.

—Context saving/restoring of HW tasks. Similar to the processor-based
preemptive task system, the HW task context should be saved when the task
is preempted and restored when it is resumed.

—Relocation of HW tasks. We need to be able to suspend a HW task and
resume it at a different location to support the relocation policies PLC1 and
PLC2.

—High-speed reconfiguration. This is especially important for preemptive
scheduling, which may incur many task reconfigurations.

Our HW prototype is implemented on a Xilinx ML403 development board,
which contains a Virtex-4 XC4V12F FPGA. The system architecture is shown

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:35

Fig. 8. Block Diagram for TSAS CTRL.

in Figure 7. The major functional modules include:

—Runtime System. The runtime system on the PowerPC core manages the
task-related data structures and makes decisions on task scheduling and
placement.

—TSAS CTRL. A HW module that helps to save and restore the execution
context of HW tasks by accessing the task state registers directly through
the Bus Macro and storing their values in its internal BRAM.

—ICAP CTRL. A HW module that controls the ICAP. It is connected to the
Processor Local Bus (PLB), using an in-house PLB IP Interface (IPIF). The
throughput of PLB-based ICAP access is about 20 times faster than the OPB-
HWICAP approach provided by Xilinx [Kalte and Porrmann 2005].

—Ext. RAM CTRL. A HW module that controls the external RAM used to
restore the HWtask bitstreams. It is also connected to the PLB via IPIF. The
configuration bitstream is downloaded from the external RAM to the ICAP
directly under the control of the PowerPC core. (Note that we never read back
the bitstream from the ICAP in the TSAS approach.)

We manually designed the TSAS CTRL with Verilog, and used Xilinx ISE to
generate the final implementation in the form of a bitstream that is downloaded
and configured on the FPGA. Figure 8 shows the system block diagram. TSAS
CTRL includes two parts: one is the clock controller(CLK CTRL), which freezes
the clocks in the Partial Reconfigurable Regions (PRR) that are overwritten
during the preemption phase, but do not disturb the normal operation of tasks
in other PRRs. The other part is State Access (SA), which can access all the
state registers of tasks in all PRRs through direct datapaths. Suppose task τ1
is running on the FPGA, and we download another task τ2 to preempt it. When
the TSAS CTRL receives a command from the runtime system on the PowerPC
to switch in task τ2, it first stops the clock of τ1’s PRR, then reads τ1’s state
registers and stores them in its internal BRAM (Block RAM). The bitstream of
task τ2 is loaded from the external RAM to ICAP through PLB, and then state
information of τ2 is restored in their state registers by the TSAS Controller
from the BRAM. Finally, TSAS CTRL restarts the clock, and τ2 starts to run.
The state machine in Figure 9 captures the behavior of TSAS CTRL, where
S Taskid refers to the task to be suspended, and R Taskid refers to the task to
be resumed. About half of the FPGA resource is used to implement the these
modules and the other part is used to run HW tasks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:36 • N. Guan et al.

Fig. 9. State machine for TSAS CTRL.

We ran some experiments with our prototype system to measure its recon-
figuration delay. We first place a task τ1 on the FPGA, then download another
task τ2 to preempt it. Then we have these 3 steps:

—Save the state registers of τ1 to the BRAM with a speed of vs KB/ms.
—Download τ2’s bitstream from RAM to ICAP with a speed of vd KB/ms.
—Restore τ2’s state registers from the BRAM with a speed of vr KB/ms.

The total delay is:3

stold/vs + bsnew/vd + stnew/vr . (89)

Our measurement results are vs = vr = 33.3KB/ms and vd = 378KB/ms. To
preempt a task whose bitstream size is 200 KB and state information size is
0.1KB and configure a task with the same parameters, the total delay is:

0.1/33.3 + 200/378 + 0.1/33.3 ≈ 0.535ms. (90)

Of course, the delay is related to task τ2’s bitstream size (or Diff(τ1, τ2) if
difference-based reconfiguration is used), and will be different for different ap-
plications. Since most HW tasks are computation-intensive kernels [Jovanovic
et al. 2007], that is, the part of application code that is not very large but exe-
cuted very often, and it is reasonable to assume the bitstream size to be in the
range of few hundred KBs.

We also measured the time it takes to reconfigure the entire FPGA, which
is related to the context switch overhead as discussed in Section 4. With the
module-based approach, the reconfiguration bitstream consists of the entire
configuration memory (590.4KB) if we assume the entire FPGA area to be re-
configurable. We do not consider the time for save and restore of state registers,
which is typically negligible since typical task state size is very small. Note that
even though our HW prototype has a reconfigurable area of only 24 columns
out of the total 64 columns, this does not affect our time measurements since
the reconfiguration time is equal to the bitstream download time, regardless
of whether the bitstream is actually used for reconfiguration. (In this case,

3Note that if we had use the bitstream readback via CPA, there would be an additional term for
reading back and filtering τ1’s bitstream.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:37

Table IV. Comparison of Different Utilization Bound Tests

Test EDF-FkF EDF-NF NP-EDF-FkF Post-Period Deadline Complexity
DP

√
O(N)

GDG-1
√

O(N2)
GDG-2

√ √
O(N3)

GDG-3
√

pseudo-polynomial
GDG-NP

√
O(N)

only (24/64)*590.4 = 221.4KB of the 590.4KB is actually used for reconfigura-
tion.) The measured best-case reconfiguration time is 1.51ms, the worst case is
1.82ms and the average-case is 1.65ms, quite close to the theoretical optimal in
Table III. With the difference-based approach, the bitstream size and reconfigu-
ration time are dependent on the degree of similarity between the current task
and the incoming new task. In our experiments, the reconfiguration time of the
difference-based approach is roughly 1/3 ∼ 3/4 of that of the module-based
approach.

6. PERFORMANCE EVALUATION

For schedulability analysis of preemptive EDF on FPGAs, the only known re-
lated work is Danne and Platzner [2006a] for EDF-FkF. There is no existing
work on nonpreemptive EDF scheduling on FPGAs. Table IV shows the compar-
ison between Danne’s test (DP) and ours (GDG-1, GDG-2, GDG-3 and GDG-
NP). GDG-1 and GDG-3 are applicable to EDF-NF, (we can apply GDG-1 and
GDG-3 to EDF-FkF by replacing the item A(H) − Ak + 1 by A(H) − Amax + 1
since EDF-FkF is global-(1− Amax − 1/A(H))-work-conserving.), while DP and
GDG-2 are applicable to EDF-FkF. Since EDF-NF is a more optimal scheduling
algorithm than EDF-FkF, that is, if a taskset is schedulable with EDF-FkF, then
it is also schedulable with EDF-NF, any schedulability bound test for EDF-FkF
can also serve as a correct (but pessimistic) test for EDF-NF. Hence, the tests
DP and GDG-2 (for EDF-FkF) are also applicable to EDF-NF. Since only GDG-
2 works for tasksets with post-period deadlines, Di is replaced by Ti implicitly
in DP, GDG-1, GDG-3 and GDG-NP if any task in the taskset has deadline
longer than its period.

We use randomly generated synthetic tasksets to evaluate the performance
of different utilization bound tests. We use an extension of the method used
in Baker [2005b] to generate tasksets: for each group of experiments, we set
the FPGA size to be (A(H)), and set the range of task parameters as: task
period (Ti), deadline-to-period ratio (k1 = Di/Ti), task utilization (execution
time-to-period ratio) (k2 = Ci/Ti), task size (Ai), and reconfiguration factor
(r f). An initial set of 3 tasks was randomly generated, with parameters ran-
domly chosen from the set range. All the schedulability tests were applied to
that set. Then another randomly-generated task was added to the previous set,
and all the schedulability tests were run on the new set. This process of adding
tasks was repeated until the total system utilization exceeded A(H). The whole
procedure was then repeated, starting with a new initial set of 3 tasks. Un-
like Baker [2005b], which starts with m + 1 tasks, where m is the number of
processors, we choose a (somewhat arbitrary) small number of 3, since unlike

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:38 • N. Guan et al.

Fig. 10. Comparison of acceptance ratios of the utilization bound tests and simulation.

CPU tasks, FPGA tasks may have different sizes. This method of generating
random tasksets produces a fairly uniform distribution of total system utiliza-
tions [Baker 2005b]. Due to this method of generating tasksets, the number of
tasks in each taskset can be different for different tasksets.

Figure 10 shows comparison of acceptance ratios of the utilization bound
tests and simulation. Dotted lines denote the simulations of EDF-FkF, EDF-NF
and NP-EDF-FkF, and solid lines denote the utilization bounds. The line labeled
“Combined” denotes the acceptance ratio obtained by combining DP, GDG-1,
GDG-2 and GDG-3; that is, the taskset is determined to be nonschedulable only
if all tests fail. The taskset parameters are: A(H) = 100, Ti ∈ [10, 20], k1 = 1),
k2 ∈ [0.1, 0.3], Ai ∈ [1, 30] and r f = 0. 10,000 tasksets are used in this group
of experiments. Since it is not computationally feasible to try all possible task
release offsets exhaustively in simulation of periodic/sporadic task systems, all
task release offsets are set to be zero as in Baker [2006a], that is, all tasks are
released at the same time, and simulation is run for the hyper-period of all task
periods. Simulation results obtained under this assumption may sometimes
determine a taskset to be schedulable even though it is not, but they can serve
as a coarse upper bound of the acceptance ratio. Since simulation is very time-
consuming and does not provide any correctness guarantees and its comparison
with schedulability tests does not reveal much insight, in order to obtain a large
enough sample space (1,000,000 tasksets in each group of experiments), we will
concentrate on the analytical utilization bounds, and not perform simulations
for the rest of the experiments. This is also the approach commonly used for
performance evaluation in research work on multiprocessor scheduling [Cirinei
and Baker 2007].

Figure 11 shows performance comparisons with different reconfiguration
factors r f . The other parameter settings are: A(H) = 100, Ti ∈ [100, 200],
k1 ∈ [0.8, 1]), k2 ∈ [0.01, 0.3] and Ai ∈ [1, 30]. When r f is assumed to be
zero, the utilization bound tests for preemptive scheduling outperform those
for nonpreemptive scheduling, as expected. With the increase of r f , the perfor-
mance of tests for preemptive scheduling deteriorates faster than tests for non-
preemptive scheduling, since the additional overheads added to the execution
time for preemptive scheduling in the schedulability tests are much larger than
those added for non-preemptive scheduling.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:39

Fig. 11. Performance comparisons with different reconfiguration factors.

Figure 12 shows performance comparisons for tasksets with different ranges
of the ratio of execution time vs. period and different area. The other settings
are: A(H) = 100, Ti ∈ [100, 200], k1 ∈ [0.8, 1]) and r f = 0.01. DP has best
performance for time-light spatial-light tasksets (tasksets with both low time
utilization and low area utilization), GDG-1 has best performance for time-
heavy tasksets, and GDG-3 has best performance for time-light spatial-heavy
tasksets. GDG-NP has much worse performance for time-heavy taskset than
for time-light tasksets, since GDG-NP always adds the maximum execution
time of all tasks Cmax to each task’s interference time in order to take into
account blocking time due to non-preemptive scheduling.

Figure 13 shows performance comparisons for tasksets with pre and
post-period deadlines. We can see that performance of GDG-2 improves as the
deadline-to-period ratio increases while other tests keep unchanged.

From the performance evaluation results, we can see that nonpreemptive
scheduling can tolerate larger reconfiguration overheads than preemptive
scheduling. The utilization bound tests for the preemptive EDF are indeed
incomparable to each other, that is, no utilization bound test consistently
out-performs the others, and different tests may exhibit better performance
for tasksets with different characteristics. In order to reduce the degree
of pessimism, all tests should be applied together for any given taskset,
and the taskset is determined to be nonschedulable only if all tests fail.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:40 • N. Guan et al.

Fig. 12. Performance comparisons with different task sizes and utilizations.

Fig. 13. Performance comparisons with different deadline-to-period ratios k1 = Di/Ti .

Similar to multiprocessor scheduling, these utilization bound tests allow the
designers to get a safe but pessimistic estimate of system schedulability. If a
more accurate schedulability decision is desired, then the designer must resort
to running simulation experiments, which are less pessimistic but also not safe;
that is, simulation may determine a taskset to be schedulable while it is in fact
not schedulable in the worst case.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:41

7. CONCLUSIONS

PRTR FPGAs are becoming increasingly widely used in the mainstream FPGA
community, so it is important to address real-time multitasking and schedul-
ing analysis. In this paper, we have presented utilization bound tests for pre-
emptive and nonpreemptive EDF scheduling of HW tasks on PRTR FPGAs
by extending previous work on utilization bound tests for multiprocessor CPU
scheduling. Performance evaluation validates the feasibility of EDF schedul-
ing on PRTR FPGAs, but it may be limited to the smaller FPGA devices if task
periods are relatively small, due to excessive reconfiguration time for larger
devices.

REFERENCES

AGRON, J., PECK, W., ANDERSON, E., ANDREWS, D. L., KOMP, E., SASS, R., BAIJOT, F., AND STEVENS, J. 2006.
Run-time services for hybrid cpu/fpga systems on chip. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS). 3–12.

BAKER, T. P. 2003. Multiprocessor edf and deadline monotonic schedulability analysis. In Pro-
ceedings of the IEEE Real-Time Systems Symposium (RTSS). 120–129.

BAKER, T. P. 2005a. An Analysis of EDF Schedulability on a Multiprocessor. IEEE Trans. Para.
Distr. Syst. 16, 8, 760–768.

BAKER, T. P. 2005b. Comparison of empirical success rates of global vs. partitioned fixed-priority
and EDF scheduling for hard real time. Tech. rep. TR-050601, Florida State University.

BAKER, T. P. 2005c. Further improved schedulability analysis of edf on multiprocessor platforms.
Tech. Rep. TR-051001, Florida State University.

BAKER, T. P. 2006a. An analysis of fixed-priority schedulability on a multiprocessor. Real-Time
Syst. 32, 1-2, 49–71.

BAKER, T. P. 2006b. A comparison of global and partitioned EDF schedulability tests for multi-
processors. In Proceedings of the International Conference on Real-Time and Network Systems
(RTSN). 119–130.

BANERJEE, S., BOZORGZADEH, E., DUTT, N., AND NOGUERA, J. 2007. Selective band width and resource
management in scheduling for dynamically reconfigurable architectures. In Proceedings of the
IEEE/ACM Design Automation Conference (DAC). 771–776.

BARUAH, S. 2007. Techniques for multiprocessor global schedulability analysis. In Proceedings of
the IEEE Real-Time Systems Symposium (RTSS).

BARUAH, S., MOK, A., AND ROSIER, L. 1990. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In Proceedings of the 11th Real-Time Systems Symposium (RTSS).
182–190.

BARUAH, S. K. 2006. The non-preemptive scheduling of periodic tasks upon multiprocessors. Real-
Time Syst. 32, 1-2, 9–20.

BERTOGNA, M., CIRINEI, M., AND LIPARI, G. 2005. Improved schedulability analysis of EDF on multi-
processor platforms. In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS).
209–218.

BUTTAZZO, G. C. 2005. Rate monotonic vs. EDF: Judgment day. Real-Time Syst. 29, 1, 5–26.
CARPENTER, J., FUNK, S., HOLMAN, P., SRINIVASAN, A., ANDERSON, J., AND BARUAH, S. 2004. A Catego-

rization of Real-Time Multiprocessor Scheduling Problems and Algorithms. Chapman and Hall,
30-1–30-19.

CIRINEI, M. AND BAKER, T. P. 2007. Edzl scheduling analysis. In Proceedings of the European
Conference on Real-Time Systems (ECRTS). IEEE, 9–18.

CLAUS, C., MULLER, F. H., ZEPPENFELD, J., AND STECHELE, W. 2007. A new framework to accel-
erate Virtex-II Pro dynamic partial self-reconfiguration. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), Reconfigurable Architecture Workshop
(RAW).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

56:42 • N. Guan et al.

DANNE, K., MUHLENBERND, R., AND PLATZNER, M. 2006. Executing hardware tasks on dynamically
reconfigurable devices under real-time conditions. In Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL).

DANNE, K. AND PLATZNER, M. 2006a. An EDF schedulability test for periodic tasks on reconfig-
urable hardware devices. In Proceedings of the ACM Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES). 93–102.

DANNE, K. AND PLATZNER, M. 2006b. Partitioned scheduling of periodic real-time tasks onto recon-
figurable hardware. In Proceedings of International Parallel and Distributed Processing Sympo-
sium (IPDPS), Reconfigurable Architecture Workshop (RAW).

DYER, M., PLESSL, C., AND PLATZNER, M. 2002. Partially reconfigurable cores for xilinx virtex.
In Proceedings of the International Conference on Field-Programmable Logic and Applications
(FPL). Springer-Verlag, 292–301.

GOOSSENS, J., FUNK, S., AND BARUAH, S. K. 2003. Priority-driven scheduling of periodic task systems
on multiprocessors. Real-Time Syst. 25, 2-3, 187–205.

GU, Z., YUAN, M., AND HE, X. 2007. Optimal static task scheduling on reconfigurable hardware
devices using model-checking. In Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS).

GUAN, N., GU, Z., DENG, Q., LIU, W., AND YU, G. 2007. Improved schedulability analysis of edf
scheduling on reconfigurable hardware devices. In Proceedings of the Workshop on Parallel and
Distributed Real-Time Systems (WDPRTS).

GUCCIONE, S., LEVI, D., AND SUNDARARAJAN, P. 2000. Jbits: A java-based interface for reconfigurable
computing. In Proceedings of the Annual Military and Aerospace Applications of Programmable
Devices and Technologies Conference (MAPLD).

HORTAA, E., LOCKWOOD, J., AND KOFUJI, S. 2002. Using parbit to implement partial run-time re-
configurable systems. In Proceedings of the the International Conference on Field Programmable
Logic and Applications (FPL).

JOVANOVIC, S., TANOUGAST, C., AND WEBER, S. 2007. A hardware preemptive multitasking
mechanism based on scan-path register structure for fpga-based reconfigurable systems.
In Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
358–364.

KALTE, H. AND PORRMANN, M. 2005. Context saving and restoring for multitasking in reconfig-
urable systems. In Proceedings of the International Conference on Field Programmable Logic
and Applications (FPL). 223–228.

KALTE, H. AND PORRMANN, M. 2006. Replica2pro: task relocation by bitstream manipulation in
virtex-ii/pro fpgas. In Proceedings of the ACM International Conference on Computing Frontiers.
403–412.

KNUTH, D. 1973. The Art of Computer Programming; Volume 3/Sorting and Searching. Addison
Wesley.

KOCH, D., HAUBELT, C., AND TEICH, J. 2007. Efficient hardware checkpointing: concepts, overhead
analysis, and implementation. In Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA). 188–196.

LEHOCZKY, J. P., SHA, L., AND DING, Y. 1989. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In Proceedings of the IEEE Real-Time Systems Sym-
posium (RTSS).

LI, Z. AND HAUCK, S. 2002. Configuration prefetching techniques for partial reconfigurable copro-
cessor with relocation and defragmentation. In Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA). 187–195.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM 20, 1, 46–61.

LU, C., STANKOVIC, J. A., SON, S. H., AND TAO, G. 2002. Feedback control real-time scheduling:
Framework, modeling, and algorithms. Real-Time Syst. 23, 1-2, 85–126.

LUBBERS, E. AND PLATZNER, M. 2007. In Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL).

PHILLIPS, C. A., STEIN, C., TORNG, E., AND WEIN, J. 1997. Optimal time-critical scheduling via
resource augmentation (extended abstract). In Proceedings of the Annual Symposium on Theory
of Computing (STOC). 140–149.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

Analysis of Preemptive and Nonpreemptive EDF on PRTR FPGAs • 56:43

RAGHAVAN, A. K. AND SUTTON, P. 2002. Jpgc a partial bitstream generation tool to support par-
tial reconfiguration in virtex fpgas. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), Reconfigurable Architecture Workshop (RAW).

SILVA, M. L. AND FERREIRA, J. C. 2006. Support for partial run-time reconfiguration of platform
fpgas. J. Syst. Architec. 52, 12, 709–726.

STEIGER, C., WALDER, H., AND PLATZNER, M. 2004. Operating systems for reconfigurable embedded
platforms: Online scheduling of real-time tasks. IEEE Trans. Comput. 53, 11, 1393–1407.

STEIGER, C., WALDER, H., PLATZNER, M., AND THIELE, L. 2003. Online scheduling and placement of
real-time tasks to partially reconfigurable devices. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS). 224–235.

XILINX. 2007. Virtex-4 configuration guide.http://www.xilinx.com.

Received March 2007; revised October 2007, March 2008; accepted March 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 4, Article 56, Pub. date: Sept. 2008.

