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Non-invasive human vital sign detection has gained significant attention in recent years, with its potential

for contactless, long-term monitoring. Advances in radar systems have enabled non-contact detection of

human vital signs, emerging as a crucial area of research. The movements of key human organs influence

radar signal propagation, offering researchers the opportunity to detect vital signs by analyzing received

electromagnetic (EM) signals. In this review, we provide a comprehensive overview of the current state-

of-the-art in millimeter-wave (mmWave) sensing for vital sign detection. We explore human anatomy and

various measurement methods, including contact and non-contact approaches, and summarize the principles

of mmWave radar sensing. To demonstrate how EM signals can be harnessed for vital sign detection, we

discuss four mmWave-based vital sign sensing (MVSS) signal models and elaborate on the signal processing

chain for MVSS. Additionally, we present an extensive review of deep learning-based MVSS and compare

existing studies. Finally, we offer insights into specific applications of MVSS (e.g., biometric authentication)

and highlight future research trends in this domain.
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1 INTRODUCTION

In recent years, the demand for non-contact vital sign monitoring has surged, leading to rapid

market growth. A report by Fortune Business Insights [1] states that the global remote patient

monitoring devices market size reached USD 25.32 billion in 2020, exhibiting substantial growth of

48.5% compared to 2017–2019. Furthermore, the global remote patient monitoring devices market

is projected to reach USD 101.02 billion by 2028.
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The COVID-19 pandemic and the growing prevalence of chronic diseases such as cardiovas-

cular diseases and diabetes are the two main factors fueling the rapid growth of the vital sign

monitoring market. As of late March 2022, COVID-19 has resulted in over 6.1 million deaths and

nearly 481 million infections worldwide [2]. Medical professionals face a high risk of infection,

and non-contact methods for remote patient vital sign monitoring can help minimize the risk asso-

ciated with close contact. Chronic diseases are responsible for 71% of all global deaths, claiming 41

million lives annually [3]. Continuous monitoring of vital signs for patients with chronic illnesses

is essential, and non-contact approaches offer benefits such as being unintrusive and suitable for

long-term monitoring. Applications for non-contact vital sign monitoring extend beyond the med-

ical field and include the automotive industry [4] (monitoring driver’s vital signs for safe driving),

emergency rescue [5], biometric authentication [6], and emotion recognition [7], among others.

Recent advancements in radar technologies and sensing methodologies have led to numerous

researchers worldwide working on developing signal acquisition and processing approaches.

These topics cover a wide range, including heartbeat detection, respiration rate detection, sleep

monitoring, multi-resident detection, and signal processing platforms, among others. Several

recent surveys on wireless human sensing are discussed below.

Tran et al. [8] examined traditional sleep monitoring techniques (e.g., polysomnography) and

the current state and challenges of radar-based sleep monitoring technology, while indicating

the current challenges and commercialization direction of radar sleep monitoring technology.

Leonhardt et al. [9] specifically explored technologies for contactless monitoring of human vital

signs in automotive environments. Cardillo et al. [10] conducted an extensive survey on vital sign

detection and human localization using multiple-input multiple-output (MIMO) radar. Kebe

et al. [11] offered a thorough review of traditional cardio-pulmonary rate monitoring methods and

highlighted the challenges faced by radar-based vital sign monitoring approaches. Two additional

reviews focus on radar hardware. Singh et al. [12] detailed the primary challenges associated with

hardware and signal processing algorithms for vital sign monitoring using radar, summarizing

the directions and challenges for multi-person monitoring. Obadi et al. [13] reviewed recent

developments in radar-based vital signs detection, with a special emphasis on signal-processing

platforms and algorithm implementation using FPGAs. Paterniani et al. [14] provided an overview

of existing radar signal processing algorithms and radar systems developed for the estimation

of vital signs and pointed out the most relevant trends in current research activities on radar

systems for vital signs monitoring. Zhang et al. [15] reviewed the current state-of-the-art of

mmWave-based human sensing tasks with different sensing granularities, e.g., human localization,

activity recognition, and vital monitoring. They further discussed potential challenges and future

directions, including hardware and platforms, enhanced applicability, new sensing schemes, and

so on.

In comparison to the recent reviews mentioned earlier, our review article offers the following

unique contributions:

— We present an extensive review of the current state-of-the-art in mmWave radar technology

for vital sign detection, covering topics from mmWave waveforms, MVSS signal models, and

signal processing algorithms to deep learning-based MVSS and system implementation.

— We provide a detailed review of four MVSS signal models and their principles for vital sign

detection.

— We discuss the MVSS signal processing chain and compare different algorithms for estimat-

ing heart rate (HR), respiratory rate (RR), and blood pressure (BP).

— To the best of our knowledge, our article is the first to offer an overview of publications that

utilize deep learning in the field of MVSS.
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Fig. 1. The review framework.

The remaining structure of this review article is organized as follows: Section 2 discusses

physiological parameters-related topics, including human anatomy and measurement methods.

Section 3 provides an overview of the history, features, and applications of mmWave technologies.

Section 4 details four MVSS signal models. In Section 5, we propose the MVSS signal processing

chain. Section 6 reviews deep learning-based MVSS studies. Finally, Section 7 presents discussions

and conclusions. Figure 1 shows the framework of this survey research. To facilitate easy reading,

we provide a list of most abbreviations used throughout the manuscript in Table 1.

2 VITAL SIGNS AND MEASUREMENT METHODS

Vital signs refer to a collection of physiological parameters that represent the physical and mental

condition of a person. Essential vital signs monitoring for medical and healthcare purposes typi-

cally consist of Heart Rate (HR), Respiratory Rate (RR), and Blood Pressure (BP). These vital

signs play a crucial role in various applications, such as evaluating heart rate variability, detecting

early signs of sleep apnea, and serving as security authentication measures.

2.1 Heart Rate

Physiologically, the heart is located in the middle mediastinum on the left side of the chest [16]. It

is composed of four chambers (the upper two atria receive blood, while the lower two ventricles

pump blood into the lungs and arteries) and four valves that ensure blood flows in the correct

direction [16, 17]. Figure 2 illustrates the changes in heart morphology, blood flow, and electro-

cardiogram (ECG) signal during various stages of a cardiac cycle, which includes systole and

diastole. The QRS complex of the ECG signals the start of ventricular contraction. During systole,

deoxygenated and oxygenated blood is expelled from the right and left ventricles, through the

pulmonary arteries and aorta, into the lungs and arterial system, respectively. The end of the T

wave indicates the onset of ventricular diastole. In diastole, deoxygenated and oxygenated blood

is transported via the superior/inferior vena cava and pulmonary veins to the right and left atrium,

respectively. Until the appearance of P waves and atrial contraction, deoxygenated and oxygenated

blood is transferred from the right and left atria, respectively, into the right and left ventricles.

HR represents the number of heartbeats per time unit, typically expressed in beats per minute

(BPM). For healthy resting adults, the HR ranges from 54 to 100 bpm (0.9–1.67 Hz) [18]. Abnormal

HR could indicate early signs of cardiovascular diseases, such as bradycardia (HR below the normal

range) and tachycardia (HR above the normal rate) [19]. When accurate heartbeat intervals are ob-

tained, heart rate variability (HRV) can be calculated as the time variation between consecutive

heartbeat intervals. As shown in Figure 2, when using ECG to assess HRV, the R-R interval (time

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 16. Publication date: November 2023.
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Table 1. Table of Abbreviations Defined in the Article

Abbreviations Full name Abbreviations Full name
MVSS mmWave-based Vital Sign Sensing MIMO Multiple Input Multiple Output
HR Heart Rate RR Respiratory Rate
BP Blood Pressure ECG electrocardiogram
HRV Heart Rate Variability BPM Beats Per Minute
PCG Phonocardiography SCG Seismocardiography
PPG Photoplethysmography LVD Laser Doppler Vibrometer
CW continuous wave IR-UWB Impulse Radio Ultra Wideband
FMCW Frequency Modulated Continuous

Wave
VCO Voltage Controlled Oscillator

SFCW Stepped Frequency Continuous
Wave

ACF Autocorrelation Function

RSSI Received Signal Strength Indicator CSI Channel State Information
SNR Signal-to-Noise Ratio ADC Analog-to-Digital Converter
LPF Lowpass Filter IF signal Intermediate Frequency signal
SIL radar Self-Injection-Locked radar SILO SIL Oscillator
EM Electromagnetic FFT Fast Fourier Transform
FoV Field of View DC Direct Current
DOA Direction of Arrival MVDR Minimum Variance Distortionless

Response
LCMV Linearly Constrained Minimum

Variance
MUSIC Multiple Signal Classification

BPF Bandpassing Filter CFAR Constant False Alarm Rate
LMS Filter Least Mean Square Filter EMD Empirical Mode Decomposition
VMD Variational Mode Decomposition CS-OMP Compressive Sensing based on

Orthogonal Matching Pursuit
CaSE Cardiac-mmWave Scattering Effect PCA Principal Component Analysis
CWT Continuous Wavelet Transform

Transform
IBI Inter-Beat Interval

PWV Pulse Wave Velocity PTT Pulse Transit Time
LSTM Long Short Term Memory SVM Support Vector Machine
CNN Convolutional Neural Network VED Variational Encoder-Decoder
SVD Singular Value Decomposition IFFT inverse Fast Fourier Transform
CIR Channel Impulse Response KNN K-Nearest Neighbor
ESPRIT Estimation of Signal Parameters via

Rotational Invariance Techniques
CEEMDAN Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise

Fig. 2. Anatomy of a human heart as well as the association between ECG signal and cardiac events. Brief

description of cardiac cycle phases 1 to 5: ventricular contraction pushes tricuspid and mitral valves closed;

blood is ejected when pulmonary and aortic valves open; tricuspid and mitral valves close, then blood

flows into atria; chambers relax and blood fills ventricles passively; atrial contraction forces blood into

ventricles.
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between two successive R-waves) is typically considered the heartbeat interval. Due to the valu-

able information HRV provides about the autonomic nervous system and heart health, it is used

for diagnosing cardiovascular diseases [20], emotion recognition [7], and stress assessment [21],

among other applications.

2.2 Respiratory Rate

According to human anatomy, the lungs are situated in the chest on either side of the heart

within the rib cage [22], facilitating gas exchange. Specifically, when the diaphragm (the partition

separating the chest and abdominal cavities) contracts, the chest cavity expands and negative

pressure is produced, drawing air containing oxygen into the lungs [23]. The exchange of

oxygen and carbon dioxide occurs at the respiratory membrane, where alveolar and capillary

walls converge. Finally, when the thoracic diaphragm relaxes and positive pressure is generated,

air containing carbon dioxide is expelled through the nose or mouth. This process constitutes

a breathing cycle. Respiratory rate (RR) is the frequency of breaths within a specific time

period. For healthy resting adults, the RR ranges from 6 to 20 BPM (0.1–0.33 Hz) [18]. As a result,

abnormal breathing patterns can be identified by measuring RR, such as bradypnea (RR below

the normal range), tachypnea (RR above the normal range), and apnea (respiratory arrest) [24].

2.3 Blood Pressure

BP is the force exerted by circulating blood against the walls of blood vessels and serves as

a crucial indicator associated with cardiovascular disease [25]. BP is typically represented as

systolic pressure over diastolic pressure, with measurements taken during distinct phases of the

cardiac cycle. Systolic pressure is recorded when the left ventricle contracts, forcing blood out

and causing BP to peak. Diastolic pressure is documented when the left ventricle relaxes and

BP is at its lowest point. For healthy resting adults, BP ranges between 90/60 and 140/90 mmHg

(millimeters of mercury above the ambient atmospheric pressure) [26]. Abnormal BP suggests a

potential risk of cardiovascular diseases, such as hypotension (BP below the normal range) and

hypertension (BP exceeding the normal range).

2.4 Measurement Methods

To date, various conventional measurement methods have been developed to monitor vital signs

based on different physical signals and sensing technologies, such as ECG, phonocardiography

(PCG), seismocardiography (SCG), and photoplethysmography (PPG). These technologies

enable vital sign recordings at different positions, such as the chest, fingertip, neck, and wrist.

ECG [27] uses 12-lead electrodes placed on the upper body to record the action potential of the

cardiac electrical conduction system, reflecting myocardial contractions. ECG systems not only

monitor cardiac events but also estimate RR based on breath-modulated ECG data [28]. PCG [29]

monitors heart activity through heart sounds detected by a microphone. Heart sounds originate

from vibrations in the myocardial wall resulting from the mechanical movements of the heart, such

as the opening and closing of heart valves. SCG [30] records a human heart’s mechanical vibrations

using an accelerometer placed near the heart’s apex to capture micro-vibrations of the chest wall.

PPG [31] detects changes in blood flow volume in the vascular tree through optical means. As blood

flow is regulated by neural, cardiac, and respiratory interactions, various physiological parameters

such as HR, RR, and BP can theoretically be extracted from PPG signals.

Most traditional vital sign detection methods rely on sensors in contact with the body,

which may cause discomfort, constrain subjects, and make long-term measurements impossible.

Furthermore, they may result in skin damage, infection, or other adverse reactions in people

with sensitive skin, such as neonates or burn victims. To address these issues, non-contact vital
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Table 2. Comparison of Vital Sign Measurement Techniques

Methods Working mode Vital signs detected Physical signal Measuring sensor Location Drawbacks

ECG Contacted HR, RR Electrical Conductive electrode Upper body Motion artifacts
PCG Contacted HR Sound Microphone Chest Surrounding sound

effects
SCG Contacted HR Mechanical Accelerometer Chest Motion artifacts
PPG Contacted HR, RR, BP Light Photo-diode Finger Motion artifacts
Mercury sphyg-
momanometer

Contacted BP Pressure Pressure sensor Upper arm Noncontinuous
measurement

Oscillometry Contacted BP Pressure Pressure sensor Upper arm Noncontinuous
measurement

Thermal imaging Non-contacted HR, RR Temperature Thermal camera Skin Motion artifacts
RGB imaging Non-contacted HR, RR, BP Light RGB camera Skin Light effects
Acoustic sensing Non-contacted HR, RR Mechanical Speakers and microphones Chest Motion artifacts
LDV Non-contacted HR, RR Mechanical Laser sensor Chest/Neck High cost
Radar Non-contacted HR, RR, BP Mechanical Radio sensor Chest Motion artifacts

sign monitoring methods, such as camera-based techniques, acoustic sensing, laser Doppler

vibrometer (LDV), and radar-based methods, are widely investigated. In Table 2, we present a

comprehensive comparison of these non-intrusive measurement methods alongside conventional

contact-based measurement techniques.

Camera-based methods for monitoring vital signs can be divided into thermal imaging and RGB

imaging based on the different ways of observing physiological phenomena. Thermal cameras

monitor cardiac and respiratory activity by sensing minute heat changes caused by pulsating blood

flow in major superficial arteries and respiration near the nostrils [32, 33]. RGB cameras monitor

subtle skin color variations due to inconsistent blood volume in arteries and capillaries [34, 35].

Signals detected by an RGB camera can be considered a type of remote PPG signal.

Due to the privacy issues caused by using cameras, researchers have also explored methods

based on acoustic sensing. It leverages the speakers of smart devices to emit continuous frequency-

modulated ultrasonic signals that are not perceived by human ears. These signals are modu-

lated by the surface motion of the human body caused by vital activities and captured by micro-

phones [36, 37]. However, this acoustic signal-based method has certain limitations. The sensing

range is restricted by the transmission power of the smart device, and it requires more advanced

signal processing methods to extract vital signs.

LDV-based vital sign monitoring is a promising long-range contactless technology [38], using

a low-power laser to detect vibrations caused by cardiovascular activities on skin surfaces and

extract cardiac events from the reflected signals. Another long-range vital sign sensing method is

based on microwaves (300 MHz–300 GHz). According to the wavelength, it can be categorized into

decimeter-wave, centimeter-wave, and mmWave (the focus of our survey). Decimeter waves, with

their comparatively large wavelengths, inherently prove unsuitable for capturing centimeter-level

vital activities, rendering the analysis of acquired signals a formidable challenge. Centimeter waves

sense vital activities with limited accuracy, while mmWaves have a shorter wavelength and are

more sensitive to millimeter-level displacement. Johnson and colleagues [39] utilized an FMCW

radar operating at 57–63 GHz to capture the millimeter-scale motion of the artery and reconstruct

the arterial pulse waveform. As demonstrated in Figure 3, the reconstructed signal shows a strong

correlation with the results obtained through tonometer detection.

3 MMWAVE RADAR

3.1 mmWave Brief History

Millimeter waves (mmWave) are electromagnetic waves with wavelengths between 1 mm and

10 mm, corresponding to the radio spectrum between 30 GHz and 300 GHz. The development

of mmWave technology dates back to the 1890s, when Lebedew used a spark gap generator to

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 16. Publication date: November 2023.
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Fig. 3. The radar reconstruction signal (red, solid) and tonometer reference signal (black, dotted) [39].

Fig. 4. The Range-Doppler map of detecting stationary objects at a distance of 1 m using 24 GHz (left) and

77 GHz (right). The results show the 77 GHz sensor has 20x better range resolution and 20x better velocity

resolution compared to the 24 GHz sensor [40].

generate millimeter waves at 6 mm wavelengths. However, the spark gap generator was not stable

and produced incoherent signals. In the 1930s, early types of magnetrons were invented, followed

by cavity magnetrons in 1939, which were used in radar systems during World War II.

Post-war, numerous institutions began researching mmWave, leading to the development of

high-resolution 70 GHz radars by the U.S. Army Signal Engineering Laboratories, Bell Laborato-

ries, and Georgia Tech in the 1960s. The advent of solid-state sources and new vacuum tube sources

in the 1970s further advanced mmWave technology. Breakthroughs in high-power coherent radi-

ation sources, high-stability sources, transmission media, and mmWave components, combined

with injection locking and phase locking technologies, significantly improved the resolution and

availability of mmWave sensors.

— Smaller antenna: The wavelength of mmWave is millimeter-level, so the antenna size can

be small. This reduces the size of the antenna array and improves the integration density of

the radar.

— High resolution and precision: Compared to lower band wave, mmWave has higher range

resolution, velocity resolution, and angle resolution for the same antenna size. As shown

in Figure 4, the 77 GHz sensor has higher velocity resolution and range resolution than the

24 GHz sensor.

— Anti-interference: The mmWave has strong penetrating ability—even in poor weather con-

ditions such as clouds and fog, it still has good detection capability.

3.2 Comparison of mmWave Modulation Methods

Owing to the growing demand for various applications of mmWave radar, these radars transmit

signals using multiple modulation patterns to cater to different measurement requirements. The

modulation of radar signals encompasses pulse modulation and continuous wave (CW) modula-

tion, differing in the form of the modulated signal. Pulse and CW modulation are associated with

the two primary radar systems: pulse radar and CW radar. Pulse modulation’s basic unit is a pulse,

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 16. Publication date: November 2023.
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Table 3. Comparison of mmWave Modulation Methods

Feature Pulse wave CW FMCW SFCW

Range detection Yes No Yes Yes

Blind range Yes No No No

Signal leakage No Yes Yes Yes

Multiple target detection Yes No Yes Yes

Complexity of system architecture High Simple Medium Medium

and from the viewpoint of pulse parameters impacted by modulation, it can be divided into pulse

amplitude modulation (PAM), pulse phase modulation (PPM), pulse width modulation

(PWM), and pulse code modulation (PCM). In vital sign monitoring applications, a rectangular

wave modulated by PPM serves as a classic pulse wave. CW modulation, however, is a continuous

signal with a stable high frequency. Frequency modulation, a common type of CW modulation used

in vital sign monitoring, is known as frequency-modulated continuous wave (FMCW) radar.

The advantages and disadvantages of unmodulated mmWave (i.e., CW) are presented in Table 3.

Rectangular waves comprise a series of short, repetitive pulses, each with a constant fre-

quency [41]. The target’s range can be estimated by the time of flight between the emitted and

reflected pulses, while chest motion is measured by amplitude. In pulse-based sensing, the receiv-

ing and transmitting processors share a single antenna in a time-division manner. This pulse-based

method effectively prevents signal leakage compared to modulation where receiving and transmit-

ting processors operate simultaneously. However, pulse radar results in blind ranges due to time

intervals between transmitted pulses, corresponding to the receiver being off for the pulse to reflect

from the target, rendering the radar unable to measure the target.

In this article, the unmodulated CW refers to the sine wave. The velocity information carried

by the reflected wave is analyzed to detect and track the target based on the Doppler effect prin-

ciple, and vital signals are obtained by phase-demodulating the human-reflected signal. A notable

advantage of CW over pulsed waves is their continuous results. Nevertheless, unmodulated CW

can only track relative motion and cannot detect the target’s range, making it unsuitable for vital

sign detection of multiple targets. Moreover, CW-based sensing is noise-sensitive due to its inabil-

ity to separate reflections from different locations, thus rendering it inapplicable in multi-object

scenarios.

In contrast to CW modulation, FMCW changes the transmitted signal’s frequency during

measurement, mapping range information to frequency differences to address CW’s ranging inca-

pability [42]. FMCW-based sensing can transmit relatively high power via frequency modulation

techniques to achieve high SNR and utilize MIMO antennas to track and locate multiple targets.

However, the hardware system of FMCW-based sensing is more complex than that of CW-based

sensing, necessitating greater power consumption and more advanced signal processing methods.

FMCW radar modulation patterns typically include sawtooth, triangular, square-wave, stepped,

and sinusoidal waveforms, with the sawtooth wave being the most commonly used modulation

for vital sign sensing. Therefore, this article’s default FMCW frequency pattern is based on the

sawtooth wave.

SFCW [43] is another frequency modulation waveform, consisting of N equidistant scattering

frequencies within a specified bandwidth and used with FMCW radar as stepped frequency mod-

ulation patterns. The range resolution of a target is inversely proportional to the bandwidth, and

the maximum unambiguous range distance at which targets can be distinguished depends on the

number of frequency steps. FMCW can be considered as SFCW with infinitely small frequency

steps and an infinitely large number of steps, providing higher resolution.
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Fig. 5. The Time domain waveforms with different modulation patterns, where f0 is the starting frequency

of the signal, μs is the slope of the signal,T is the width of chirp signal pulse, B is the bandwidth, td the time

delay, and fstep is the frequency step.

The fundamental time domain waveforms associated with various modulation patterns are de-

picted in Figure 5. In specific scenarios, more intricate signal modulation is employed. Each signal

waveform possesses unique advantages and characteristics tailored to the particular requirements

of the application field. Continuous vital signs induce small, micron-scale vibrations, and real-life

detection scenarios are consistently complex, involving multi-object situations or background clut-

ter. FMCW has been demonstrated to be well-suited for vital sign sensing, providing high range

and velocity resolution.

3.3 Differentiation of RF Sensing Technologies

In addition to mmWave, researchers have also investigated RF-based heart rate sensing technolo-

gies based on different frequencies such as Wi-Fi, IR-UWB radar, and Terahertz (THz).

Wi-Fi-based vital signs sensing technology utilizes Wi-Fi radio signals to track human activity,

movement, and vital signs. Wi-Fi is more cost-effective compared to mmWave, as almost all

medical and residential environments are equipped with Wi-Fi devices. References [44, 45]

have demonstrated the extraordinary ability to track vital signs using Wi-Fi signals. However,

these works have some limitations such as high dependence on multiple environment-related

parameters (e.g., location of Wi-Fi transceiver, line-of-sight/non-line-of-sight conditions) and

many challenges in multi-person vital signs monitoring scenarios.

IR-UWB radars (3.1 to 10.6 GHz) utilize very short pulsed signal (on the order of nanoseconds)

that occupy greater than 500 MHz or 25% of the frequency band. The nature of this pulsed signal

allows IR-UWB radar to achieve centimeter-level target ranging accuracy and strong obstacle

penetration [46]. Since it uses very low power to transmit pulses, there is no health risk and it

can be used on a daily basis [47]. Compared to mmWave radar, IR-UWB radar has a stronger

ability to penetrate obstacles and is more applicable for detecting vital signs in non-line-of-sight

(NLOS) scenarios (e.g., rescue operations) [48, 49]. However, mmWave radar has a higher range

resolution, which can provide finer vital sign bins localization information and performs better in

line-of-sight (LOS) scenarios. In general, higher frequencies represent better range resolution,

ACM Transactions on Sensor Networks, Vol. 20, No. 1, Article 16. Publication date: November 2023.



16:10 Y. Wu et al.

Fig. 6. An FMCW-based system block diagram.

along with weaker penetration capabilities. Low resolution range bins lead to clutter noise,

especially in crowded environments/targets. For example, the range resolution at 60 GHz is

1.7 cm, which is sufficient for the detection of breathing motions (a few mm to 1 cm). However, it

is challenging to detect micro-movements of the heart (less than 1 mm) with such range resolution

that includes breathing motions and other body motions, as well as clutter noise from other

scatters (e.g., clothing). These limitations may be alleviated by using higher operating frequencies

such as terahertz (THz, 100 GHz–10 THz).

THz offers larger bandwidth, which can increase the range resolution and thus reduce clutter

noise. For instance, at 300 GHz, the range resolution can reach 3.3 mm. In addition, THz provides

high phase sensitivity. For example, a motion of 0.5 mm causes a phase change of 3.6°at 60 GHz,

while at 300 GHz the corresponding phase change is 18°. This feature allows tiny motions related to

vital activities, such as chest micro-motions by breathing, heart-caused micro-motions [50], and

surface skin motion caused by blood flow [51], to be easily detected by the phase method. THz

has significant advantages over mmWave, however, terahertz technology is currently not mature

enough for application, and the equipment costs are expensive.

4 MVSS SIGNAL MODEL

The radar system transmits an electromagnetic wave signal that is obstructed and reflected by

objects in its path. By analyzing the reflected signal, the radar system can determine the object’s

distance, speed, and angle. To comprehend how human physiological activity modulates the re-

flected signal, researchers have developed various mathematical models to characterize the signal

for subsequent processing. In this section, we summarize four MVSS signal models. The first model

is based on phase modulation resulting from chest vibrations due to human physiological activities,

with geometric properties within the phase IQ domain offering a novel perspective. Another model

is based on the cardiac electromagnetic field, and the final model is based on the multipath effect.

4.1 The Chest Micro-motion Model

4.1.1 FMCW-based Sensing. The principle of FMCW-based remote sensing of vital signs is

based on the phase modulation of the intermediate frequency (IF) signal by the vital micro-

motion of the human body. A simplified block diagram of a typical FMCW-based sensing system

is shown in Figure 6. The IF signal is obtained by mixing the transmitted signal and the reflected

signal and then filtering out the high-frequency components.

The emitted chirp of An FMCW radar can be expressed as:

xT (t ) = AT cos

(
2π f0t + π

B

Tc
t2

)
, (1)
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Fig. 7. ADC data cube structure. The sensing system transmits FMCW and the received reflected wave is

mixed by a mixer and then passed through an LPF to obtain the IF signal. The raw data is the output of the

IF signal sampled by ADC where Nt is the number of transmitter antennas, Nr is the number of receiver

antennas, N is the number of samples in a chirp, M is the number of chirps in a frame and L(L = Nt × Nr )
is the number of virtual receivers.

where AT is the amplitude of the transmitted chirp, f0 denotes the starting frequency of the trans-

mitted chirp, B means the bandwidth of the transmitted chirp, and Tc is the duration of the trans-

mitted chirp. The received signal is the delayed version of the transmitted signal. Assuming the

range between a target with a sensing system is d and the change of chest displacement caused

by cardiopulmonary activity with time is expressed as x (t ). The time delay of the received signal

and the received signal, respectively, can be described as:

td = 2
d + x (t )

c
, (2)

xR (t ) = AR cos
(
2π f0 (t − td ) + π

B

T
(t − td )2

)
, (3)

where c andAR are the speed of radio wave propagation in the air and the amplitude of the received

signal, respectively. The received signal and the transmitted signal are mixed by two orthogonal

I/Q channels and then passed through a low-pass filter to obtain the IF signal xI F (t )

xI F (t ) ≈ ATARe

j

�������
�

2π
2Bd

cT︸︷︷︸
f

t+
4π (d + x (t ))

λ︸�����������︷︷�����������︸
ψ (t )

�������
�,

= ATARe
j (2π f t+ψ (t )),

(4)

where f is the frequency of the IF signal, which is related to the range between the sensing system

and the target, ψ (t ) denotes the phase of the IF signal, which is associated with chest motion

when the target remains relatively stationary, and λ is the signal wavelength. Hence, to observe

the change in chest displacement, it is necessary to sequentially transmit multiple chirps to obtain

the phase change information. Multiple continuous IF signals can be represented in fast time and

slow time as the nth sample point and themth chirp:

R[m,n] = ATARe
j (2π f nTf +

4π
λ (d+x (nTf +mTs ))) , (5)

where Ts means the time interval of emitting chirp, i.e., the phase sampling interval for the chest

motion, andTf is the sampling period for a single chirp. Furthermore, when the sensing system has

multiple receiving antennas, the discrete ADC data is shown in Figure 7. And when the antenna

array is a linear array, the signal model can be rewritten as:

R[m,n, l] = ATARe
j (2π f nTf +

4π
λ (d+x (nTf +mTs ))+ 2π

λ
al sin θ ) , (6)
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Fig. 8. A schematic diagram of the IR-UWB radar detection principle.

where 2π
λ
al sinθ represents the phase difference between the reflected signal received by the l-th

antenna from the target located at the arrival of angle θ and the reflected signal received by the

first antenna.

Assuming there are k targets in the field of view (FoV) of the sensing system and the range-

angle information of each target is (db ,θb ), the signal model can be extended as a superposition

of multiple target reflected signals:

Rk [m,n, l] =
k∑

b=1

ATAR exp
(
j
(
2π fbnTf +

4π

λ
db+

4π

λ
xb

(
nTf +mTs

)
+

2π

λ
al sinθb

)) . (7)

In summary, when the position of the target (d,θ ) is fixed, the relative phase change over slow

time θ (mTs ) is caused by the chest displacement, which can be described as:

θ (mTs ) =
4πx (mTs )

λ
, (8)

where θ (mTs ) is the feature for vital signs estimation.

4.1.2 IR-UWB Radar Sensing. Vital signs remote sensing using IR-UWB radar is based on the

amplitude variations and time of arrival (ToA) of the reflected pulses to derive the status of the

cardiorespiratory activity.

The principle of IR-UWB radar detection is shown in Figure 8. Assuming the fluctuating motion

of the chest caused by respiration and heartbeat are the sinusoidal signals dr and dh , respectively,

the distance between the source of the vital signal and the antenna can be expressed as:

d (t ) = d0 + dr + dh = d0 +Ar sin (2π fr t ) +Ah sin (2π fht ) , (9)

where t is the observation time, d0 is the nominal distance between the antenna and the human

chest wall,Ar denotes the displacement amplitude of respiration,Ah is the displacement amplitude

of the heartbeat, and fr and fh represent the respiration frequency and the heartbeat frequency,

respectively.

Therefore, the time delay of the reflected signal received by the IR-UWB radar from the target

can be represented as:

τk (t ) =
2d (t )

c
= τ0 + τr sin (2π fr t ) + τh sin (2π fht ) , (10)

where c is the propagation speed of the pulse wave, τ0 = 2d0/c , τr = 2Ar /c , and τh = 2Ah/c .

Let δ (t ) be the normalized received pulse, and the total impulse response can be represented
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Fig. 9. A block diagram of the self-injection-locked (SIL) radar system [52].

by:

r (t ,τ ) = Akδ (τ − τk (t )) +
∑

i

Aiδ (τ − τi ) , (11)

where τ is the sampling time of each pulse, Ak is the response amplitude from the human body,

and Ai and τi are the response amplitude of each multipath component and the delay of each

multipath, respectively. And the reflected signal received by the receiving antenna can be regarded

as the convolution of the transmitted pulse signal and the response function, which is expressed

by the following equation:

R (t ,τ ) = s (τ ) ∗ r (t ,τ ) = Aks (τ − τk (t )) +
∑

i

Ais (τ − τi ) , (12)

where s (t ) is the first-order Gaussian pulse signal. And the discretized Equation (12) can be

written as:

R[m,n] = R
(
mTs ,nTf

)
= Aks

(
nTf − τk (mTs )

)
+

∑
i

Ais
(
nTf − τi

), (13)

where m and n are the sampling numbers in slow time and fast time, respectively. Ts is the pulse

repetition interval in slow time, and Tf is the fast time sampling interval.

4.1.3 SIL-based Sensing. The SIL-based sensing system employs a unique SIL oscillator

(SILO) that relies on the principle of injection locking as its signal source. It injects the received

signal into the SILO, putting it into an injection-locked state. Injection locking occurs when an

oscillator is interfered with by a second oscillator with a sufficiently close frequency, resulting in

the capture of the first oscillator, which then essentially shares the same frequency as the second

oscillator. Figure 9 illustrates the fundamental structure of the SIL radar system. In a SIL radar, the

SIL oscillator generates the radar transmission signal (ST X (t )), while the radar reception signal

(SRX (t )) is input as an injection signal (Sinj (t )) to the SILO, inducing the SIL state. The output

signal from the SILO then passes through the IQ delay discriminator, producing the IQ signal.

Assuming the SILO possesses an inherent oscillation frequency ωosc , a constant oscillation am-

plitude Eosc , and a tank quality factor Qtank . When a reflected signal with an instantaneous fre-

quencyωinj (t ) and a constant amplitude Einj is introduced into the SILO, the instantaneous output

frequency of the SILO, ωout (t ), can be represented as follows:

ωout (t ) = ωosc − ωLR sinα (t ), (14)

where ωLR is the locking range and α (t ) means the instantaneous phase difference between the

injection signal and the oscillation signal. ωLR and α (t ) is given by

ωLR =
ωosc

2Qtank

Einj

Eosc
, (15)
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α (t ) =
ωosc

c
(2R + 2x (t )), (16)

where R and x (t ) represent the distance to the target and the instantaneous displacement of the

target, respectively, while c denotes the speed of light. By substituting Equations (15) and (16)

into Equation (14), the frequency-demodulated output signal, Sbb (t ), can be approximated as

follows:

Sbb (t ) = arctan

(−SQ (t )

SI (t )

)

≈π ·Mod (ωoscτd ,π ) − ωLRτd sin
(

2ωoscR

c

)

−
ω2

oscτd

Qtankc

Einj

Eosc
cos

(
2ωoscR

c

)
· x (t ),

, (17)

where Mod denotes a modulus function and τd is the delay time of the delay unit in the frequency

demodulator. The first and second terms on the right side determine the direct current (DC)

offset of the signal and can be removed by adjusting ωosc . If the clutter is stationary (x (t ) = 0), it

will result in only a small constant frequency offset in the oscillator output signal of the SIL radar,

as opposed to causing a significant DC offset in the baseband signal of a conventional CW radar.

Therefore, SIL-based sensing greatly enhances the SNR of the output signal (Sbb (t )).
In vital sign detection, the detection target is the human body. When the human body position

(R) is fixed, x (t ) is considered as the chest micro-movement caused by HR and RR, and the vital

sign-related signals can be parsed from Sbb (t ).

4.1.4 SFCW-based Sensing. The SFCW-based sensing theory is roughly similar to the FMCW-

based, with the major differences being in the signal generator and the signal processing. The

SFCW signal can be represented as [43]:

xT (t ) =
M∑

m=0

AT cos (2π ( f0 +mΔf )t ) ,

· rect�
�

t −mT
T

�
�
,

(18)

where AT is the amplitude of the transmitted signal, f0 is the starting carrier frequency, Δf means

the frequency increment, T represents the duration time of each frequency, and M is the number

of all carrier frequencies. Thus, the bandwidth of SFCW is M ∗ Δf . To decrease pulse-repetition

time, the duration time of single-frequencyT is generally limited to the microsecond level. Besides,

the rectangle function is given by

rect
( t
T

)
=

{
1, t ∈ (−T /2,T /2)

0,otherwise
. (19)

The radar received signal is the time delay of the transmitted signal, which can be expressed as:

xR (t ) =xT (t − td )

=

M∑
m=0

AR cos
(
2π ( f0 +mΔf ) (t − td )

)

· rect�
�

t − td −mT
T

�
�
,

(20)
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Fig. 10. Geometric properties in the IQ domains: (a) Ideal/Practical chirp signals; (b) Practical multi-antenna

signals; (c) Practical multi-chirp signals; (d) Ideal multi-frequency signals.

where td =
2R (t )

c
. After the mixer and LPF, the system output signal is as follows:

xI F (t ) =
M∑

m=0

ATAR cos �
�

4π f0R (t )

c
+

4πmΔf R (t )

c
�
�

· rect�
�

t − td −mT
T

�
�

. (21)

Through ADC sampling in each frequency in Equation (21), a period of multi-frequency echo

data is obtained as a frequency-domain complex data vector. Assume N periods of SFCW echoes

are collected. Therefore, N periods of data vector can be combined into a M ·N dimensions of data

matrix S , where the element of nth row (period) andmth column (frequency) can be expressed as:

S (n,m) =
M∑

m=0

ATAR cos �
�

4π f0R (n)

c
+

4πmΔf R (n)

c
�
�
, (22)

where 4π f0R (n)/c indicates the phase change due to the chest fretting of the target, which can be

analyzed to estimate vital signs.

4.2 Geometric Properties in IQ Domains

The phase change of the reflected signal from the target is connected to the target’s minor fluctua-

tions in displacement and velocity when using FMCW-based sensing or CW-based sensing. How-

ever, noise can inevitably impact the accuracy of phase extraction, particularly the phase distortion

caused by DC offset. Examining the geometric properties of the phase signal in the IQ domain, with

a focus on DC offset, is also a promising approach for reliably extracting phase changes.

The vibration phase signal in the IQ domain is theoretically a circular arc centered at the origin

of the coordinates. In reality, the center of the circular arc is irregularly shifted away from the

coordinate origin, a phenomenon known as DC offset. As illustrated in Figure 10(a), the extracted

phase changes differ in the two cases. Since the extracted phase (θ ′) deviates from the true phase

(θ ), the circle fitting method is employed in References [53–55] to eliminate DC offset by dynam-

ically tracking the position of the circle’s center and moving it to the coordinate origin. However,

the circle fitting method may yield unstable fitting results and inaccurate vibration measurements

for small arcs. The phase signal generated by tiny vibrations is a small arc in the IQ domain, and

simple circle fitting is insufficient for handling these vibrations. A more comprehensive analysis

of the geometric properties of the phase signal in the IQ domain is needed. The phase signal of

the same antenna at different moments or different antennas at the same moment will exhibit

varying DC offsets, as shown in Figures 10(b) and 10(c). Increasing the number of observations for

the same moment of vibration can help form a larger arc, thereby reducing measurement error.
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According to Equation (4), the phaseψ (t ) can be expressed as:

ψ (t ) = 4π
d + x (t )

λ
= 4π f0

d + x (t )

c
. (23)

Equation (23) demonstrates thatψ (t ) is dependent on f0 and x (t ) when the target is stationary

(with a fixed d). While x (t ) is beyond our control, the starting frequency (f0) of the chirp can be

adjusted in the sensor. By altering f0 and maintaining the same x (t ), ideally, the phase signal in

the IQ domain will rotate around the coordinate origin, as depicted in Figure 10(d). If we establish

a set of chirps with varying f0 for simultaneous measurement, then the phase information will

form a larger arc in the IQ domain. This larger arc is beneficial for fitting a more accurate circle.

4.3 The EM Field Model

The detection of vital signs can be based on physical phenomena associated with the electromag-

netic (EM) field, such as the dielectric properties (permittivity) of biological matter and the Fara-

day effect. The permittivity of biological materials (e.g., blood, cellular tissue) changes in response

to an external EM field, with unique changes for different materials. The presence of an electric field

allows biomaterials with electrical conductivity to detect permittivity, enabling the conversion of

biological responses into measurable signals. In summary, biosensors made from biomaterials are

utilized to detect permittivity changes to analyze the composition of biological materials, such

as identifying cancer cells in tissues or measuring blood glucose concentrations. Although most

biosensors require contact, non-contact detection based on permittivity is challenging. However,

the Faraday effect offers a new approach for non-contact detection. According to this effect, a po-

larized high-frequency EM wave (mmWave) is rotated by the cardiac EM field during scattering

in the chest, allowing for the inference of cardiac activity by analyzing the reflected signal.

4.3.1 EM Field Description. Dielectric exhibits conductive properties under an externally

applied electric field. In the EM field, the positive charge in the dielectric gets displaced in the

direction of the electric field and the negative charge is displaced in the opposite direction. The

conduction of charge in a dielectric produces conduction currents, while the displacement of

charge due to polarization produces displacement currents. Polarization and conduction currents

result in the loss of EM energy in the dielectric. The permittivity is used to measure the EM

energy in the dielectric [56], which can be described as:

ϵ∗ = ϵ ′ − jϵ ′′, (24)

where ϵ ′ is the real part of permittivity and ϵ ′′ is the loss factor caused by conduction and polar-

ization losses. The complex form of the permittivity can better explain the EM energy loss in the

dielectric, where the imaginary part is called the loss factor.

In an alternating magnetic field, charges attempt to align themselves with the applied field’s

direction, and the time required for the charges to catch up with the changing field is called the

relaxation time. As the frequency increases, the time for charges to align becomes shorter, eventu-

ally reaching a point where they can no longer keep up. This frequency is known as the relaxation

frequency. Debye’s equation provides a model for how permittivity varies with frequency. At

low frequencies, the dipole has sufficient time to follow the changing applied field. As frequency

increases, the dipole cannot fully recover its original position, resulting in a loss of permittivity.

When the applied frequency aligns with the relaxation frequency, polarization can no longer keep

up with the rapidly changing electric field and disappears, causing a drop in permittivity.

The permittivity spectrum offers a unique dielectric property that can be used to analyze bio-

logical targets within biological matter. These targets can be biomolecules such as proteins, DNA,

biomarkers, pathogenic organisms, hormones, or other medically relevant analytes such as glucose,
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Fig. 11. Permittivity spectrum of glucose concentration [57]. Differential permittivity can be observed for

different concentrations of blood glucose at EM fields from 1 KHz to 100 KHz.

pulse, and heartbeat. Biosensors measure cells and tissues’ unique permittivity curves directly or

indirectly, allowing for the identification of these biological targets. For example, in a glucose

biosensor, glucose concentration changes on the detection surface result in permittivity changes

and shifts in relaxation frequency, as shown in Figure 11. In another case, tumor cell assays exploit

the difference in cytoplasmic content between dead or tumor cells and live, healthy cells, providing

a permittivity contrast.

4.3.2 Cardiac EM Field. Modern medicine indicates the presence of electrical activity in the hu-

man body; this electrical activity is generated by cells. By controlling the flow of charged elements

(e.g., potassium ions and sodium ions) across the cell membrane, the cell creates a potential differ-

ence between the inside and outside of the cell to generate electrical currents, which can be turned

into an electrical impulse called an action potential. The human body uses certain patterns of action

potentials to perform physical actions, thoughts, and behaviors. And each mechanical heartbeat

is triggered by action potentials originating from the pacemaker cells (sinoatrial node) within the

heart. The impulse is then conducted rapidly throughout the organ to produce a coordinated con-

traction. In contact detection, clinical ECG systems measure the electric current on the surface

of the body through electrode patches to help diagnose cardiac disease. In non-contact detection,

the Faraday effect [58] provides the idea of remotely sensing the changes in the cardiac EM field.

Specifically, polarized high-frequency EM waves (i.e., mmWave) can be rotated by modulation of

the cardiac EM field extending outside the body during scattering to the chest surface, which will

change the frequency of the received signal. The periodically varying cardiac EM field generated

by the electrical activity of the heart periodically modulates the sequentially transmitted mmWave

signal. Xu et al. [59] proposed the CardiacWave, which used mmWave radar to capture the periodic

changes in the Cardiac EM field and provide a full spectrum of ECG-like heart activities, including

the details of P-wave, T-wave, and QRS complex. The mmWave scattering at the chest surface will

be impacted by a path-dependent mismatch factor βL (t ), which can be expressed as:

βL (t ) =

∫
V

cos2 (νμH (t , r )dl ), (25)

where ν is the Verdet constant, μ is the permeability, L represents the mmWave propagating path,

and H (t , r ) represents distributed about the location and time. Eventually, The modulation of the

mmWave by the cardiac EM field can be expressed as:

C (t ) =
∑

L

At exp j[2π ft ] βL (t ), (26)
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whereAt and ft represent the amplitude and frequency of the mmWave, respectively. Equation (26)

shows the scattered mmWave response at different frequency components has frequency shift

associated with the cardiac EM field.

4.4 Based on Multipath Effects

During WiFi communication, the wireless signal that is received can be understood as a combi-

nation of signals that pass through both the direct path and the reflected path of multiple objects.

By extracting the physical layer properties of the wireless channel, it can help us understand the

change in the environment. In the research area of using WiFi to detect vital signs, the used phys-

ical layer information is changing from received signal strength indicator (RSSI) to channel

state information (CSI). Compared to RSSI, which can only provide an overall description of

the received signal, CSI can provide fine-grained channel states information such as amplitude

and phase. The channel can be regarded as each subcarrier between the transmit and receive an-

tenna pairs in the WiFi system using orthogonal frequency division multiplexing (OFDM)

modulation and MIMO techniques. For each subcarrier, the WiFi channel is expressed as:

Yi = HiXi + Ni , (27)

where Yi ∈ Rn and Xi ∈ Rm represent the ith received and transmitted subcarrier signal, re-

spectively, with m transmitting antennas, n receiving antennas. Hi and Ni are CSI matrix of ith
subcarrier and noise component, respectively. And Hi can be represented as:

Hi =

������
�

hi
1,1 hi

1,2 . . . hi
1,n

hi
2,1 hi

2,2 . . . hi
2,n

...
...

. . .
...

hi
m,1 hi

m,2 . . . hi
m,n

������
�

, (28)

where hj,k
i is the CSI of ith subcarrier between the jth transmitting antenna and the kth receiv-

ing antenna. Assuming the frequency of the ith subcarrier is f , then mathematically hj,k
i can be

expressed as:

h( f , t ) = e−j2π Δf t
(
hs ( f , t ) + a( f , t )e−j2π

d (t )
λ

)
, (29)

where hs ( f , t ) is the component from static paths, e−j2π Δf t is the phase random offset, a( f , t ), d (t )

and e−j2π
d (t )

λ are path-related complex attenuation, dynamic path length changes due to small body

movements and phase shift, respectively.

In summary, CSI contains information about how tiny human motion modulates wireless signals

in the time, frequency, and spatial domains. By extracting relevant features such as CSI phase,

amplitude, and signal strength, it can help us estimate the vital signs of human targets.

5 SIGNAL PROCESSING CHAIN FOR MVSS

Whether based on the chest vibration or on the cardiac EM field, the vital signals contained in the

received wireless signal are extremely weak. So, the extraction of vital signals from the received

wireless signals is an open problem with many technical challenges, such as motion artifact, ran-

dom body motion, DC offset, and separation of vital signals. In this section, we summarize a generic

signal processing chain for MVSS from a wide range of literature. As shown in Figure 12, we ab-

stract it into four parts: data collection, pre-processing, feature extraction, and vital sign estimation.

Specifically, the received signal is first sampled and reconstructed into a format suitable for the

next processing step. To focus on the reflection component from the human body, pre-processed

is necessary, which includes removing non-human reflections, locating the human body, and so
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Fig. 12. Signal processing chain for MVSS.

on. Next, the mixed vital signals are extracted from the pre-processed data, compensated, and

separated based on the characteristics of different physiological activities. Finally, vital signs are

estimated from separated vital signals.

5.1 Data Collection and Pre-processing

The wireless signals are sequentially emitted and reflected by objects in the environment (e.g.,

human body, table, and wall). The reflected signals are received by the receiving antenna and

sampled. To simplify the subsequent data processing, the sampled data is usually stored in the

form of a data cube (as shown in Figure 7) of the FMCW radar. In the pre-processing stage, the

essential task is to search for the reflected object, and the positions of all reflected objects need to

be analyzed to determine the human body.

5.1.1 Reflection Object Detection. Before locating the human body, we need to parse out all the

reflected objects from the data cube to target the potential human object. The position information

consists of range and angle. In the case that the human body is far enough away from other objects

in the environment, it is possible to localize the human body using only range information. But the

angle information is necessary when multiple objects are in close proximity. In addition, separating

the body by two dimensions, distance and angle, is beneficial for locating the chest and reducing

interference from other parts of the body (e.g., the head and shoulders).

Range information can be acquired by RangeFFT for FMCW [18, 54], which is applied along the

sample axis (the fast time axis) to produce the so-called RangeFFT spectra. For SFCW, the typical

processing method forms a time-domain range profile with target range information by IFFT pulse

compression for each period of a multi-frequency data vector [60].

Target angle information can be resolved from a multi-antenna system. AngleFFT [42] is one

of the widely used angle estimation algorithms, which is applied along the antenna axis to obtain

the AngleFFT spectra. In addition, digital beamforming can also estimate the direction of arrival

(DOA). According to whether the beamformer weights are changed or not, the DOA estimation

algorithm can be divided into two categories: fixed beamformer and adaptive beamformer. The

classic example of a fixed beamformer is the DOA estimation algorithm introduced by Bartlett

in 1965, often referred to as the Bartlett beamformer. However, the Bartlett beamformer can

not distinguish two sources whose spatial distance is less than the beam width. The higher-

resolution Capon beamformer [61] was proposed in 1969, which is the first proposed adaptive
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DOA estimation algorithm and calculates the optimal weights by optimizing the minimum

variance distortionless response (MVDR) criterion. Capon beamformer requires the inverse

of the autocorrelation matrix of the received array data, which introduces high-complexity

computations. In 1972, Frost et al. [62] proposed the linearly constrained minimum variance

(LCMV) beamformer. LCMV beamformer is actually an extended form of MVDR beamformer.

In 1979, Schmidt proposed the multiple signal classification (MUSIC) beamformer [63], and

subsequent researchers have proposed various improved MUSIC algorithms. All of them require

eigenvalue decomposition operations to obtain high-precision parameter estimates, which require

large computations. In 1985, Roy et al. [64] proposed the estimation of signal parameters via

rotational invariance techniques (ESPRIT) algorithm, which used some properties of the

array signal to solve the function directly and reduce the computational effort. Then, various im-

proved algorithms based on MUSIC and ESPRIT were proposed, such as the minimum parametric

method [65], ROOT-MUSIC [66], and TLS-ESPRIT [67]. To avoid the computational complexity of

the adaptive beamforming algorithm and improve the effect of DOA estimation, Ahmad et al. [68]

combined AngleFFT with Bartlett beamformer. Specifically, the angle information obtained by

AngleFFT is used to calculate the optimal weights for the Bartlett beamformer, the optimal weights

are recalculated at regular intervals (e.g., every 30 seconds), and the intervals can be set by the user.

The single antenna system can estimate the angle by a dual-station setup [69]. It estimates the

target’s angle by the range correlation of two single antenna sensing systems. This approach is not

recommended if only to obtain angle information. However, multi-station data fusion is a research

interest worth exploring and has huge potential for improving detection accuracy and SNR.

5.1.2 Location of the Human Body. The reflection signal from the human body will be

modulated due to physiological activity, while the reflection signal from the static object is

relatively stable. Based on the above fact, the authors of References [4, 55, 70] used a static

background elimination technique to distinguish the human body from static objects. Specifically,

this technique entailed calculating the mean value of the data in the slow time dimension to

establish a baseline background signal, which is subsequently subtracted from the original signal.

A more intuitive way to remove stationary objects is based on velocity. From the RangeFFT matrix,

Mercuri et al. [18] applied FFT along the chirp axis (the slow time axis) to obtain DopplerFFT

spectra for measuring the object velocity. And they filtered static objects by point-by-point

multiplication of the RangeFFT matrix and RangeFFT-DopplerFFT matrix. Walterscheid et al. [71]

used a bandpass filter (BPF) to filter stationary objects, which can be considered as retaining

targets within a certain range of velocities.

Motion artifacts occur with the subject’s movements is a challenge, which not only decreases

the target localization accuracy, but may also produce false targets. In Reference [55], a constant

false alarm rate (CFAR) detector is used to remove effectively motion artifacts and highlight the

moving subject. CFAR is very useful in locating targets. In Reference [72], Acar et al. considered

closer targets to cause more powerful returns, CFAR was used to adaptively evaluate the noise

level and avoid missing targets away from the radar. ViMo et al. [73] used 1D-CFAR and 2D-CFAR

detectors in the range and angle (elevation and azimuth) dimensions, respectively, to estimate the

noise level in 3D space, thus providing adaptive thresholds for detecting targets. However, the

detection performance of CFAR is correlated with the detection window size and scaling factor.

The small detection window is not effective in evaluating the average noise level, while missed

detections may occur when using a large window.

Considering the detected target may not be human and the human body will occupy multiple

range-angle bins. Therefore, it is important to further identify the locations that contain the vital

sign components. Wang et al. [74] located the human major vital bin by checking the variance of

the phase information in slow time, the bins corresponding to a human subject are those whose
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phase variation over time exceeds a threshold. In Reference [53], the phase is demodulated on

all candidate range bins, and the range-vibration map is generated by applying FFT on the slow-

time samples. The range bin with the maximum average power is considered as the best choice. To

accurately find the human heart location, Ha et al. [75] estimated the HR using a template matching

algorithm and then calculated the heartbeat power and total power ratio across coordinates, where

the location with the highest power ratio is the heart location. In Reference [73], the presence of

the vital signal component was determined by examining the autocorrelation function (ACF)

of the phase of CSI measurements. This method has a high real-time performance with a small

observation window. Based on the fact that the human body has a different permittivity than

other objects, the algorithm proposed by Yang et al. [76] evaluated the reflection loss of emerging

reflections in an indoor environment to identify whether the reflections are from humans.

5.2 Feature Extraction of Vital Signs

As described in Section 4, small-scale physiological activities of the human body modulate the

wireless signals. By extracting highly correlated features from the modulated signals, vital signs

can be effectively estimated. However, due to the non-ideal hardware and random human motion,

the features are often interfered by interference factors that have a great influence on the estima-

tion accuracy. In addition, the extracted features may contain multiple vital signs components (e.g.,

respiration, heartbeat). Therefore, noise suppression and signal separation are necessary for the

measurement performance of vital signs.

5.2.1 Noise Suppression. To address the challenge of random body motion, the authors of

References [77, 78] attempted to make use of multiple radars placed in different directions to

collect the subject information from multiple views. In Reference [79], the information provided

by the camera is used to compensate for the phase distortion caused by random body motion.

The above multi-sensor approach to cope with random human motion has the same drawbacks of

increasing the complexity, cost, and power consumption of the system. Yang et al. [80] proposed

a scheme combining adaptive noise cancellation with polynomial fitting, which uses only one

Doppler radar to retrieve the components of both respiration and heartbeat signals under random

body motion interference. Wang et al. [4] designed a two-step motion compensation algorithm for

the in-vehicle environment, which recovers the vital signals from phase information containing

driving actions. First, the human targets are aligned by calculating 2-dimensional cross-correlation

to compensate large body motion. Second, the B-spline curve is used to estimate motion artifacts

to reconstruct vital signals.

As for DC offset, there are two general sources of DC offset. On the one hand, the scattering of

stationary clutter (i.e., reflected objects around the target) may result in DC offset. On the other

hand, circuit imperfections and direct coupling between the transmitter and receiver may cause

DC offset in the RF front-end output.

The DC offset can be compensated by hardware improvements or by back-end data processing.

Zhao et al. [81] used a high RF-LO isolation mixer to employ DC coupling. This is complex to

implement and was not able to eliminate DC offsets completely. In Reference [82], a radar sensor

with DC-coupled adaptive tuning architecture was designed to eliminate most of the DC offset

and allowed high gain amplification. Using additional designed hardware to eliminate DC offset

from the raw signal requires sufficient expertise, so eliminating DC offset in the back-end data

processing is common. As shown in Figure 10(a), the shape of the IQ signal is circular or elliptical,

and the center of the circle is offset from the origin. In this situation, calculating the offset circle

center is necessary to avoid the phase distortion caused by direct demodulation of the phase. The

circle fitting algorithm [53–55] and the ellipse fitting algorithm [83] are commonly used algorithms

to correct DC offset. In Reference [76], a BPF with a cutoff frequency of 0.1–20 Hz is applied to the
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time-series RSSI signal to remove the DC component and the high-frequency component due to

body shaking.

To overcome the amplitude noise and time-varying phase offsets in CSI data, the authors of

Reference [84] proposed to use CSI phase difference data between two antennas of the receiver to

monitor breathing and heartbeats. Experiments showed that CSI phase difference is more stable

and periodic than RSSI in representing vital signs. With a similar aim, References [85] and [86]

proposed conjugate multiplication and CSI ratio to resolve time-varying CSI phase shifts and

remove amplitude noise, respectively, and to estimate vital signs using both the magnitude and

phase of CSI.

5.2.2 Feature Extraction. Arctangent demodulation [53, 55], linear demodulation [18, 87], and

the differentiate and cross-multiply (DACM) [54] algorithm are widely applied to extract the

phase from the IQ domain.

Arctangent demodulation is a classic and simple phase-shift demodulation method that

compresses the true phase to [− π
2 ,

π
2 ], which results in the extracted phase may show phase

discontinuities caused by phase jump. For example, if the true phase is 3
4π , and the extracted

phase using arctangent demodulation turns to − π
4 , then it will result in the extracted phase

having phase discontinuities caused by phase jump. So, it is necessary to explore the phase

unwarping algorithm to improve the phase discontinuity. However, the residual noise makes

it difficult to identify these points. To get over the drawbacks of arctangent demodulation, the

linear demodulation method based on signal subspace is proposed, which can suppress redundant

information and maximize the variance of quadrature data. Massagram et al. [88] suggested the

linear demodulation may be a better choice if the signal falls into one of these three categories:

(1) relatively short arc lengths produced by the phase transition; (2) low SNR; (3) alternate current

coupling is used. But when the phase change is too large, linear demodulation tends to cause

distortion. The DACM algorithm solves the phase jump problem by using differentiation and cross

multiplication instead of arctangent and improves the stability of the phase demodulation process.

5.2.3 Signal Separation. In general, the extracted phase signal may contain multiple physiologi-

cal activity information. A typical example is detecting vital signs based on chest micro-motion; the

extracted phase signal contains the respiratory and heartbeat components. The amplitude of respi-

ratory vibrations is much greater than that of the heartbeat (about 10 times), and the frequency of

respiratory harmonics is close to the heartbeat frequency, so the heartbeat signal is easily covered

by the respiratory signal. In addition, the entanglement between breathing and heartbeat signals

seriously influences detection accuracy. To overcome the above challenges, scholars proposed their

useful schemes for a different scene, e.g., BPF, double parameter least mean square (LMS) filter,

wavelet transform (WT), compressive sensing based on orthogonal matching pursuit (CS-

OMP), Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD),

and State space method (SSM).

Heart rate and respiratory rate are distributed in different frequency bands. The adult heart

rate is about 60–100 beats per minute, and the respiratory rate is 12–20 beats per minute. Design-

ing BPF with different frequencies for heart rate and respiration rate can separate the heartbeat

and respiration signals [54, 55, 68, 70, 89–91]. Liu et al. [70] designed the BPF at 0.6–4.2 Hz and

0.1–0.9 Hz to separate heartbeat and respiratory signal, respectively. The BPF-filtered signal may

contain residual harmonics and noise. Therefore, the second-order differential filter was employed

to highlight the heart signal with an obvious acceleration and to attenuate the respiratory signal

in References [92, 93]. He et al. [94] used a double-parameter LMS filter to suppress respiration har-

monics and interference. In Reference [54], the CS-OMP algorithm was used to suppress harmonic

interference and noise to reconstruct the heartbeat and respiratory signals.
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WT, proposed in the 1990s, has the feature of multi-resolution, and the local features of the sig-

nal in the time and frequency domains can be represented by the mother wavelet by choosing the

appropriate scale and stretch coefficients. Choosing the suitable mother wavelet is crucial to the

effectiveness of WT. Mercuri et al. [18, 87], chose the discrete Meyer mother wavelet to separate

the heartbeat and respiration signals. In Reference [54], db5 wavelet is selected to perform wavelet

decomposition. Wavelet transform has been developed over a long period of time with many im-

proved algorithms, such as empirical wavelet transform (EWT) [95] and stationary wavelet

transform (SWT) [96]. SWT is a wavelet transform algorithm designed to overcome the lack of

translation-invariance of the discrete wavelet transform and is used in Reference [97] to separate

respiratory signals. EWT integrates the adaptive decomposition concept of EMD and the wavelet

transform theory and provides a new adaptive time-frequency analysis idea for signal processing.

Compared with the EMD, the EWT is able to select the frequency band adaptively and overcome

the modal aliasing problem caused by the signal discontinuity on the time-frequency scale. He

et al. [98] presented a study for automated separation of RR and HR signals based on EWT for

multiple people.

EMD [99] can be used to separate signals based on a compromise evaluation of the time and

frequency and has shown the potential to separate respiratory and heartbeat [100]. However,

EMD suffers from mode-mixing and endpoint-effect problems, which restrict its application in

practice. To solve this problem, Ensemble Empirical Mode Decomposition (EEDM) [101]

and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-

DAN) [102] were proposed and applied in References [71] and [103] to separate heartbeat

and respiratory signals. Considering respiratory and heartbeat components occur in adjacent

components, principal component analysis (PCA) and SSM are applied to reconstruct these

components in References [104] and [105], respectively. Dragomiretskiy et al. [106] proposed

VMD, which is more robust to noise interference compared to the pattern decomposition model.

In References [4, 74, 107], VMD is used to separate respiratory or heartbeat signals.

5.3 Vital Signs Estimation

After obtaining the relatively clean feature sequence, the next step is to estimate the vital signs

based on the feature series to further evaluation of human health status.

5.3.1 HR/RR Estimation. HR and RR estimation is usually based on time domain and frequency

domain information.

From the time domain, HR and RR are considered as the peak number of the feature sequence

within the observation window. In Reference [108], a signal peak-seeking algorithm is used to es-

timate HR and RR. However, since time domain information is sensitive to even small noise, this

simple algorithm identifies invalid peaks as a signal period resulting in inaccurate estimation. Liu

et al. [70] used a threshold to filter out invalid peaks with low amplitude differences between the

peak of waveform and valley. Yamamoto et al. [42] found the phase change of heartbeat may not

keep at the same location (it may appear at adjacent locations), so they used the Viterbi algorithm

to locate peaks that phase change at different locations and prevent losing the heartbeat. In Refer-

ence [109], the Kalman filter was introduced for heart-rate tracking. They used the estimate and

uncertainty further to update and narrow band-pass, aiming at reducing invalid peaks. Actually,

the time-domain algorithm is easier to obtain the inter-beat-interval (IBI) for calculating HRV in-

dicator [74], e.g., root mean square of successive differences (RMSSD), the standard deviation

of all the IBIs (SDRR) and the percentage of successive IBIs that differ by more than 50 ms (pNN50).

From the frequency domain, the accuracy of the RR and HR estimation is dependent on the

length of the observation window and the selection of frequency peak. FFT [54] and continuous
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wavelet transform (CWT) [84, 89] are effective and widely applicable spectral analysis methods.

However, FFT and CWT do not perform well at low SNR due to fake peaks.

To take advantage of both time domain and frequency domain information, Ahmad et al. [68] cal-

culated the confidence coefficient of the respiratory signal spectrum, and the inter-peak distance-

based method was chosen to estimate the vital signs if the confidence coefficient is below a certain

threshold. Wang et al. [92] proposed to first estimate the reference heart rate in the time domain

on the data with the rapidly changing part in. Spectral analysis is then performed, and the final

estimated HR is searched in the frequency neighborhood of the reference heart rate. In addition,

auto-regressive (AR) [86, 90] and cross-correlation [104] methods were also used to estimate HR

and RR.

5.3.2 BP Estimation. Blood pressure can be measured by a sphygmomanometer in clinical

medicine. The sphygmomanometer stops the blood flow in the local artery by inflating the cuff to

increase pressure. At that point, the cuff pressure equals the BP. This method requires an inflated

cuff and is not suitable for continuous detection. Pulse transit time (PTT) [110] or pulse wave

velocity (PWV) [111] is a promising method for the noninvasive and continuous detection of

BP. They provide the opportunity to estimate cuffless arterial BP. PWV is the transit velocity of

blood pulse waves through the arterial system. It is very challenging to measure PWV directly,

while indirect measurement of PWV via PTT is easier to achieve. PTT is the pulse delay between

two known places on the artery and is an indirect parameter measuring PWV. The conventional

method to calculate PTT is using at least two signals generated by the cardiovascular system, for

example, the interval between the R-peak of the ECG signal and the foot of the PPG signal [112].

However, BP cannot be accurately measured from the PTT alone. Guyton et al. [113] demonstrated

the relationship between cardiac output and arterial pressure control. BP is the product of cardiac

output and peripheral resistance. When BP decreases, HR increases in an effort to increase cardiac

output, and the arterial walls contract to increase BP. Inspired by Reference [113], Wang et al. [114]

correlated BP with HR and previous BP and formulate the BP estimation function as:

BPn = a · ln PPT + b · HR + c · BPn−1 + d, (30)

where BPn−1 is the previous BP estimate. The four coefficients (a, b, c, and d) can be calculated by

the least square method.

In non-contact BP detection, researchers try to use radar to estimate PTT. Buxi et al. [115]

used electrical bioimpedance and CW radar to measure PTT and used linear regression method to

estimate systolic BP (SBP).

SBP = PPT · a1 + a2, (31)

where a and b are linear regression coefficients.

In Buxi’s work [115], the contact electrode is still used. Tang et al. [116] proposed an all-radar-

based detection approach. The author designed a single-frequency CW radar that operates concur-

rently with two different modes to estimate PTT without contact. One is SIL CW mode to detect

the wrist pulse wave. The other is the CW mode to detect heartbeat waves. In this work. The peak

time difference (PTD) between the two radar output signals is used to estimate PTT. The author

experimentally demonstrated PTD has a good linear relationship with PTT.

5.4 Scenarios and Challenges of mmWave-based Vital Signs Detection

Although mmWave sensing technology is promising for vital signs detection, there may still be

some limitations and challenges in practical applications. In this subsection, we discuss these

practical scenarios and issues.
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5.4.1 Effects of MmWave Radiation. As mmWave devices are to be widely deployed in the hu-

man living environment, users are most concerned about their safety issues, human exposure

limits, and radiation damage. In fact, mmWave radiation is relatively low-energy, with photon

energies ranging only from 0.1 to 1.2 meV, far short of the 12 eV required to break molecular

bonds [117]. Thus, unlike ionizing radiation such as X-rays or ultraviolet light, which can cause

cancer, mmWave radiation is non-ionizing. And the studies currently being conducted on the ef-

fects of mmWave radiation on the human body are more concerned with the effects of the thermal

effect of the absorption of mmWave energy by body tissues resulting in a rise in temperature.

Studies suggest that there is no significant temperature rise in the skin for longer exposures at low

mmWave human exposure limits (< 1mW /cm2) [118]. Currently, the International Electrotech-

nical Commission (IEC) has developed relevant standards. The IEC standard for mmWave ra-

diation human exposure limit is 0.1mW /cm2 [119]. Adhering to mmWave equipment that meets

this standard effectively mitigates potential safety concerns, ensuring the protection of users in

practical applications.

5.4.2 Relative Position of mmWave Device and Subject. The relative positions of mmWave

devices and targets may cause challenges in vital signs estimation, which include radar cross-

section (RCS) reduction, mmWave attenuation, occlusion by stationary objects, and strong

multipath effects in NLOS scenarios. The most common experimental scenario in current related

work involves subjects sitting on a chair facing a mmWave device placed at a certain height. Iyer

et al. [120] positioned an FMCW radar at approximately 1 meter above the ground to investigate

the impact of subject orientation and distance on vital sign estimation. The experiments reveal

that errors increase when the subject is side-facing the radar due to a smaller RCS. In addition,

the attenuation properties of wave result in an inability to consistently detect vital signs when the

subject is more than 1.5 meters away from the radar, which is consistent with the experimental

results in References [121, 122]. Ren et al. [121] also compared vital sign estimation under three

conditions: subjects wearing only a cotton T-shirt, subjects wearing a T-shirt and a wool sweater,

and subjects wearing a T-shirt, sweater, and polyester jacket. The results showed that the error

rate was less than 3% compared to subjects not wearing clothes. In practical scenarios, subjects

will have the possibility of being occluded in addition to not facing the radar head-on. In this

NLOS scenario, the vital sign signal is very weak and vital sign detection is affected by strong

multipath effects. Li et al. [123] explored the extraction of respiratory signals in a relatively

simple NLOS scenario, i.e., in an L-shaped corridor. Their model considered only one signal

reflection. More complex multipath environment remains to be addressed. In addition to placing

mmWave devices at a certain height above the ground, some studies install mmWave devices on

the ceiling to monitor the vital signs of bedridden patients [53, 124]. This approach effectively

avoids the issue of large vital sign estimation errors caused by object obstruction. However, the

ceiling-mounted mmWave device is easily interfered by the healthcare worker’s body movement

when the healthcare worker approaches the patient’s bedside. To address this interference issue,

Lim et al. [125] mounted mmWave device on the back of the bed. To find the most suitable

observation position with minimal interference from random body movements for drivers in

small vehicles, researchers in Reference [126] compared the performance of 16 different positions

of UWB radar in vehicles. The experiments showed that the rearview mirror was a reliable

position for measuring vital signs. In summary, when deploying mmWave devices, the relative

positions of mmWave devices and targets should be selected according to actual requirements.

Overall, the performance of the sensing algorithm is more effective when mmWave devices are

placed in a position with a clear line of sight, minimal obstructions, and ideally facing the subjects.
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5.4.3 Multi-subject and Random Body Movement. Multi-subject vital signs detection and

randomness of human motion are long-standing unsolved challenges. Multi-subject vital signs

detection imposes higher hardware requirements on mmWave devices to separate targets with

improved distance and angular resolution. And random body motion can severely distort the

radar signal and affect the extraction of cardiac features. Much of the current work claiming

to allow for multi-target vital signs detection focuses on separating multiple stationary targets

sitting in close proximity to each other in the dimensions of distance, azimuth, elevation, and

Doppler frequency, and thus estimating vital signs separately [68, 73, 74, 127]. Such schemes

obviously do not work in real scenarios. This is because they do not take into account user

movement, nor do they take into account the situation where the user enters or leaves the radar

field of view. To track multiple users in the radar field of view, Mercuri et al. [18] tracked users

with Doppler velocities through a point-to-point multiplication of the velocity matrix at the

range matrix. Zhang et al. [128] tracked multiple users using a graph path selection algorithm

on the range-azimuth map. However, they attempt to estimate the target’s vital signs only when

the tracking target remains stationary. This is because when the target is moving, random body

movements cause the vital sign signal to be drowned out. To address the problem of random body

movements of the driver in the cockpit affecting vital sign estimation, Wang et al. [4] designed

a two-step motion compensation algorithm. It is first based on computing a 2D cross-correlation

on a sequence of range-azimuth maps, aligning the sequence of range-azimuth maps to remove

large body displacements, and then further removing subtle motion artifacts using the smoothing

spline method. Zhang et al. [129] used two IR-UWB radars to collect echo data from the chest and

abdomen, respectively. Random body motion effects were mitigated by calculating the correlation

of vital signals decomposed from the two radars. These solutions, while mitigating the effects

of random body motion to some extent, are specific to a single target. Currently, solutions that

can be used in real-life scenarios, i.e., solutions for multi-user vital sign detection without static

constraints, require further research. Combined cameras could be a potential solution. First, the

cameras provide more accurate multi-target localization tracking than mmWave sensors, and

second, through identification, historical vital signs information of the target can be utilized.

5.4.4 Public Datasets. In the field of mmWave-based vital signs detection, most researchers

tend to collect their own small-scale datasets to validate their methods, because their proposed

methods do not require pretraining on a dataset. However, the deep learning-based methods men-

tioned in the later section need to rely on large-scale datasets. Recently, Yoo et al. [130] provided a

dataset from 50 children aged less than 13 years old. This dataset was recorded by the FMCW radar

while the subjects were at rest and provided the reference HR and RR. Shi et al. [131] provided a

223-minute-long dataset recorded by a CW radar. This dataset was collected with subjects lying

flat on their backs, with 11 individuals participating, and provided synchronized acquisition of

ECG signals. These datasets can help researchers to validate the effectiveness of algorithms in the

early design stage, but we still need massive datasets in multiple scenarios to cope with the com-

plexity of real scenarios. We call on researchers to produce public datasets for multiple scenarios,

such as multi-subject scenarios, random motion scenarios, and so on, to benefit the development

of mmWave-based vital sign detection technology.

6 DEEP LEARNING-BASED MVSS

Recent years have witnessed that deep learning is widely applied in wireless sensing due to the

advancements in big data and computing. Deep learning can cope with the potentially massive

noise of wireless signals, break through the limited pattern representation of traditional signal

processing techniques, and extract high-level features from raw data. And by leveraging deep
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Table 4. Summary of Related Research Applying Deep Learning

Status Region of interest Architecture Model input Model output Performance

[134] Static Lower leg CNN Processed phase signal HR and confidence Accuracy of over 90%

[135] Static Chest LSTM I/Q data HRV Relative errors around 5%

[75] Static Chest
CNN Processed phase signal SCG-like waveform Highest correlation of 90%
Unet SCG-like waveform Labeled waveform Median error between 0.26%–1.29%

[93] Static Chest Encoder-decoder 4D measurements ECG-like waveform Median Pearson-Correlation of 90%

[137] Restricted movement Chest VED I/Q data Respiratory waveform Average cosine similarity of 91.62%

[138] Restricted movement Chest
MLP CIR matrix Separated Patterns

Cosine similarity of over 80%
Encoder-decoder Separated Patterns Vital signs waveform

[136] Free movement Full body LSTM Movement power HR, RR Mean error of 5.57 bpm for HR and
3.32 bpm for RR

[59] Free movement Chest LSTM CaSE features ECG-like waveform Mean correlation coefficients of over
90%

learning, the performance of various wireless sensing applications (e.g., gesture recognition [132],

fall detection [133]) has been further enhanced so wireless sensing is becoming a new approach for

perceiving the world. And in the research field of MVSS, deep learning is also widely used in the

aspect of estimating HR, RR, and HRV [75, 134–136], reconstructing waveforms [59, 75, 93, 137,

138], canceling out motion interference [59, 136–138], and so on. We briefly classify the papers

mentioned in this section into three categories based on their ability to handle body movements.

[75, 93, 134, 135] demand that the human subject stationary [137, 138], deliver a solution when

the target is under restricted movement. It is under free movement that Reference [59, 136] make

attempts to detect the subject’s vital signs. In Table 4, we present a comparison of their details.

Zhao et al. [134] proposed mBeats, a convolutional neural network (CNN)-based system that

provided periodic HR measurements. mBeats focuses on the phase variation signals on the user’s

lower leg, which is then filtered and fed to a CNN consisting of three lightweight 1D convolutional

layers and two fully connected layers. It is noteworthy to mention that the CNN predicts not only

the HR but also a confidence interval. Experiments show that the CNN with uncertainty estimation

achieves an accuracy of 93.85% and 93.03% on two different targets, respectively. In Reference [75],

the CNN-assisted template matching method was utilized to extract HR from the phase variation

signals pre-processed by the differentiator filter. The architecture consists of a 1D convolutional

layer that learns a template as its convolutional filter and a Maxpool layer that attempts to find

peaks indicating the number of heartbeats from the output of the previous layer. The authors note

that their method is linear in time and has high accuracy with minimal parameters. Shi et al. [135]

proposed a contactless HRV monitoring system that used long short-term memory (LSTM)

networks with two bidirectional LSTM layers for the heart sound segmentation task. And the

two bidirectional LSTM layers containing 400 hidden cells and 200 hidden cells, respectively, can

capture the bi-directional state of the heart sound signal. Experiments show that the relative error

of extracted HRV indices, such as HF norm, is around 5%.

Although the above-mentioned research works achieve higher robustness and accuracy than

conventional signal processing methods, they still only estimate HR and fail to provide the same

level of detail as clinical gold standard heart recordings. And such heart recordings usually play a

significant role in health monitoring and disease diagnosis. For instance, prolonged P wave dura-

tion on a standard 12-lead EGG is a marker of delayed inter-atrial conduction, which may predict

cardiovascular disease [139]. And the following papers have attempted to reconstruct fine-grained

waveforms to acquire critical physiological events.

RF-SCG [75] utilized a CNN consisting of three 1D convolutional layers to learn the mapping

functions from RF signals to the SCG-like recordings. It is worth mentioning that a large number of

signal processing methods, such as beamforming, FFT, differential filters, and so on, are applied to

ensure that the RF signal input to the CNN is from the location of the heart. Experiments on 21 sub-

jects show that the correlation coefficients of the SCG-like waveforms reconstructed from RF-SCG

are all above 0.72. In addition, the authors use the U-net for automatic labeling of five cardiac events
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Fig. 13. Constellation diagrams of IQ signal [137].

in the reconstructed SCG-like waveforms with a median error between 0.26%–1.29%. Similar to

RF-SCG, in the system proposed by Chen et al. [93], which provides ECG-like waveforms without

contact, numerous algorithms are also used to obtain 4D measurements of the heart as input to

the encoder-decoder-style neural network. Specifically, the encoder is a hybrid CNN-Transformer

architecture that is aimed at exploiting the temporal and spatial features of 4D measurements.

And the decoder is a temporal convolutional network that is used to compute all the ECG mea-

surements. And experiments indicate that the reconstructed ECG-like waveform achieves timing

accuracy of cardiac electrical events with a median error below 14 ms, morphology accuracy with

a median Pearson-Correlation of 90%, and median Root-Mean-Square-Error of 0.081 mv.

It is when the target remains relatively stationary that the aforementioned two research works

are able to reconstruct fine-grained waveforms. But in reality, it is impractical to force a subject

to remain static during monitoring. Therefore, it is imperative to extract vital signs with motion-

robustness to adapt to more scenarios. Zheng et al. [137] visualized IQ signals under different

target states and concluded that traditional signal processing methods (e.g., VMD, EMD) fail to

properly handle the IQ scrambling and fast-time crossing issues of large-scale movements. As

shown in Figure 13, when the human subject is moving, the respiratory vector is no longer as

identifiable and analytical as when the human subject is at rest. Therefore, they resort to deep

learning techniques.

MoRe-Fi [137] utilized a so-called Variational Encoder-Decoder (VED) to reconstruct fine-

grained respiratory waveforms under restricted movement. The VED receives the I/Q data as two

streams and encodes them separately as continuous probability distributions instead of discrete

vector sets to handle out-of-range inputs. Then the resulting latent representations are aligned

and fed to the decoder to recover respiratory waveform by minimizing the reconstruction error.

Experiments show that the average cosine similarity between the recovered and ground truth is

0.9162. Chen et al. [138] attempted to use deep contrastive learning to distinguish between vital

sign reflections and body motion reflections that are mixed in a nonlinear manner. The authors

utilize different comparison strategies depending on the motion patterns. Specifically, for station-

ary motion (e.g., typing and walking on a treadmill), the original time sequences and their random

versions are compared, and for non-stationary motion (e.g., standing up or sitting down abruptly),

distinct time segments of the same original time sequences are compared. After pre-training, the

resulting time sequences are refined and merged using the encoder-decoder module to recover the

vital sign waveforms.

To date, most MVSS systems operate under controlled conditions (i.e., the target is stationary or

motion-limited). For example, Reference [138] requires that the variable range between the radar

and the subject lies within a reasonable range (e.g., 50 cm) and that the human subject remains

within the FoV of radar. The next two papers seem to propose novel methods for isolating motion

artifacts to detect vital signs under free body movement.
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Gong et al. [136] utilized two customized LSTM networks to find sophisticated correlations

between RF signal patterns, motion power, and vital signs (RR and HR). The RR LSTM consists

of two stacked LSTMs: one receiving motion power for motion pattern classification as well

as the other receiving motion patterns and motion power for RR estimation. The HR model

accepts a closed-form movement power as input and outputs real-time HR. To achieve cross-

subjects generalization, Reference [136] incorporates two mechanisms: instant calibration and

adaptive training, for calibrating the error of every single period of movement and long-term

generalization error, respectively. Experiments involving multiple subjects show that the mean

estimation error for HR is 5.57 bpm and for RR is 3.32 bpm. Xu et al. [59] proposed CardiacWave,

a cardiac-mmWave scattering effect (CaSE)-based system that provides contactless ECG-like

waveforms. Compared to most MVSS systems that measure chest displacement, it is less subject

to motion interference. CardiacWave has two main components. The first one is a masking filter

with learning coefficients, which aims to extract case features from frequency shifts to represent

cardiac electrical activity information. The other one is an architecture combining LSTM and an

attention module for extracting integral information from CaSE features and retrieving long-term

cardiac activity information. And experiments indicate that the timing difference of P-waves,

T-waves, and QRS complex is 0.67%, 0.71%, and 0.49%, respectively, and a mean cardiac event

difference is within a delay of 5.3 milliseconds.

7 CONCLUSION

In this survey, we primarily concentrate on vital sign-related content, including human anatomy

and various measurement methods (both contact and non-contact). We then discuss four MVSS

signal models and the signal processing chain for MVSS. Moreover, we highlight the role of deep

learning in the field of MVSS and compare current related studies. Specific applications of MVSS

are also examined.

From our survey, it is evident that radar-based methods for sensing vital signs have garnered

significant attention. However, there are still aspects that can be further explored:

Movement cancellation and multiple targets: Much research has been devoted to refining

the granularity of sensing outcomes for a single, static target. However, in real-life scenarios, there

are often multiple targets with a wide range of random motions. Addressing the challenge of vital

sign monitoring with multi-target motion robustness is an urgent open problem.

Multi-modality: Multimodal techniques ensure that the system functions correctly by utilizing

information from other modalities when one modality fails to provide clear information. Addition-

ally, fusing multimodal information allows one modality to compensate for the shortcomings of

another, resulting in more accurate and robust vital sign estimates. For example, body echoes cap-

tured by mmWave radar can replace RGB imaging as the primary reference information when the

lighting environment is suboptimal or the target is obscured. Moreover, combining blood volume

changes extracted from RGB images with chest displacement extracted from echoes may provide

a better representation of cardiac activity.

Deep learning: Recent studies in the field of MVSS show that deep learning effectively en-

hances radar-based vital sign sensing. However, few studies exploit deep learning’s powerful fea-

ture fusion capabilities to integrate multimodal feature information for a more comprehensive

portrayal of human physiological activity. Additionally, there is a lack of large-scale and anno-

tated public radar datasets in the field of MVSS. Therefore, automatic labeling of MVSS data and

representation learning from unlabeled data will likely become future research trends in this area.

Applications based on MVSS: When fine-grained vital waveforms can be robustly acquired

via radar, it is natural to consider extracting various features for diverse applications. Disease
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diagnosis, biometric authentication, and emotional health are considered three promising

applications in this context.
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