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As automatic speech recognition evolves, deployment of the voice user interface (VUI) has boomingly ex-
panded. Especially since the COVID-19 pandemic, the VUI has gained more attention in online communica-
tion owing to its non-contact property. However, the VUI struggles to be applied in public scenes due to the
degradation of received audio signals caused by various ambient noises. In this article, we propose Wavoice,
the first noise-resistant multi-modal speech recognition system that fuses two distinct voices sensing modal-
ities (i.e., millimeter-wave signals and audio signals from a microphone) together. One key contribution is to
model the inherent correlation between millimeter-wave and audio signals. Based on it, Wavoice facilitates
the real-time noise-resistant voice activity detection and user targeting from multiple speakers. Addition-
ally, we elaborate on two novel modules for multi-modal fusion embedded into the neural network, lead-
ing to accurate speech recognition. Extensive experiments prove the effectiveness of Wavoice under adverse
conditions—that is, the character recognition error rate below 1% in a range of 7 m. In terms of robustness
and accuracy, Wavoice considerably outperforms existing audio-only speech recognition methods with lower
character error and word error rates.
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1 INTRODUCTION

The Voice User Interface (VUI) plays a vital part in modern intelligent applications like smart
homes [52]. A VUI serves as a hands-free and eyes-free human-machine interaction between hu-
mans and Internet of Things devices. With the aid of deep learning and natural language processes,
Automatic Speech Recognition (ASR) allows the VUI to comprehend users’ intentions accu-
rately [93]. Thanks to such a convenient and flexible voice interaction, users can interact with
various Internet of Things devices as they like. Commercial VUI products have earned popular-
ity in recent years, such as smart speakers (e.g., Amazon Echo [4] and Google Home [22]), voice
assistants in smartphones (e.g., Siri [32]), and in-vehicle voice control interactions (e.g., VUIs in
Tesla Model S/X/3/Y [73]). According to a report by analysts, it is forecasted that the number of
VUI-based smart speakers will reach 640 million globally [87] by 2024.

The representative of non-contact interaction (i.e., VUI) has been widely deployed in public
scenes [83]. Today, VUIs tend to branch out into the smart city business [23], which gradually
substitutes traditional contact interactions such as button or touch interactions [58]. Especially
since the COVID-19 pandemic [35], people avoid physical contact with public facilities out of
safety concerns. For instance, VUIs have been used for voice-controlled elevators [70] and ATMs
[88]. Unlike relatively quiet home scenarios, VUIs ought to handle multifarious ambient noise
(e.g., traffic noise, commercial noise, and nearby voices) in public places (e.g., streets, stations, or
parties). However, audio-based ASR techniques using microphone arrays, including traditional
statistics based [25, 89] and advanced learning based [60, 92], require clear audio signals with
high Signal-to-Noise ratios (SNRs). Thus, audio signals in public scenes, drowned in the un-
predictable noise, become challenging to recognize. Moreover, people prefer to wear respiratory
protective face masks [54] to protect themselves from the coronavirus, which degrades speech
quality and further hampers speech recognition accuracy [54]. Those audio-only methods are in-
capable of supporting VUIs in these cases.

To address the preceding difficulties, researchers exploit multi-sensor information fusion for
speech enhancement and recognition. Audio-visual methods [1, 57] integrate lip motion captured
by cameras with noisy voices but are limited by lighting conditions, line-of-sight requirement, or
face masks. Ultrasound-assisted speech enhancement techniques [39, 72] are merely applied into
conditional scenes on account of the extremely short working distance (within 20 cm) and specific
postural requirements.

We turn attention to a Millimeter-Wave (mmWave) radar and leverage it as a supplementary
for speech recognition. Prior research demonstrates that mmWave signals enable voice informa-
tion recovery with incredible ability on resistance to ambient noise and penetration [43–45]. The
mmWave signal is able to capture the vocal vibration by analyzing reflective signals from target
users remotely, even wearing face masks in a noisy environment. Nevertheless, the mmWave
radar is not satisfactory in all respects. The mmWave signal is susceptible to both vocal vibration
and user motion, due to its tiny wavelength (about 4 mm). Its vocal vibration sensing ability
would be worsened by users’ body movement in practice. Motion interference, ignored by prior
work [91], would distort reflected signals that contain vocal information of users. Worse still,
mmWave radars are possible to shake in specific scenarios (e.g., in-vehicle applications). The
mmWave-based application always suffers from such motion interference from users, radars,
or both. Fortunately, voice information recorded from microphones can compensate for the
information loss of radars to some extent. Herein, we consider a complementary collaboration
between mmWave radars and microphones. These two signals from different modalities are
employed together for the sake of one common goal—accurate speech recognition.
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Fig. 1. An application scenario for Wavoice in the case of a smart city. Users can interact with a Wavoice-

powered smart streetlight that provides services including location, navigation, emergency calling, and voice-

controlled traffic lights.

To realize a multi-modal system that combines mmWave and audio signals for speech recogni-
tion in complex scenes, multiple practical challenges need to be addressed: (1) how to fuse different
modality signals to support long-distance VUI applications while mmWave and audio signals
may suffer from interference; (2) how to detect voice activity in an effective and real-time manner,
when the user’s voice is likely to be overlapped by multiple noises; and (3) how to apply this ASR
system in a multi-person scene, where irrelevant conversations may intrude into users’ voice
commands.

We propose Wavoice, a multi-modal speech recognition system for public VUI applications, as
illustrated in Figure 1. This system exploits mmWave radar to detect the vocal vibration of users
in a noisy environment, and a microphone in case of motion interference. Furthermore, it can pen-
etrate through face masks for semantic information extraction with the advantage of mmWave
radars. We thoroughly explore the inherent correlation between mmWave and audio signals to
combine their advantages. For practical applications, we conceive real-time and anti-interference
voice activity detection and user targeting methods based on the frequency-dependent property
between multi-modal signals. We introduce two novel modules into the neural attention mecha-
nism for the ASR-oriented multi-modal fusion. One module is designed to exchange valid char-
acteristics for mutual recalibration and feature enhancement, whereas the other projects separate
information into a joint feature space and adjusts weight coefficients dynamically. Therefore, we in-
tegrate multi-model signals for the semantic feature enhancement to predict the utterance informa-
tion accurately. Compared with audio-only or mmWave-only ASR, Wavoice affords long-distance,
noise-resistant, and motion-robust speech recognition in public applications. We demonstrate its
effectiveness in various adverse scenarios with high recognition accuracy. In particular, it can be
adopted into in-vehicle applications against interferences of different practical motions.

In conclusion, our contributions are as follows:

• We design a multi-modal ASR system named Wavoice for a VUI’s public application. It fuses
mmWave and audio signals to facilitate accurate speech recognition in case of noise and
motion interference under complex conditions.
• We investigate the inherent correlation between mmWave and audio signals with a mathe-

matical model. Accordingly, we propose real-time and anti-interference methods for voice
activity detection and user targeting, respectively.
• We refine the attention-based multi-modal fusion network with cross-modal recalibration. It

supports the robustness of Wavoice and improves its sensing distance. Results show a char-
acter recognition error rate below 1% in a range of 7 m even under unfavorable conditions.
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2 BACKGROUND

In this section, we briefly introduce the mechanism of mmWave sensing, especially in the field of
vocal vibration sensing, and the attention mechanism for information fusion.

2.1 The mmWave Sensing Mechanism

In this study, we choose a COTS Frequency-Modulated Continuous Wave (FMCW) radar as
a vocal vibration sensor in the proposed multi-modal system. A FMCW radar includes transmit
(TX) and receive (RX) radio-frequency antennas that transmit radio-frequency signals with a wave-
length of millimeter range. The chosen FMCW radar operates at 76- to 81-Ghz bandwidth, which
has the ability to sense the physical movement in tiny displacement [11, 44].

Distance Estimation. The TX antenna in the FMCW radar transmits a frequency-modulated
signal continuously, also called chirp signals. After signals are reflected by targeted objects, the RX
antenna will receive the chirp signals, which are a delayed version of the original signal. Immedi-
ately, the mixer will multiply the received chirp and transmitted chirp to obtain the mixed signals.
The mixed signals still include replica time-delayed versions of the transmitted signals. Herein, a
low-pass filter processes on the mixed products to acquire the Intermediate Frequency (IF) sig-
nal. The spectrum of IF signals is capable of revealing multiple tone frequency that is proportional
to the range of each object from the radar. Thus, we can estimate the distance D between the radar
and the detected object with the following calculation:

D =
c fI FTc

2B
, (1)

where the c denotes the speed of light, fI F is the frequency of IF signals, Tc is the duration of a
chirp, and B is the bandwidth of a chirp.

Angle Estimation. However, FMCW radar can efficiently measure the angle of the object with a
horizontal plane. The small distance caused by the Angle of Arrival (AoA) from the object to each
antenna results in a phase difference in the peak in spectrum. To determine the AoA, the multiple
received signals from multiply RX antennas is processed by Fast Fourier Transform (FFT) on
the spatial domain to calculate the phase difference ω. Note that the resolution of estimated angle
depends on the number of antennas on the radar. Thus, we can calculate the AoA by the following
formula:

AoA = arcsin

(
λω

2πl

)
, (2)

where λ denotes the wavelength of chirp signals and l is the distance between the receiving anten-
nas of the radar.

Speech Sensing. Much research has recently emerged to exploit mmWave radar for speech
sensing [10, 26, 40–42, 91], since mmWave signals own significant sensitivity to displacements.
Prior studies can only detect the token speech against noise interference by using mmWave radars
[77–79]. Further research recovers genuine speech signals originating from modulated vocal vibra-
tion in the reflective mmWave signal [10, 26]. Moreover, mmWave radar can be utilized to seize
the vibration feature unique to acoustic organs and pronunciation habits, which can be applied
into non-contact authentication [46]. However, the preceding mmWave-based systems [10, 26, 91]
just have a narrow sensing distance, not more than 2 m. Additionally, all of these systems are
vulnerable to motion interference. The limited sensing range and vulnerability to motion confines
mmWave-assisted applications in the real world, especially public speech recognition.
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2.2 The Attention Mechanism for Fusion

The insight of a multi-modal system is to maximum strengths of each modality to maintain more
significant performance than uni-modal systems, even under adverse conditions such as noise,
motion interference, and long-distance sensing. When users remotely call on ASR-based devices in
a noisy environment, the long-distance propagation would induce the attenuation of audio SNRs,
and significant multipath noise brings in additional noise mask on mmWave signals. The tradi-
tional fusion mechanism like the voting mechanism [62] cannot support such a practical speech
recognition application. The newly risen fusion mechanism called attention may provide a possible
solution dealing with tough scenarios. It has been widely developed in Deep Neural Networks

(DNNs) to improve the learning and representation capacity of networks. Many researchers have
invented various attention modules such as self-attention [76], channel attention [97], and cross-
attention [27], all of which have shown significant success across multiple fields, like natural lan-
guage processing [76] and computer vision tasks [27]. Inspired by research on the attention mech-
anism, we integrate it into classical model architectures. Furthermore, we design two attention-
based modules to comprehensively fuse multiple modalities that are detailed in Section 4.3.

3 CORRELATION MODEL

In this section, we first exploit the correlation between voice signals and reflected mmWave signals
through theoretical analysis. Based on their models, the voice signals coincide with the phase
change of mmWave signals, which motivates us to leverage the components and property for
redevelopments of voice applications.

Human voice basically depends on the vocal fold vibration. The vocal vibration process can be
regarded as a one-degree-of-freedom damping system [13]. We have

mẍ (t ) + rẋ (t ) + kx (t ) = e j (2π fF t+ϕF ), (3)

wherem, r , andk are parameters decided by the vocal fold, and e j (2π fF t+ϕF ) is the negative Coulomb
force with the frequency fF and the initial phase ϕF . As a result, we obtain the vocal fold vibration
velocity x (t ) as follows:

x (t ) = ke j (2π fF t+ϕF+ϕk ),

ẋ (t ) = j2π fFke
j (2π fF t+ϕF+ϕk ) = j2π fFx (t ),

(4)

where k is the amplitude gain and ϕk is the phase lag.
Audio signals record the human voice through microphones. Typically, they are considered as

a compound of series of single-frequency tones [25, 89] looking like

v (t ) =
∑

i

Aisin(2π fit + θi ), (5)

where v (t ) is the human voice, and Ai , fi , and θi are respectively amplitude, frequency, and phase
of the i-th harmonic. Its base-band frequencies are equivalent or close to the speed of vocal fold
vibration [91]. The relationship can be simplified as

v (t ) = H (ẋ (t )) = H (j2π fFx (t )), (6)

where H (·) is the transfer function from the vocal fold vibration velocity ẋ (t ) to human voicev (t ).
The transformation function H (·) represents the process of generating sound by forces derived
from vocal fold vibration. This transformation is not lossless, but the corresponding frequency of
sound is equal to the force. Considering the impact of propagation delay on human voice v (t ),
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Equation (6) can be formulated as follows:

v (t ) = H

(
j2π fFx

(
t +

D

sv

))
, (7)

where D is the distance between the microphone and the target user, and sv is the sound velocity.
Since D � c , the item D

sv
can be ignored.

mmWave-based vocal vibration sensing compares the phase difference of reflected signals for
vibration measures. The reflected mmWave signals r (t ) from the vocal folds is represented as
follows:

r (t ) = e j (2π fI F t+ϕ (t )), (8)

where fI F is the IF signal and ϕ (t ) is the phase of the reflected signal. The displacement of vocal
folds is contained in ϕ (t ) as follows:

ϕ (t ) =
4π fm (t ) (D + x (t ))

c
, (9)

where fm (t ) is the time-variant frequency of the mmWave signal, D is the distance between the
mmWave radar and the target user, and c is the mmWave’s speed. Concerning the time delay
between transmission and reception, Equation (9) can also be rewritten as follows:

ϕ (t ) =
4π fm (t + τ ) (D + x (t + τ ))

c
, (10)

where τ = 2D
c

is the time delay. Whereby τ is close to zero, the τ can be ignored. Since the motion
of target objects or radars, if any, is usually lower than sampling, D can be deemed a constant in
a tiny time interval dt . By differentiating ϕ (t ), we have

Δϕ (t ) = ϕ (t + dt ) − ϕ (t )

=
4π

c
(x (t )d fm (t ) + fm (t )dx (t )) +

4πd fm (t )D

c
,

(11)

where d fm (t ) is the frequency shift of mmWave signals and dx (t ) is the displacement change in

vocal fold. Since 4πd fm (t )D � c , the item 4πdfm (t )D
c

can be ignored. Here, dt and d fm (t ) are con-
stant, determined by the mmWave radar’s sampling rate and frequency variation rate. Therefore,
Δϕ (t ) depends exclusively on x (t ), and we have

Δϕ (t ) =
4π

c
(d fm (t ) + j2π fF fm (t )dt )x (t ). (12)

This indicates that the phase difference of reflected mmWave signals shares the identical frequency
with the vocal fold displacement. In the real measurement, all complex items are performed on their
real parts, and in Equation (12), the item x (t ) is replaced by Re{x (t )} = cos (2π fF t +ϕF +ϕk ). Note
that the phase change only depends on the vocal vibration, since the static information like face
is canceled after differentiating.

The coherence between frequencies of different modal signals reveals the feasibility of their
fusion. Specifically, both v (t ) and Δϕ (t ) originate from the vocal fold displacement. According
to Equations (6) and (12), v (t ) owns components whose frequency overlaps or approaches the
frequency of Δϕ (t ). Considering the high sampling rate of both mmWave radar and microphones,
the corresponding time difference between mmWave Δϕ (t ) and speech signals v (t ) tends to be
zero. The impact of time delay can be ignored when the mmWave signal and microphone sense
voice activity. In this article we entitle Wavoice noise-resistant voice activity detection on the
basis of this frequency-dependent property and train a DNN to fusion multi-modal signals for
long-distance speech recognition.
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Fig. 2. Wavoice, a multi-modal speech recognition system that leverages an mmWave radar and a low-cost

microphone to improve the resistance against noise and motion interference in a complex environment.

4 SYSTEM DESIGN

Wavoice leverages mmWave and audio signals to recognize the speech under complex conditions.
It consists of five modules, as presented in Figure 2.

4.1 Voice Activity Detection

On the basis of the preceding frequency-dependent property, Wavoice employs the coherent de-
modulation composed of a multiplier and a filter. It has been proven to provide a noise-resistant
method to detect voice activities.

Motivation. Real-time voice activity detection is a fundamental step for ASR. Without a proper
detection mechanism, substantial resources would be wasted on dealing with meaningless noise.
However, ambient noise tends to cover human voices with an extremely low SNR in public places.
Face masks in users further blur vocal features. In such scenarios, relying solely on audio-based
voice activity detection can lead to incorrect judgments, rendering the system unresponsive to user
commands [37]. Users have to raise their speaking volume or take off their face masks, but this is
inconvenient. Fortunately, voice activities are recorded by mmWave and audio signals simultane-
ously. We can exploit their coherence to intensify the distinction between noise and voice activities.

Solution. Wavoice draws the collective characteristic between mmWave and audio signals for
accurate judgment in real time through coherent demodulation. Wavoice simultaneously receives
signals of two modalities. These signals are segmented into 3-second frames with a 50% over-
lap between successive frames. We perform min-max scaling on the mmWave and audio signal,
respectively. For collecting the mmWave signal, we perform range FFT on the received chirp sig-
nal to obtain the range information of objects. We leverage the classic detection method named
OS-CFAR [66] to detect the objects (i.e., the FFT bin of the reflective object). The number of
detected objects is decided by the number of people and other objects such as furniture, since
the objects cannot stack together due to the radar’s 4-cm range resolution. Note that the radar
receives the genuine signal corresponding to voice activity and other irrelevant signals. There-
fore, we design the voice activity detection to distinguish the genuine signal. Audio signals are
down-sampled to 16 kHz to save computational resources, and the down-sampled voice signal
v (n) still retains complete human speech information. We obtain the sampling data from the ob-
ject’s FFT bin per chirp signal. Thus, the sampling duration of the preprocessed mmWave signal
is chirp duration. Then we up-sample the preprocessed mmWave signal to 16 kHz by using linear
interpolation.

We obtain the phase ϕ (n) by conducting FFT on the sampled mmWave signal. Then the phase
difference is Δϕ (n) = ϕ (n) − ϕ (n − 1) (n ∈ N+). Inspired by the frequency-dependent property
between Δϕ (n) and v (n), we multiply them, followed a low-pass frequency filter for voice activity
detection. If Δϕ (n) andv (n) share components of the same or similar frequency, we will obtain an
energy peak at a low-frequency band after coherent demodulation [17]. We assume H (·) = 1 here
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Fig. 3. Although audio signals are noisy, the multiplication introduces an additional low-frequency compo-

nent that results in a sharp distinction between noise and noisy speech.

to illustrate this method’s effectiveness as follows:

F(n) = LPF(v (n) ∗ Δϕ (n)) (13)

= LPF
( 4π

c
(d fm (n) + j2π fF fm (n)dt )Re{x (n)}2

)

=
4π

c

(
d fm (n) + j2π

fF fm (n)

Fs

)
,

where F is the residual low-frequency component, LPF(·) is a low-pass frequency filter, Fs is

the mmWave radarâĂŹs sampling rate, and the item 4π
c

(d fm (n) + j2π fF fm (n)
Fs

) is a known low-
frequency value. When the spectral entropy of F is larger than a given threshold, vocal vibration
is recorded simultaneously by Δϕ (n) and v (n), and this indicates that voice activities occur. Even
if noise ruins audio, mmWave signals, or even worse both, the coherent demodulation still works
due to the difference between noises and voice signals in the frequency domain. In a noisy envi-
ronment, Equation (14) is rewritten as follows:

F(n) = LPF((v (n) + nv (n)) ∗ (Δϕ (n) + nϕ (n)))

=
4π

c

(
d fm (n) + j2π

fF fm (n)

Fs

)
,

(14)

where nv (n) and nϕ (n) are the noise on mmWave and audio signals, respectively. High-frequency
items nv (n)Δϕ (n) and nv (n)nϕ (n) are introduced by noise but removed by the filter with little
influence left. Since the duration of chirp signals is quite short (i.e., 260 µs in the experimental
setting), the phase offset in the mmWave chirp duration can be considered constant. The phase
offset can be counteracted when differencing the phase. Therefore, the phase offset has little effect
on the multiplication results.

Detection Assessment. To investigate the effectiveness of the proposed detection module, we
collect corresponding mmWave and audio signals from five subjects. During the collection, we ask
each subject in four kinds of noisy environments (detailed setup in Section 5.1) to remain quiet after
continuously speaking utterances. After extracting the phase difference of mmWave signals, we
generate the low-frequency component F by multiplying the phase difference with the audio signal.
As illustrated in Figure 3, F ranges in the low-frequency band typically within 200 Hz, whereas
the multiplication corresponding to the non-speech segment cannot be seen as anything useful.
Vividly, the non-speech and speech segment is explicitly divided after the coherent demodulation.
In addition, the varying spectrogram of mmWave signals in Figure 3 supports mmWave signals’
ability of the vocal vibration seizing. Empirically, the cut-off frequency of a low-pass filter is set to
300 Hz and the threshold of spectral entropy is set to 0.835. By comparing the spectral entropy of F

with the given experiential threshold, we can detect voice activity with an accuracy of 97.12%. On
the contrary, the voice activity detection based on individual audio or mmWave signals only has
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56.48% and 88.92%, respectively. Additionally, the whole process is finished within 50 ms. Wavoice

manages in real-time voice activity detection against various noise interference.

4.2 User Targeting

Speeches from surrounding non-target individuals may overlap users’ commands. Wavoice

proposes a targeting mechanism to derive vocal commands of target objectives against such
interference.

Motivation. In a multi-person scenario, surrounding speeches would color the recognition re-
sults of ASR. These voice noises are mingled with valid vocal commands, or even cover them up
in audio signals recorded by microphones due to the mask effect [17]. The audio-only ASR hardly
distinguishes the target user who speaks the wake-up word for the voice interaction from others.

Solution. In Wavoice, we propose a user targeting mechanism. It detects the predeter-
mined wake-up word by successively comparing each low-frequency component by multiplying
mmWave signals with audio signals after voice activity detection. Notwithstanding mmWave sig-
nals sensing wake-up words, it is susceptible to motion interference and other multipath noise.
In contrast, Wavoice can precisely target the user’s command based on the correlation between
mmWave and speech signals. Once finding the wake-up word, Wavoice separates its reflected
mmWave signals and ignores other multipath signals from ambient people. It targets this objective
and waits for subsequent commands.

The radar receives multiple reflected signals from nearby people, whereas the microphone
records the speech mixed with other persons’ voices. Multiple reflected mmWave signals can
be formulated as r1 (n), r2 (n), ri (n), ..., ru (n), rm (n), where the subscript m is the number of
received mmWave signals decided by the number of person in the sensing ranges after voice
activity detection, ri (n) is the mmWave signal of the i-th person, and ru (n) is the mmWave
signal caused by the wake-up word from a user. We extract the corresponding difference of phase
Δϕ1 (n),Δϕ2 (n),Δϕi (n), ...,Δϕu (n),Δϕm (n) from all reflected signals. We repeat the preceding
coherent demodulation between each mmWave signal and audio signals. Non-vocal items are
ignored.

Afterward, we leverage a One-Class Support Vector Machine (OC-SVM) to distinguish wake-
up words from residual voice-related items. However, throwing the unprocessed multiplication
production into the OC-SVM is easy to increase the risk of model overfitting substantially. Instead,
we extract the Linear Predictive Coding (LPC) as input to the OC-SVM as follows:

Fi (n) = −
p∑

k=1

ak
i Fi (n − k ) + εv (n), (15)

where p is the order of the linear prediction filter, εv (n) is residual prediction error, and the set of
ak

i is the LPC. Benefiting from this property, we train the OC-SVM with LPC features to identify
wake-up words and target users. Similar to the preceding analysis on noise cancellation, the motion
influence on mmWave signals is suppressed. The LPC feature maintains rich acoustic presentation
with low computation cost.

4.3 Signal Pre-Emphasis

After undergoing the preceding two modules, the received mmWave and speech signal are prone
to artificial distortion caused by nonlinear signal processing.

Motivation. In the signal flow of Wavoice, the input signal is inevitably overlaid by artificial
distortion when it is executed by nonlinear signal processing [19, 56]. These common artificial
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ALGORITHM 1: Signal Pre-Emphasis

Require:

The sample of speech signals or mmWave signals x .
Ensure:

The output signals Y .
Stage 1: Signal Transformation

1: Compute spectrum frames from x by running discrete Fourier transform;
2: Compute the speech-related s ( f ,τ ) and non-speech segments n( f ,τ ) in spectrum frames by

running a voice activity detector, where f and τ represent the frequency subband and frame
index, respectively;
Stage 2: Iterative Spectral Subtraction

3: Calculate the energy of non-speech segments σ ;
4: for each f ,τ in speech segment do

5: E ( f ,τ ) = 1
2K

∑f +K

i=f −K
|n(i,τ ) |2,K = 3;

6: if |s ( f ,τ ) |2 > βE ( f ,τ ), β = 0.7 then

7: y ( f ,τ ) =
√
|s ( f ,τ ) |2 + βE ( f ,τ )e jarд (s (f ,τ )) ;

8: else

9: y ( f ,τ ) = ηs ( f ,τ ), η = 0.8;
10: end if

11: if σ < 0.04 ∗∑f

∑
τ |s ( f ,τ ) |2 then

12: break;
13: else

14: recalculate the energy of non-speech segments σ ;
15: end if

16: end for

17: Y = IDFT(y)
18: return Y ;

disturbances degrade the quality of signals, especially for more sophisticated signal processing
systems. To address the artificial distortion problem, infinitely many studies on the analysis of ar-
tificial distortion generation are proposed to mitigate it. Unfortunately, such conventional methods
ignore controlling and reducing artificial noise generation during the ongoing mitigation.

Solution. To reduce the artificial noise and simultaneously minimize new noise generation,
Wavoice introduces the signal pre-emphasis algorithm to deal with mmWave and speech signals
after being processed by two successive modules. The signal pre-emphasis algorithm utilizes spec-
tral subtraction to efficiently enhance the quality of signals and reduce artificial noise with low
computation complexity. The proposed algorithm estimates the noise energy and then iteratively
performs spectral subtraction [53], leading to minimum noise introduced into denoised signals in
each iteration. Concretely, the noise-to-signal ratio will be calculated as the threshold for spectral
subtraction in each iteration. If the energy of signal frames is larger than the threshold, it will be
suppressed so that the noise-to-signal ratio will become smaller and smaller with iterative calcu-
lations. The overall signal pre-emphasis algorithm is shown in Algorithm 1. First, the algorithm
transforms the input signal (i.e., mmWave signals or speech signals) into the spectrum frames by
using discrete Fourier transform. Afterward, we can separate the speech-related and non-speech
segments in spectrum frames through a voice activity detector [69]. The speech-related segment
is adaptively subtracted by neighboring noise energy during iterative spectrum subtraction. This
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is because iterative spectral subtraction can restrain the noise generation and gradually eliminate
artificial noise.

4.4 Fusion Network

The fusion network consists of Residual Blocks with ECA (ResECAs), the Recalibration

Module (RM), and the Projection Module (PM) for multi-modal signals fusion, as shown in
Figure 2. The fusion network refines characteristics and fuses features from different modalities to
learn a joint representation from multiple domains. The extracted log-mel filter bank coefficients
as network inputs follow into three successive stacked ResECAs. After that, the RM exchanges
valid inherent features for mutual recalibration and characteristic enhancement, with recali-
brated features flowing into two successive stacked ResECAs. Last, the PM projects respective
information into a joint feature space and adjusts weight coefficients dynamically.

4.4.1 Log-Mel Filter Bank Coefficients. We extract log-mel filter bank coefficients as network
inputs from audio signals and residual voice-related mmWave signals, respectively. In detail, we
first apply a high-pass filter to the preprocessed audio signal. After filtering, we perform the short-
time Fourier transform to measure the time and frequency domain information. Short-time Fourier
transform segments the audio signal into frames of 25 ms, with an overlap of 10 ms between suc-
cessive frames. During segmentation, we apply a Hamming window function to frames to reduce
spectral leakage. Then, the Fourier-transformed audio signal passes through a set of band-pass
triangular filters known as mel filter banks. Consequently, we calculate the logarithmically com-
pressed filter-output energy as the log-mel filter bank coefficient. The number of coefficients is
equivalent to the number of filters. In this work, the filter bank comprises 40 filters covering the
frequency band within 8 kHz.

4.4.2 ResECA. We construct two branches of ResECAs [65] to integrate the features of two
modalities. An ECA block is an attention-based block that is made up of convolution layers, aiming
to model interdependencies among channels of convolutional features. The ECA applies Global

Average Pooling (GAP) [28] to learn contextual information in all receptive fields of networks
instead of the limited local field like traditional convolutional layers. Based on information in all
channels, the ECA generates the channel attention to enable the network to focus on the more im-
portant region. Suppose the output of one convolution layer is X = [x1,x2, · · · ,xc ] , X ∈ RH×W ×C ,
where H ,W , andC are width, height, and channel dimensions, and xc refers to the produced chan-
nel feature of the c-th filter in the convolution layer. Then, GAP is applied to model channel-wise
features Z = [z1, z2, · · · , zc ] , Z ∈ R1×1×C , where the c-th element of Z is obtained as follows:

zc = GAP(xc ) =
1

H ×W

H∑
i=1

W∑
j=1

xc (i, j ). (16)

The channel-wise feature Z contains statistical information of all channels. Then we calculate the
attention feature:

A = σ (C1Dk (Z )), (17)

where A = [a1,a2, . . . ,ac ] , A ∈ R1×1×C , σ is a sigmoid activation function, and C1Dk represents
1D convolution with kernel sizek . The final output of the ECA block ˜X is obtained by channel-wise
multiplication between X and A:

˜X = A � X , (18)

where � indicates scalar multiplication. The attention feature A contains dynamic channel infor-
mation that is continually optimized in the iteration. We concatenate a typical residual block and
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an ECA block to construct a ResECA as a basic module in the network. It can be formulated as
follows:

Y = C (ECA(C (X ,WC )),WC ) + X , (19)

where the function C (∗,WC ) represents multiple convolution layers to capture features, Y denotes
the output of the ResECA, and ECA(·) represents the ECA block. The operation C +X represents
a shortcut connection. The output from multiple successive convolution layers flows into the ECA
block. After computing results through the attention procedure in ECA, a shortcut connection
adds the residual block’s input and the result of the ECA block to attain the final output of the
ResECA.

4.4.3 Recalibration Module. A devised Recalibration Module (RM) is embedded into the fu-
sion network to integrate multi-modal features from different subnetworks for multi-modal recal-
ibration. In the following, we first describe the aim of the RM and then introduce the mechanism
of the RM.

Motivation. Multi-modal recalibration is the process of combining and complementing relevant
information among different modalities, leading to the performance of multi-modal fusion over
using only one modality. In traditional networks, features of different modalities are processed
in a separate branch composed of several ResECAs. However, stacked ResECAs only provide uni-
modal features rather than multi-modal features. Yet, such a parallel-branch structure ignores the
inherent correlation between mmWave and audio signals. We need to establish the interaction and
collaboration of features of two modalities: mmWave and speech. More specifically, if the speech
feature suffers interference and attenuation, the mmWave feature is required to guide the network
framework to capture underlying representation and supply the knowledge of vocal vibration to
the speech. Considering the impact of multipath noise and body motion on mmWave signals, the
speech feature is obliged to recalibrate mmWave features.

Solution. We design a novel attention-based module, the RM, as an intermediate module to
integrate features of two modalities. Its structure is illustrated in Figure 4. It is inserted behind
the third ResECA so that features of two modalities from each branch flow into the RM for mutual
recalibration. We assume thatXW ∈ RH×W ×C andXS are two intermediate feature maps from their
own stream. The subscriptsW and S individually represent the mmWave and speech features. The
channel attention maps YW and YS are

YW = σ (WW ReLU(GAP(XW ))), YW ∈ R1×1×C , (20)

YS = σ (WS ReLU(GAP(XS ))), YS ∈ R1×1×C , (21)

where ReLU is a Rectified Linear Unit (ReLU) function andW indicates a learnable parameter
matrix. Each stream of the channel feature maps is considered as a feature detector and filter. We
implement mutual feature recalibration as follows:

˜XW = YS � XW + XW , ˜XW ∈ RH×W ×C , (22)

˜XS = YW � XS + XS , ˜XS ∈ RH×W ×C , (23)

where ˜XW and ˜XS are final outputs of the RM. Therefore, we obtain the multi-modal features.
Aggregating the original feature map guarantees that the final output stores enough identical
knowledge. The produced multi-modal features embedded in original uni-modal features will sup-
ply meaningful contexts and suppress useless ones to achieve recalibration. The RM can be flex-
ibly placed at different levels in networks to integrate hierarchical features with different spatial
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Fig. 4. Architecture of the RM. The RM recalibrates

features by combining original features with those

from the other modality.

Fig. 5. Architecture of the PM. The PM constructs

the similarity matrix based on features of two flat-

tened modalities.

dimensions. Here, we place one RM in the middle to fuse mid-level features. It empirically produces
comprehensive high-level features through joint recalibration [65].

4.4.4 Projection Module. The PM maps features of two modalities into a joint feature space. It
adaptively selects and strengthens useful information from two isolated feature spaces and weak-
ens irrelevant interference simultaneously.

Motivation. Due to the difference of multi-modal signals, the DNN cannot fuse these signals
and transform them into semantic information directly. Traditional methods [60, 92] concatenate
multiple modalities from different streams directly. They ignore the dynamic distribution of the
weight across multi-modal features. Instead, the joint feature [51] using typical methods focuses
on all multi-modal features equally, which requires a large amount of training data to enable the
network to fully leverage the benefits of multi-modal features.

Solution. Inspired by co-attention [51], we create another novel attention-based module to
project multi-modal features into a joint feature space. This module, the PM, aims to adaptively em-
phasize more important features and suppress less important ones in all elements of multi-modal
features. Its structure is illustrated in Figure 5. The PM constructs the similarity matrix of features
of two modalities to measure the correlation between each element of speech and each element
of the mmWave. With the similarity matrix, we can respectively map each modality into another
modality space. It induces high attention weights for the more distinct element in both modal
spaces.

Given two feature maps M ∈ RH×W ×C and V ∈ RH×W ×C from their own stream, let M denote
the mmWave feature map from the corresponding branch, and letV denote the speech feature map.
We first have to flatten M and V into 2D tensors with height C and width W × H. We estimate
the correlations between M ∈ RC×HW andV ∈ RC×HW by calculating the similarity matrix S . The
similarity matrix between M and V is defined as follows:

S = MTWmvV , S ∈ RHW ×HW , (24)

where Wmv is a learnable weight matrix. Each column mi in the flattened matrix M represents
a feature vector of the C dimension at position i ∈ [1, 2, . . . ,HW ]. Each entry of S reveals the
correlations between the corresponding column ofM andV . We perform a row-wise normalization
to produce SV with a softmax function and a column-wise normalization to produce SM with a
softmax function:

SM = softmax(S ), SM ∈ RHW ×HW , (25)

SV = softmax(ST), SV ∈ RHW ×HW . (26)
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The similarity matrix SM transfers mmWave feature space into speech feature space (vice versa
for SV ). And we have

CM = V ⊗ SM , CM ∈ RC×HW , (27)

where ⊗ denotes matrix multiplication. Similarly, for the inputV , we compute attention contexts of
the speech feature based on every element of the mmWave, which isCV = M ⊗SV . To alleviate the
underlying irrelevant interferences, we had better restrict and weigh the knowledge from features
of two modalities rather than cope with all knowledge equally. Therefore, the final fusion result Z
is formulated as follows:

Z =WZ {σ (CM ) ·M + σ (CV ) ·V }, Z ∈ RC×HW , (28)

where · denotes the Hadamard product andWZ is a learnable parameter matrix. The Z that repre-
sents features of two modalities selectively integrates informative information. The fine-grained
element in Z associated with vocal vibration and acoustic characteristics occupies a dominant
position. Eventually, the fusion result is fed into the semantic extraction to identify the speech
contents.

4.5 Semantic Extraction

We utilize the typical speech-to-text translation system [80, 93] to construct the semantic extrac-
tion architecture. We choose Listen, Attend, and Spell (LAS) [8], a widely used end-to-end deep
learning approach because of its excellent performance on small-scale training data. It does not
rely on any assumptions about the probability distribution of character sequences [63].

LAS is composed of two components: an encoder called listener and a decoder called speller

[8]. The listener is used to map the acoustic feature into the hidden feature through the Pyra-

midal Bidirectional Long Short-Term Memory (pBLSTM). Each successive pBLSTM layer
reduces the feature in half before feeding it to the next layer. The speller, a stacked recurrent
neural network, computes the probability of output character sequences. It applies a multi-head
attention mechanism to generate the context vector. Context vectors, distribution of characters,
and decode states are all fed into the recurrent neural networks for the decoder state. The poste-
rior distribution is computed based on the decoder state and context vector via a softmax function
[63]. LAS is trained to maximize the logarithmic posterior probability of the correct character
sequence.

Here, we stack two pBLSTM layers as the listener, whereas the speller contains two LSTM layers
and an output softmax layer. With the aid of LAS, Wavoice extracts the semantic information from
the joint features.

5 EVALUATION

We implement the prototype of Wavoice using off-the-shelf devices. We conduct a comprehensive
evaluation on the recognition accuracy and robustness of our system.

5.1 Setup

Hardware. The proposed system is implemented on a low-cost microphone [18], a COTS
IWR1642BOOST radar [33] equipped with a data collection board DCA1000EVM [74], and a laptop,
as shown in Figure 6. The IWR1642BOOST equipped with DCA1000EVM is a 77-GHz mmWave
radar that transmits FMCW continuously to measure range as well as angle. The mmWave radar
has two transmit antennas and four receive antennas. Our commercial radar has a wide enough
sensing range: it has an azimuth field of view of 120 degrees, an azimuth resolution of 15 degrees,
and a high-resolution elevation view of 30 degrees. The radar transmits a 4-GHz-wide chirp signal
starting from 77 GHz to 81 GHz, which yields high-ranging resolution. We configure the radar
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Fig. 6. Experimental setup. An mmWave radar and a microphone receive signals from subjects sitting 7 m

away.

Table 1. Configuration of the mmWave Radar

Parameter Value Parameter Value
No. of frames 320 Frame periodicity 50 ms
No. of chirp 190 Frequency slope 15 MHz/µs
Idle time 10 µs Ramp end time 250 µs

in our experiments to transmit a chirp with 260 µs cycle time. The received channel has a 5 Msps
ADC sampling rate, and each received chirp contains 1024 sample data. The detailed configuration
of our FMCW radar is shown in Table 1. The configuration enables our radar to have the range
resolution of 3.75 cm and displacement resolution around 300 µm.

Software. We connect and control the radar with mmWaveStudio GUI [34] running in the laptop.
The mmWaveStudio GUI configures the radar parameters as described previously. We write an APP
in MATLAB to control the microphone and mmWaveStudio GUI to capture the mmWave and audio
signal simultaneously. The source codes are released at https://github.com/TitaniumLiu/Wavoice.

Dataset. In our experiments, we choose 40 voice commands from ok-google.io [20] and Google
speech commands [85] that involve common voice commands words in all aspects. All 20 par-
ticipants, including 10 males and 10 females, whose ages range from 16 to 47 years, speak all
commands in their normal speech speed and volume, typically 65 dB-SPL (sound pressure level)
[67]. We place the mmWave radar and microphone at a distance of 7 m from the subject. We align
the mmWave radar to the subject and guarantee that the mouth and neck of subjects are within
the sensing range of the mmWave radar since our commercial radar has a wide enough sensing
range. The participants are asked to say all voice commands 40 times in a controlled laboratory
environment. In all, we collect 32,000 pairs of samples (i.e., the mmWave and audio signal) for
each situation. We randomly choose the sample from 2 males and 2 females as the test dataset.
We thereby have 25,600 training data and 6,400 testing data. During the experiment, participants
are required to wear various masks, undergo diverse noise, sit at different angles and distances
from the mmWave radar, and perform several body motions. The experimental environments in-
clude office room, roadside, cafe, and in-vehicle scenes. Note that we explicitly tell the participants
about the purpose of our experiments. Our research is approved by an institutional review board
(ZJU2021-6).

5.2 Metrics and Baseline

We measure Wavoice’s speech recognition accuracy from the perspectives of both character and
word with the two following metrics. We select DeepSpeech2 (DS2) [5] as our baseline system
for performance comparison.
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Character Error Rate. The ASR system outputs a word sequence made of characters, similar
but not equal to reference transcriptions. Several characters need to be substituted, deleted, and
inserted. CER is computed with the minimum number of operations [94] as follows:

CER =
Ic + Sc + Dc

Nc
, (29)

where Nc represents the total number of characters and the minimum number of character in-
sertions Ic , substitutions Sc , and deletions Dc required to transform the output into the reference
transcription. Lower CER indicates better speech performance of the ASR system.

Word Error Rate. Word Error Rate (WER) is the standard metric to evaluate the performance
of ASR systems. It computes the errors from the word level by comparing output word sequences
with reference transcriptions as follows:

WER =
Iw + Sw + Dw

Nw
, (30)

where Nw is the number of total words, and Iw , Sw , and Dw represent the number of insertions,
substitutions, and deletions. The number of errors is the sum of substitutions, deletions, and inser-
tions. Lower WER certainly indicates that the ASR of the system is more accurate in recognizing
speech.

Baseline. We select DS2 [5], a state-of-the-art ASR for deployment into the production setting,
as the baseline system to confirm Wavoice’s effectiveness. DS2, initially based on Baidu AI research
labs, is one of the mainstreams that has changed the structure of traditional ASR. The network con-
figuration and training parameter of DS2 are consistent with the official article [5]. We implement
DS2 under three different trial conditions: (1) we directly test the well pre-trained DS2 model on
our collected speech datasets, (2) we continually train the pre-trained model on our datasets and
then test it, and (3) we train and test a DS2 model totally on our datasets. We observe DS2’s CERs
respectively are 90.60%, 71.22%, and 34.46%. Therefore, we construct the baseline results by imple-
menting DS2 under the third condition.

5.3 Overall Performance

We evaluate the overall performance of Wavoice when users are in different states. Two in-lab
experiments are conducted to assess whether our multi-modal system can show excellent speech
recognition capacity over the standard ASR system. The factors of ambient noise and multi-person
are respectively considered in the two experiments.

5.3.1 Ambient Noise. Environmental noise reduces the quality of users’ voice commands when
they are in interaction with voice-controlled devices. We conduct evaluations under four types
of noise conditions—chatting, traffic, music, and waterflow—which widely happen in real-world
situations. We request participants to speak voice commands piece by piece. Meanwhile, four loud-
speakers simultaneously play noise recording with 60 dB-SPL at a distance of 40 cm from the mi-
crophone in Wavoice. The four loudspeakers are placed evenly around the microphone, spaced
approximately 90 degrees apart. The speech recognition results of Wavoice and DS2 under differ-
ent noise interference are shown in Figure 7. The speech recognition inaccuracy of DS2 is the
average WER above 40% and the average CER above 20%. Furthermore, DS2 performs worse in
noisy environments with a human voice than in white noise environments. DS2 presents poor
speech recognition capability in noisy scenes, since the semantic information of received speech
signals is explicitly degraded by background noise. This is because audio-only systems like DS2
are vulnerable to unstable and random noise interference. On the contrary, Wavoice is proved to
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Fig. 7. Performance of Wavoice and DS2 under vari-

ous ambient noises.

Fig. 8. Performance of Wavoice under various SNRs

of audio signals.

own superior speech recognition ability with the average CER within 1% and the average WER
about 2.5%. Additionally, faced with arbitrarily complex noise conditions, Wavoice maintains sta-
ble performance with high accuracy. Even in the worst case (i.e., under traffic noise), Wavoice still
keeps CER below 1.5% and WER at about 3%. We speculate that supplementary knowledge from
the mmWave modality makes up for the information loss of the voice modality. Based on the pre-
ceding comparisons and observations, it is confirmed that Wavoice is a noise-resistant multi-modal
system integrating mmWave and speech signals.

To comprehensively investigate the ability of Wavoice as received SNRs decrease, we further
carry on a new experiment. We modify the volume of four loudspeakers to gradually adjust the SNR
of noise sources from –20 dB to 5 dB. Figure 8 presents the variation tendency of Wavoice’s perfor-
mance. With the SNRs decreasing, the CER of Wavoice is rising slowly and finally becomes stable.
Concretely, the CER increases a little but still maintains at lower than 1% when SNRs are higher
than –10 dB. When the SNRs are above 0 dB, it appears that there is a small fluctuation slightly
around 0%. It is proven that Wavoice can refine and fuse semantic knowledge from mmWave and
speech signals to realize noise-resistant multi-modal speech recognition. It is observed that the
CER of Wavoice tends to become steady as SNRs are under –15 dB. It is reasonable to infer that
acoustic information in speech modality disappears when SNRs are extremely low, resulting in
the comprehensive convergence of system performance. Under such situations, the speech recog-
nition ability of the multi-modal system completely depends on the unaffected modality (i.e., the
mmWave modality). In brief, the designed Wavoice owns a stable and noise-resistant speech recog-
nition capability by sufficiently leveraging mmWave and speech modalities.

5.3.2 Multi-Person Scene. It is commonly seen that a voice-controlled device is surrounded by
several people when users speak to it. The radar in the system inescapably receives multiple sig-
nals from nearby people, even worse when ambient people also make utterances. To prove the
effectiveness of the proposed user targeting module, we further carry on the experiment where
users are in multi-person scenes. Each of five participants (three female and two male) is asked to
take turns as the target, whereas the other four subjects walk around the user who speaks com-
mands and speak freely at a volume of 40 to 65 dB. The SNR of the signal received by the system
ranges from –13 dB to –10 dB. Almost no one stands between the user and the system.

Other than uttering voice commands, each user is required to speak the wake-up word 30 times
for pre-training the classifier in the user targeting module and 10 times for trial. We set the wake-
up word to “Wavoice” in this experiment. We finally collect a total of 200 positive samples (i.e.,
mmWave and speech signals related to the wake-up word) and 8,000 negative samples related to
other utterances. After data collection, we extract LPC features from the collected samples and
then leverage the sample to pre-train and examine the user targeting module. According to exper-
imental testing results, we calculate the ROC (receiver operating characteristic curve as presented
in Figure 9(a). It is observed that the user targeting module can verify the genuine samples from
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Fig. 9. Performance in a multi-person scene.

users with a 98.8% true positive rate and less than a 1.1% false positive rate. The equal error rate
of the module is merely 0.99%, which further verifies its usefulness in multi-person scenes. Addi-
tionally, we investigate the effectiveness of speech recognition when users are encircled by other
people. Figure 9(b) shows the CER of recognized utterances among five subjects. By averaging
the CER of five subjects, we can obtain an overall speech recognition error rate of 1.2%. There is
no significant difference between the five individuals, which further demonstrates that Wavoice is
highly robust against interference from ambient people.

5.4 Performance Comparison

In this section, we carry out the ablation study to quantify the fusion of two modalities signals
and our proposed fusion methods. In comparison, we comprehensively validate our approach by
ablating specific components:

• Speech-only, where no mmWave is fused in our proposed network. We clip off the subnet-
work of speech in our fusion network.
• mmWave-only, where no speech is fused in our proposed network. We clip off the subnet-

work of mmWave in our fusion network.
• Voting, where the result is generated by voting [62] between two outputs from the preced-

ing two modified networks: Speech-only and mmWave-only. The weight coefficient of rec-
ognized texts from the two networks will be updated during the training iteration of the
majority voting. The final result is decided by the text that has higher confidence.
• W/O Fusion, where no proposed fusion module is performed. The two subnetworks of our

fusion network still receive mmWave and audio signals separately. Then, features of two
modalities are concatenated and fed into the semantic extraction.
• W/O ResECA, where no ResECA is performed. We replace ResECAs with classic residual

blocks.
• W/O RM, where no RM is performed. The two subnetworks receive mmWave and audio

signals separately. At last, the PM receives the two individual features.
• W/O PM, where no PM is performed. The RM still recalibrates the two features.

Moreover, except for DS2, we compare our model with another state-of-the-art speech recognition
network: Wav2Letter [64]. Notably, Wav2Letter, a structured-output learning approach based on a
variant of CTC, has an outstanding performance on noisy speech [64]. All of the models are fairly
and fully pre-trained on our collected datasets and then validated on the same testing setup. The
results of comparison are shown in Table 2.

As can be seen from Table 2, audio-only methods (i.e., Speech-only, DS2, and Wav2Letter) have
poor speech recognition with high CERs and WERs, especially in dealing with noisy speech. Thus,
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Table 2. Performance Comparison Among Speech Recognition

Methods Under Different Conditions

Method
Noise Mask

CER (%) WER (%) CER (%) WER (%)
Speech-only 45.18 73.24 8.12 29.66
mmWave-only 10.25 40.76 9.46 33.40
Voting [62] 10.78 48.20 5.37 20.21
W/O Fusion 12.71 35.38 6.43 29.20
DS2 [5] 41.12 72.70 7.13 30.32
Wav2Letter [64] 22.17 46.28 4.72 12.23
W/O ResECA 2.43 4.41 1.78 3.35
W/O RM 4.53 8.82 4.21 9.24
W/O PM 4.08 7.65 3.16 5.882
Wavoice 0.69 1.72 0.76 1.65

we speculate that unpredictable ambient noise impedes the performance of audio-only methods.
The mmWave-only method struggles in providing reliable results in motion cases, attributed to its
sensibility to varying multipath noise and relatively coarse-grained perception. As for the infor-
mation fusion method, Voting and W/O Fusion yield slightly better results over the baseline with
merely a 10.78% CER and a 12.71% CER in noise, respectively. This comparison verifies that ignor-
ing the correlation and collaboration between mmWave and audio signals cannot comprehensively
exploit different modalities to achieve utmost performance in speech recognition. Conversely, the
proposed fusion modules significantly improve W/O Fusion by over 12% and 5% in the CER under
different cases. Our system with fusion modules is superior to Voting by 10% and 4% in terms of the
CER in two different environments, respectively. Additionally, Wavoice outperforms WaveEar [91],
whose WER is mostly more than 4%, especially under motion interference. Furthermore, we carry
on an ablation study to investigate the impact of different proposed modules in the fusion network.
It is observed from comparison results that each designed module plays a vital role in speech recog-
nition abilities of the system. To sum up, our system equipped with fusion modules is superior to
the methods mentioned earlier. These comparison experiments indicate that our proposed fusion
modules adequately exploit the correlation between two modality signals.

5.5 Robustness Analysis

We further analyze the robustness of Wavoice under the influence of different distance and orien-
tation, and body motion. Note that the sensing distance of the radar and microphone is still 7 m
in the body motion circumstances.

5.5.1 Impact of Distance and Orientation. We investigate the usability of WavoID when users
are at different distances and orientations from it. We thereby carry on these experiments where
the mmWave radar and microphone are placed at 1- to 10-m distances and –60-degree to 60-degree
orientations to users. Figure 10 displays the distribution of speech recognition ability over users’
location. It can be seen that Wavoice can maintain extremely low CER within an 8-m sensing range
from any orientations. When the sensing range is larger than 8 mm, the CER of Wavoice slightly
increases with the range increasing. This is because the energy of speech signals gradually de-
cays as the distance increases, leading to the low quality of recorded speech by the microphone.
Whereby the supplementary information from the mmWave modality makes up for the informa-
tion loss caused by distance attenuation, the mmWave-voice system still maintains significant
speech recognition performance. Additionally, the efficiency of Wavoice shows relatively stable
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Fig. 10. Performance centered by Wavoice. Fig. 11. Performance under body motion influence.

Table 3. Models of Involved Masks

No. Type No. Type
1 Disposable medical mask 4 Scarf + N95 mask
2 Scarf 5 Gas mask
3 N95 respirator mask 6 Anti-dust mask

performance around all orientations. We speculate that the omnidirectional speech signal from
the microphone is fused into the system for recalibrating and enhancing mmWave features, allevi-
ating the limited orientation of mmWave sensing. To sum up, Wavoice can provide flexible speech
recognition applications even if users are in remote locations.

5.5.2 Impact of Body Motion. The user is unlikely to keep still in front of smart speakers. Hence,
we conduct this experiment to show how well Wavoice performs when the user is in body motion.
Five subjects are requested to speak commands and perform body motions simultaneously. The
body motions include making telephone calls, typing on phones, shaking arms, and marching on
the spot. The corresponding results of five subjects across different body motions are shown in
Figure 11. The average CER of calling and typing on a smartphone is 0.33% and 0.37%, respectively.
The CERs of our system show a slight increase compared to those in still conditions, but they re-
main below 1%. When users are in motion, such as walking, the directly extracted phase difference
from mmWave radars tend to be polluted with motion interference. Whereas acoustic information
containing semantic contents is fused into the system, the vocal vibration masked by interference
can be mined and enhanced. Therefore, the motion interference has a limited influence on the
system.

5.6 Case Study

In realistic scenes, interactions between users and Wavoice are likely to be impeded by obstacles.
We conduct three case studies where face masks, wearing accessories, or even solid obstacles cover
users’ acoustic organs and block the signal propagation. The experiment scene is set in an office
with a noise of 40 dB. Data in case studies are collected from 20 participants (10 male and 10 female,
mean 28.4, and standard deviation 7.3) who sit 7 m away from sensors.

5.6.1 Performance Under Masks. Currently, wearing masks is a growing consensus among peo-
ple. Masks on users may influence the quality of spoken commands. Facial masks are frequently
used for medical self-protection in public scenes. To study the impact of user-wearing masks to the
system, we consider four types of commonly used masks, disposable medical masks, N95 respirator
masks, gas masks, and anti-dust masks. We conduct a series of experiments where the participants
wear a given mask and speak utterances. Except for face masks, the subjects are required to wear
a scarf for further measuring the penetration of Wavoice. Table 3 lists all selected masks and their
corresponding indexes. The speech recognition results in Figure 12 present that the mask worn by
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Fig. 12. Performance of Wavoice and DS2 influenced by masks without noise.

Fig. 13. Impact of clothing. Fig. 14. Impact of

obstruction.

Fig. 15. Performance under environmental

disturbance.

users definitely deteriorates the property and quality of speech signals, resulting in a sharp decline
in system performance of a traditional ASR system like DS2. On the contrary, the proposed system
significantly outperforms the baseline since its CERs are all nearly 1% under any type of mask. Our
system is at least five times better than traditional systems, according to this comparison result.
This comparison experiment confirms the usability of the mmWave-voice system against acous-
tic degradation caused by wearing masks. Thus, we validate that the multi-modal system fusing
mmWave and speech signals can boost the ability of speech recognition despite users wearing
masks.

5.6.2 Performance Under Clothing. It is common for users to wear clothing around the throat,
which seems to affect the performance of Wavoice. To validate Wavoice’s usability considering the
wearing of different accessories, we choose four types of clothing: a necklace, sweater, scarf, and
coat. Figure 13 displays all of the recognition results when users wear different clothes. It can be
seen that the speech recognition accuracy of the system is high under all types of clothing. The
proposed system achieves a CER below 1%. Moreover, Wavoice performs slightly better when the
throat is not covered by clothing. We envision that the wearing of accessories like a necklace and
coat could block reflective mmWave signals and partly weaken the vocal vibration from the human
throat.

5.6.3 Performance Under Obstructions. One challenging factor to wireless sensing is occlusion
between the radar and targeting users, since both transmitted and reflected signals are impaired
when penetrating an occlusion. Herein, we respectively put four universal obstacles (i.e., a sponge,
wood, glass, and a concrete wall) between the radar and the user. The thickness of the sponge,
wood, glass, and concrete wall are 1, 0.7, 2, and 10 cm, respectively. The recognition results for the
preceding are shown in Figure 14. It is observed that the performance of Wavoice under dense and
thick shields, especially concrete walls, is slightly lower than those under no obstruction. However,
Wavoice still maintains accurate speech recognition with a CER below 1.3%. This is because the
supplement information from the speech modality makes up for the loss of mmWave information
when propagating through obstructions.
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Fig. 16. Performance of Wavoice’s in-vehicle application. Fig. 17. A permanence study lasting 1 month.

5.7 Environmental Disturbance

Considering previous experiments set in controlled laboratory environments, we conduct com-
prehensive experiments in realistic scenes. Four common and noisy experiments are chosen: a
filled office, a noisy cafe, a busy roadside, and a subway. Five subjects (three female and two male)
are requested to speak voice commands naturally in each specific scene. The corresponding data
is collected to examine the pre-trained system and verify its universality. Figure 15 displays the
overall speech recognition results. The averaging CERs of different scenes are 0.49%, 1.02%, 1.64%,
and 1.77%. Although speech recognition accuracy is slightly degraded, the proposed system still
guarantees its superiority in arbitrary realistic scenes.

To further demonstrate the universality of Wavoice, we set it up in a vehicle where the mmWave
radar often wobbles during driving. We ask three participants as drivers to speak voice commands
as they drive the vehicle. The mmWave radar and microphone in the system are appropriately
placed on the automotive center stack, which will not influence driving. Specifically, each driver
drives 20 minutes at a normal speed on an urban route. While driving, we play music inside the
vehicle when drivers speak commands. The collected data is fed into the system for examining the
speech recognition ability of Wavoice.

Based on Figure 16, the averaging CER remains lower than 0.5% with a driving distance from 0
to 4 km. The CER of three drivers is 45%, 0.20%, and 0.30%, respectively. This indicates that Wavoice

is competent for speech recognition in a vehicle despite music interference and sensor wobbling.
This is logical because the system can receive enough useful mmWave and speech signals in a
narrow space to produce fusion results for accurate speech recognition.

Potential Application. One potential application includes an in-vehicle voice control system.
The results in Section 5.7 indicate that Wavoice promises good performance under a noisy and
wobble in-car environment, whereas the traditional audio-only method has limited performance.
Thus, Wavoice can act as a novel in-vehicle voice control system to facilitate the robustness of
speech recognition when the user is driving. Another potential application is VUIs in public fa-
cilities. Public facilities, such as ATMs and vending machines at the subway, are often flooded by
noise, which limits the application of an audio-only VUI on these machines. The facilities can ben-
efit from Wavoice’s noise-resilience advantage for non-contact user interaction, which is urgent
due to the growing demand for public hygiene.

5.8 Permanence Analysis

For a biometric system, it is necessary to examine the permanence of Wavoice. We collect 40 pieces
of mmWave and speech data from 20 subjects (10 males and 10 females) every 2 days. In every data
collection period, each subject is required to speak commands randomly from ok-google.io. The
data collection lasts for a month. The pre-trained system takes in the collected data and outputs the
recognized result. Figure 17 shows the recognition performance of the system during this month.
During the 1-month experiment, the average CER is between 0.15% and 0.66%. The maximum
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fluctuation in CER results is no more than 0.5%, which proves that multi-modal features fused
by Wavoice can efficiently maintain reliable performance over a long period. Moreover, there is
no notable decreasing and ascending tendency on speech recognition accuracy of Wavoice. This
indicates that Wavoice is robust to the time dynamic.

6 DISCUSSION

Hardware Support. Compared with traditional ASR systems [4, 22], Wavoice needs an extra
mmWave radar but only one low-cost microphone. Moreover, the deployment of mmWave radars
has rapidly increased owing to the advanced mmWave sensing and communication technologies
[68] in wireless sensing and 5G communication [82]. For instance, Google Pixel 4 [21] has been
installed with a miniature mmWave radar for convenient human-machine interaction. The man-
ufactural microphone array arranged in a special pattern aims at performing speech recognition
function under ambient noises. However, these designs of microphone array demand high volume
but obtain small listening coverage. In this case, it is promising that mmWave-microphone ASR
systems will be migrated to voice-enabled devices in various realistic scenarios. The current pro-
totype of Wavoice simply employs a microphone and a radar to support speech recognition. With
the upgrade of sensor hardware, it is feasible to apply Wavoice on the microphone array and an-
tenna array, improving not only perception accuracy but also signal quality. We leave the hardware
upgrade and relevant performance test to future work.

Sensing Range. Extensive experimental results have demonstrated that Wavoice owns a sensing
coverage of 7 m with a 120-degree field of view. It is feasible to transfer Wavoice into most public
human-machine applications where users face devices within a finite field, such as voice-enabled
ATMs and elevators. In terms of fully open working areas, like smart streetlights, it is suggested to
equip three radars with 360-degree coverage, which is expensive. A low-cost method is to swing
the mmWave radar with the help of user targeting, which has been employed into Mi Air Charge
[90]. However, Wavoice can adopt microphone arrays instead of a single microphone for enlarging
working areas.

Cost and Power Consumption. Wavoice needs a low-cost microphone and a COTS mmWave
radar. In the aspect of hardware cost, an mmWave radar chip costs about 40 dollars [33], whereas
a microphone only costs 10 cents. Given that long-distance speech recognition under a relatively
low SNR, it is more worthwhile to employ Wavoice than microphone arrays with average costs
of around 50 dollars. Additionally, there is a visible trend in which the cost of mmWave radars is
on the decrease as electronic industry manufacturing grows. In terms of power consumption, the
power sum of the mmWave radar and microphone stays below 20 mW. Its power consumption is
so low that Wavoice will be acceptable for most voice-controlled devices.

Easy Interaction Without a Predetermined Wake-Up Word. The wake-up word introduced
in our system is to activate the speech recognition function. Our system could accurately receive
and recognize voice commands from a user by leveraging wake-up words, even in a multi-person
scene. However, users are inclined to own private voice-controlled devices to protect personal in-
formation and property against audio injection attacks [71, 95]. Recent research reveals the person
difference in vocal vibration independent of speech context [91] whereby we can exploit mmWave
sensing vocal vibration to target the user. Therefore, our system can execute a well-trained clas-
sifier based on the uniqueness of vocal vibration for verifying and targeting the user. Then, only
registered users could say voice commands without wake-up words to activate our system.

Speech Separation. Speech separation aims at separating and restoring users’ speech among
mixed noise, more often from a cocktail party effect. Considering the benefit of speech separation
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to voice interaction, it is valuable for Wavoice to extend speech separation from heterogeneous
speech signals. Motivated by the advantage of deep complex networks [12, 75], the proposed sys-
tem has the potential for realizing speech separation. Owing to the flexible framework of Wavoice,
we can easily replace the semantic extraction network in the system with deep complex networks.
After the complex network predicting the magnitude and phase spectrogram of users’ speeches,
the original speech can be subsequently obtained by implementing inverse Fourier transform.

Multi-Modal Fusion. Wavoice has significant potential to facilitate multi-modal fusion in a
large range of applications, such as mmWave-WiFi human activity recognition [36] and audio-
image speech enhancement [55]. This work concretely designs multi-modal methods from voice
activity detection to feature fusion, which are applicable to other applications assisted with differ-
ent modalities. Beyond the specific method of Wavoice, this article convincingly presents that the
utilization of correlation among different modalities is a critical key to multi-modal systems. To
further prove it, future work will be done in replicating our techniques in other systems.

7 RELATED WORK

mmWave-based sensing promotes high-accuracy detection and perception, improving an exten-
sive range of sensing applications from tracking and localization [84], human activity recognition
[15], and vital sign monitoring [98, 99] to acoustic sensing [7, 29, 30]. Owing to optical sensors’
sensitivity to environmental conditions, Chang et al. [9] fused the mmWave radar with optical
sensors to overcome environmental challenges and enhance the desired results. These mmWave-
vision systems can largely boost sensing resolution and ranges [14, 48, 96]. The cooperation of
mmWave radar and IMU [31] can support robust ego-motion estimation [3, 50]. Furthermore, Lu
et al. [49] leveraged an mmWave radar and lidar to reconstruct an indoor grid map. Similar works
exhibited the collaboration between mmWave and other sensors, facilitating system stability and
efficiency.

Speech enhancement aims at the advanced quality and intelligibility of desired speech under
arbitrary noise and reverberation, often with the help of microphone arrays [6, 24, 38, 47, 59, 86].
Classic statistics-based approaches [25, 89] has prior knowledge of environmental noise. Learning-
based speech enhancement has won popularity that leverages DNNs [60, 92] or generative adver-
sarial networks [16, 61] but fails in long-distance speech recognition with sensing ranges. These
techniques require excessive microphones (more than the number of noise sources) and special
physical layouts.

Cross-modal speech recognition gives new methods of efficiently improving recognition accuracy
against noise interference. The audio-visual systems integrating face landmarks [57] or lip motion
[1] estimate the vibration caused by pronunciation to refine expected speeches. Meanwhile, ul-
trasound [39, 72], WiFi [81], and inertial signals [2] can extract semantic information or enhance
speech within a limited range. Unlike other existing work, Wavoice fuses mmWave and speech by
using a delicate network with SENet-based inter-attention, which provides long-distance speech
recognition in public scenes filled with noise and motion disturbances.

8 CONCLUSION

In this article, we presented a novel system, Wavoice, for long-range, noise-resilient, and motion-
robust speech recognition by fusing mmWave and acoustic signals. We first formulated the corre-
lation between mmWave and acoustic signals, based on which we developed voice activity detec-
tion to combat against noise interference and a target-localizing method to separate the user from
backgrounds. To achieve the noise-resistant speech recognition, we designed an attention-based
network with two specialized modules leveraging the inter-attention between the multi-modal
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signals to enhance recognition performance. We performed extensive experiments to evaluate the
proposed system, which shows high resilience to ambient noise and face masks. The results indi-
cated that Wavoice can achieve an error rate as low as 1% even in a long-range condition.
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