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Abstract—The multi-interface networks are efficient infrastructures to deploy distributed Deep Learning (DL) tasks as the model

gradients generated by each worker can be exchanged to others via different links in parallel. Although this decentralized parameter

synchronization mechanism can reduce the time of gradient exchange, building a high-performance distributed DL architecture still

requires the balance of communication efficiency and computational utilization, i.e., addressing the issues of traffic burst, data

consistency, and programming convenience. To achieve this goal, we intend to asynchronously exchange gradient pieces without the

central control in multi-interface networks. We propose the Piece-level Gradient Exchange andMulti-interface Collective

Communication to handle parameter synchronization and traffic transmission, respectively. Specifically, we design the gradient sketch

approach based on 8-bit uniform quantization to compress gradient tensors and introduce the colayer abstraction to better handle

gradient partition, exchange and pipelining. Also, we provide general programming interfaces to capture the synchronization semantics

and build the Gradient Exchange Index (GEI) data structures to make our approach online applicable. We implement our algorithms

into a prototype system called Canary by using PyTorch-1.4.0. Experiments conducted in Alibaba Cloud demonstrate that Canary

reduces 56.28 percent traffic on average and completes the training by up to 1.61x, 2.28x, and 2.84x faster than BML, Ako on PyTorch,

and PS on TensorFlow, respectively.

Index Terms—Distributed systems, multi-interface network, deep learning, gradient sketch, decentralized architecture
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1 INTRODUCTION

THE centralized parameter server (PS) architecture [1], [2],
[3] has achieved great success to operate large-scale dis-

tributed Deep Learning (DL) tasks [4], [5], [6], [7], [8], [9]
and is widely used in system implementation (e.g., Posei-
don [2], Petuum [10] and MXNet [11]). However, the server-
worker structure in PS architecture is often subject to the
communication pattern of frequent aggregation and broad-
cast, where the logical central servers may be the bottleneck
and suffer from severe traffic pressure with the increment

of cluster scale [12]. Moreover, commodity PS-based frame-
works are often deployed in FatTree [13] network, which
cannot well match the communication requirements of par-
allel DL [14], especially when the available bandwidth is
limited and computational heterogeneity exists.

Observing the limitations of PS-based architectures, a
growing body of researches [12], [14], [15], [16] have studied
how to handle distributed DL training in a decentralized
manner, where machines exchange parameters to others
directly without the central control. The recently presented
BML [14] architecture working in the BCube network [17] is
a pertinent case to practice the decentralized DL training,
with less global synchronization time over commodity PS
architectures. The success of BML comes from the traffic
transmission through different links in parallel, i.e., utiliz-
ing the communication capacity of multiple NICs.

However, our preliminary experiments (see Section 3)
reveal that existing decentralized approaches have not fully
exploited the advantages of multi-interface network, mainly
in four aspects: (1) they often follow the scheme developed
from Bulk Synchronous Parallel (BSP) [2], [14], [18] or the
delay-bounded Stale Synchronous Parallel (SSP) [12], [19], [20],
[21], where the barrier at the end of each synchronization
causes the time waste on waiting for the slowest worker [22]
and the training performance may suffer from stragglers [1],
[23]; (2) they have not fully utilized the inherent parallel com-
munication links of multi-interface network because the flow
of gradient exchange between two machines is transmitted
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via one link at a time (see Fig. 10); (3) they ignore the property
of parameter dimension (see Fig. 8 and Table 1) and the distri-
bution of gradient values (see Fig. 9) in different layers, where
gradient tensors can be further compressed to reduce traffic
volume and communication cost; (4) they are designed for
some specific network topologies (e.g., BML is based on
BCube network) with different programming methods (e.g.,
push/pull in Fig. 6 and scatter/gather in Fig. 10) to handle the
distributed communication during DL training. Therefore,
transferring a task programmed for a specific network to
others (e.g., Tree-based [2], [3], [11] and Mesh-based [12], [24]
networks) needs a major reconstruction of codes, which is not
convenient for developers [25]. Motivated by these observa-
tions, we intend to design a decentralized DL architecture that
fully exploits the advantages of multi-interface networks to acceler-
ate DL training and provides uniform programming interfaces to
help developers easily create DL tasks with less code modification.

This target requires us to conduct an algorithm- and net-
work-level co-design that fully utilizes computational
capacity and restricts communication overhead. We achieve
it by (1) conducting decentralized gradient exchange in an
asynchronous manner, where gradient tensors are com-
pressed and partitioned into pieces for transmitting via dif-
ferent links in parallel, and (2) abstracting the semantics of
distributed gradient exchange to improve collective com-
munication methods. In the upper parameter synchron-
ization, we design the Piece-level Gradient Exchange (PGE)
algorithm to handle DL training via decentralized asyn-
chronous data-parallelism. We propose a gradient sketch
approach to reduce the volume of gradient tensors with
slight precision loss, where the gradients are partitioned
into pieces and the corresponding element keys are
quantized into 8-bit fixed-point (INT8) data format, according
to the gradient distribution and tensor scale. This approxi-
mation approach eliminates frequent traffic burst and
reduces the communication time. Moreover, we capture the
per-layer property and propose a new abstraction called
colayer, which is defined as a collection of layers with analo-
gous computation- and communication-level features. By
introducing colayer, we can better exploit the power of par-
allelism and pipelining to overlap communication and com-
putation. In the underlying network communication, we
design the Multi-interface Collective Communication (MCC)
mechanism to fully exploit the transmission parallelism of
multi-interface network and exchange gradient pieces asyn-
chronously with staleness bounding. Specifically, observing
the low latency and RDMA compatibility in state-of-the-art
BML [14], [15], we select the BCube [17] network as a perti-
nent candidate of multi-interface network and display how
to deploy our synchronization mechanism in practice. This

mechanism can also apply to other types of multi-interface
networks, including Tree-based andMesh-based topologies.

We implement our training algorithm into Canary, a
decentralized prototype system that operates parallel DL in
multi-interface network and quantizes the gradient pieces
into INT8 data format, using a staleness-bounded asynchro-
nous manner. To make our system online applicable, we
elaborate two Gradient Exchange Index (GEI) data structures
to trace all the gradient pieces and globally handle the gra-
dient exchange process. Besides, two hyper-parameters are
introduced to restrict the staleness bounding of iteration
progress and colayer proportion, so as to guarantee the
training convergence. We build Canary in PyTorch-1.4.0
and extract uniform APIs that developers can easily deploy
decentralized DL applications in multi-interface networks.
We evaluate the performance of Canary in a 34-node cluster
by using Alibaba Cloud [26]. To measure the ability of train-
ing generalization, we use the training of image classifica-
tion applications on six models (AlexNet [27], VGG19 [28],
Inception-V3 [29], ResNet18 [30], ResNeXt101 [31] and
ResNeXt152 [31]) with three datasets (Fashion MNIST [32],
CIFAR-10 [33], and ImageNet [34]) as our benchmarks.
Experimental results demonstrate that (1) Canary guaran-
tees training convergence and provides robust scalability in
both CPU- and GPU-equipped clusters, (2) Canary reduces
traffic volume, by up to 56.28 percent less than the BML on
PyTorch, (3) Canary effectively reduces training conver-
gence time, by up to 1:61�; 2:28� and 2:84� faster than
BML on PyTorch [35], Ako on PyTorch and PS on Tensor-
Flow [36], respectively, (4) Canary can accelerate the conver-
gence speed, while not degrading the training quality or
bringing extra computational overhead, and (5) the gradient
sketch method inside Canary can apply to existing learning
frameworks and further improve the training efficiency.
Our main contributions are summarized as follows:

� We reveal the potential communication capacity of
multi-interface network to deploy distributedDL tasks
and fully utilize the available bandwidth resources to
accelerate parameter synchronization in a decentral-
ized manner, while reducing communicational over-
head and utilizing computational capacity.

� We conduct an algorithm- and network-level co-design
to propose the Piece-level Gradient Exchange (PGE) and
Multi-interface Collective Communication (MCC) for han-
dling parameter synchronization and traffic transmis-
sion, respectively. Specifically, we design the gradient
sketch approach based on 8-bit quantization for traffic
compression and gradient tensor partition. Also, we
introduce the abstraction of colayer to better inspect BP
stages and design the colayer-level pipelining to better
overlap communication and computation. In practice,

Fig. 1. Communication in data-parallel DL canbe handled via two coordina-
tionmanners: centralized coordination and decentralized coordination.

TABLE 1
Average Cost Comparison of Layer Characteristics on

CPU- and GPU-Equipped Workers With Same DL Training
Configuration in Fig. 8
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we elaborate two Gradient Exchange Index (GEI) data
structures tomake our algorithmonline applicable.

� We implement a prototype system called Canary
based on PyTorch-1.4.0 and will open source of it.1

Canary provides uniform programming interfaces,
so that developers and researchers can easily con-
duct decentralized DL training with little modifica-
tion on their codes. Experimental results of a 34-
node cluster demonstrate that Canary performs well
in training generalization, scalability, communica-
tion overhead and convergence efficiency with base-
line comparison.

The rest of paper is organized as follows. We introduce
the background and related work in Section 2. Then, we dis-
cuss the observations motivating our research in Section 3.
Detailed analysis of Canary design and implementation are
given in Sections 4 and 5, respectively. We evaluate Canary
in Section 6 and draw the conclusion in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Machine Coordination Manner

Communication overhead is a crucial issue in data-parallel
DL [16]. Most data-parallel DL frameworks coordinate
machines mainly in two manners, i.e., centralized [2], [3],
[5] and decentralized [12], [14] algorithms. As shown in
Fig. 1a, a centralized coordination adopts a logical root to
store and share parameters, so as to ensure consistency-
control across the cluster. The typical PS paradigm belongs
to this manner. Meanwhile, as shown in Fig. 1b, a decentral-
ized coordination is usually implemented based on the peer-
to-peer (P2P) communication that does not require a central
node. The centralized coordination is easy to deploy, while
the central root may incur bandwidth scarcity and suffer
from high communication cost. In contrast, the decentral-
ized coordination eliminates the network bottleneck from
central nodes while may yield higher communication
complexity to deploy underlying network topology.

2.2 Distributed Communication Mechanism

Recently, the communication mechanism based on the
decentralized coordination has shown great advantages for
distributed DL training acceleration. A pertinent case is the
network-optimal Ring-AllReduce [38] algorithm proposed
by the Baidu Silicon Valley Artificial Intelligence Lab
(SVAIL), which is employed to better saturate the available
bandwidth and reduce the communication overhead in
High Performance Computing (HPC). We give an example
in Fig. 2 to illustrate the rationale of the Ring-AllReduce

algorithm. Briefly, the algorithm contains two stages, each of
which is finished after transferring the tensor chunks to the
neighbour peers in 2� ðN � 1Þ times (N is the number of
workers). The Ring-AllReduce algorithm is easy to imple-
ment by using the collective communication abstraction
based on Message Passing Interface (MPI) [39], such as the
Open MPI [40] and NVIDIA NCCL [41] implementation.
The Uber leverages the power of Ring-AllReduce to build
the decentralizedHorovod [37] framework to efficiently han-
dle inter-GPU communication. Moreover, the widely-used
industrial systems, such as PyTorch [42] and TensorFlow
[36], have also adopted the NCCL techniques to accelerate
the parallel communication for distributed DL training.

2.3 Parameter Synchronization Pace

In data-parallel DL training, communication of parameter
synchronization will be conducted once the derivative (i.e.,
gradient) computation of layer weights is done. Previous
researches mainly formulate this procedure via the distrib-
uted stochastic gradient descent (SGD) algorithm, which can
be implemented in both synchronous or asynchronous
schemes. Bulk Synchronous Parallel (BSP) [2], [14], [18] is a
typical synchronous scheme, which provides stable consis-
tency-control and guarantees stable training convergence.
However, BSP may lead to time waste due to the waiting
for the slowest worker, i.e., the straggler [1], [23]. On the con-
trary, Asynchronous Parallel (ASP) [36], [43], [44], a typical
asynchronous scheme, conquers this issue by simply
removing the enforced barrier synchronization at the end of
each iteration. However, the staleness [5] in ASP may incur
delay error and thus degrades the convergence efficiency.
Additionally, Stale Synchronous Parallel (SSP) [12], [19], [20],
[21], a hybrid scheme of BSP and ASP, makes a trade-off
between iteration speed and convergence accuracy by intro-
ducing a delay-bounded threshold to restrict the iteration
staleness and time waste among workers.

2.4 Data Quantization

Data quantization is a promising method to reduce training
cost of DL tasks, where the original full-precision data are
transferred into low-precision format represented by less
bit width. Therefore, quantization can be used in inference
acceleration and model simplification. For example, Mel-
lempudi et al. [45] improved the inference efficiency by
quantizing the weights and activations into INT8 values,
while requiring a pre-trained model with relatively high
precision. Besides, Cai et al. [46] aimed at quantizing the
activation functions (e.g., ReLU) by using a half-wave recti-
fier to address the data mismatching in FP and BP approxi-
mation. Different from these algorithms, our target is to

Fig. 2. The workflow of Ring-AllReduce adopted in Uber Horovod [37].

1. https://github.com/kimihe/Canary.
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accelerate the distributed DL training speed by addressing
the communication bottleneck in gradient exchanging.

2.5 Anatomy of Existing Architectures

As shown in Fig. 3, we compare existing data-parallel DL
architectures of four typical types: Iterative MapReduce
(e.g., Spark [47] and MLlib [48]), PS (e.g., Poseidon [2] and
Adam [49]), BML [14] and Data Flow (e.g., Ako [12] and Ten-
sorFlow [36]). From the perspective of training efficiency, we
take the architectures of PS and BML as case studies.

PS. To handle large-scale parallel DL, most existing work
often resorts to the PS architecture. Although PS provides a
simple paradigm for system implementation, the logical
central servers (corresponding to workers) may face with
severe communication overhead along with the scale incre-
ment of clusters, especially when bandwidth is limited. In
spite of the substitute of faster network devices, such as
Infiniband [50] or high-speed Ethernet, communication may
still be the bottleneck [2], [12], [14].

To give a clear demonstration of network overhead, we
compare the average per-synchronization computation and
communication time under different models and datasets in
Fig. 4. Note that the DL training tasks follow the BSP scheme
and use the testbed configuration of three groups in
Section 6.1.1. We can observe that the training performance
suffers from non-negligible communication overhead, espe-
cially with the increase of the worker number and the model
size. In addition, the communication time dominates the time
cost in one synchronizationwhen the cluster ownsmore pow-
erful computational capacity. For example, in the configura-
tion of group (1), the cluster is based on NVIDIA Tesla P100
GPUs, where the per-synchronization communication time is
much longer than the computation time. This phenomenon
indicates that the network overhead is a crucial issue impact-
ing the distributed training efficiency of largemodels.

More seriously, PS-based systems are often deployed on
top of FatTree [13] network, which cannot well match the
communication pattern of parallel DL training [14]. Fig. 5a
describes the topology of FatTree network, where traffic
flows need to pass through multiple hops of switches
between two machines.

Besides, we find that bandwidth utilization is imbalanced
between workers and servers in a commodity PS architecture.
Fig. 6 shows a pertinent PS architecture, where we can
observe that there are plenty of push (in Fig. 6a) and pull (in
Fig. 6b) operations between servers and workers to maintain
parameter consistency, where the pressure of network traffic
is imbalance on servers andworkers. As the number ofwork-
ers is usually much more than that of servers, the servers are
vulnerable to be network bottleneck when servers andwork-
ers are equipped with similar NICs in commodity data cen-
ter networks. Obviously, this communication pattern will
degrade the parameter synchronization efficiency and
decrease bandwidth utilization.

We also conduct preliminary experiments to evidence
this phenomenon. As shown in Fig. 7, we measure the real-
time traffic per second on both workers and servers to show
bandwidth utilization. In most cases, we can observe that
the bandwidth utilization on a worker (up to 25.69 percent)
is far lower than that on a server (up to 79.84 percent). More-
over, when a worker is conducting derivative computation
instead of parameter synchronization, the bandwidth utili-
zation will be even low (about 11.21 percent). It turns out
that workers often waste idle bandwidth while servers may
suffer from severe traffic overhead and become the bottle-
neck of communication efficiency. This phenomenon
reveals that commodity PS on FatTree cannot well match
the traffic pattern of parallel DL training and motivates us
to investigate alternative networks supporting decentral-
ized coordination.

BML. The recently presented BML architecture based on
BCube [17] network addresses above issues and illustrates a
promising paradigm to reduce the communication time of
distributed DL systems. As shown in Fig. 5b, the recursive
cube (represented as < �; � > ) topology inside BCube
inherently supports the frequent data aggregation and
broadcast in data-parallel DL. Moreover, the level-based net-
work interfaces provide more available bandwidth with a

Fig. 3. Four typical architectures of data-parallel DL.

Fig. 4. The average computation (orange) and communication (dark
blue) time of one synchronization in the PS cluster, with 200 global batch
size and 10 Gbps Ethernet.

Fig. 5. Network topology.

Fig. 6. Centralized PS paradigm.
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lower cost of switches. The direct connections inside each
cube eliminate the communication complexity between dif-
ferent machines. These topology properties make the BCube
network superior to deploy parallel DL systems over the Fat-
Tree network. However, the BSP synchronization scheme in
BML may incur potential stragglers, which will slow down
the training speed and degrade the convergence efficiency.
The power behind BML can be summarized as two key
aspects: (1) exploiting multiple NICs of each machine to
reduce data transmission time, and (2) adopting decentral-
ized gradient synchronization following the programming
paradigm of Message Passing Interface (MPI) [39]. We will
further discuss these two insights in Section 3.

3 OBSERVATION

We intend to design a new decentralized parallel DL system
in multi-interaface network to accelerate gradient synchro-
nization without introducing communication-level bottle-
neck. Four key observations guide the design of our system.

Observation 1. The multiple interfaces of a commodity server
can be used to reduce the completion time of gradient exchange.

In a modern data center, machines with two or more
ports are commonly deployed and it is affordable to con-
duct DL training in a cluster comprised of these machines
[15]. It is natural that the inherent communication capacity
of multi-interface machines can be further exploited to
accelerate the communication progress. Note that few previ-
ous work has realized the promising power in this kind of
network environment. A pertinent case is the recently suc-
cessful BML [14] algorithm, which effectively reduces the
gradient synchronization time by collaborating with a spe-
cific underlying topology called BCube [17] network. The
essence of its superiority is that BML fully exploits the extra
communication capacity of multiple NICs, i.e., making gra-
dient transmission in parallel. It turns out that the success
of BML relies on the specific support of BCube network.
However, not all the clusters for DL training can be easily
deployed on BCube topology as the change of underlying
topology requires extra hardware cost. Besides, reconstruct-
ing the code to make existing DL applications compatible
with BCube network is also time-consuming. Actually,
many architectures have been deployed on other decentral-
ized manner, such as Tree-based [2], [3], [11] and Mesh-
based [12], [24] networks, where the machines also support
multiple interfaces. This inspires us to comprehensively
study how to fully exploit the communication capacity of a gen-
eral multi-interface network and accelerate the gradient exchange
progress during DL training.

Observation 2. The gradient values of a neural network layer
can be compressed with slight precision loss while effectively
reducing communication traffic.

Apart from fully utilizing the available bandwidth,
another method to accelerate communication progress is
reducing the network traffic, i.e., the volume of the gra-
dients need to be transmitted. A natural way to realize this
target is conducting gradient compression. Different from
existing approaches focusing on the compression of the
entire gradient tensor, we find that handling compression from
the perspective of neural network layers instead of the whole model
can further improve the compression efficiency while guaranteeing
slight precision loss of gradient values. There are two points
covering our concerns: (1) the communication and compu-
tation patterns in different layers, and (2) the distribution of
gradient values in different layers.

As to the first point, the gradients of a neural network
model are generated during the backward propagation (BP)
stage following the sequence from the last layer of output to
the first layer of input. We use the training of image classifi-
cation tasks running in the convolutional neural networks
(CNNs) as an example. Layers inside these networks can be
briefly classified into three categories: convolutional
(CONV) layers, fully connected (FC) layers and sampling
layers (e.g., max-pooling and avg-pooling). We will inspect
the CONV layers and FC layers since sampling layers do
not involve computing derivatives (i.e., the gradients) and
do not contain any parameters. As described in Fig. 8, we
decompose the 19 layers (16 CONV layers and 3 FC layers)
of VGG-19 model and find that the layers hold distinct
diversity of time consumed by computation and communi-
cation. We summarize their characteristics in Table 1 and
observe that a CONV layer often yields much more Float-
point (32 bits) operations but fewer parameters, while an FC
layer holds the inverse feature. We can observe that CONV
layers require more computation time (occupying up to
91.37 percent) and FC layers dominate the communication
time (occupying up to 86.35 percent). As a result, we need
to carefully take the communication and computation pat-
terns into consideration when design the compression
approaches as the compression itself is also a computation-
consuming operation that we should not introduce too
much extra overhead.

Moreover, we select 8 representative layers inside VGG-
19 and compare their gradient distribution in Fig. 9. We
can observe that the gradient values of these layers follow
a sparse and non-uniform distribution, where the values

Fig. 7. We monitor real-time bandwidth utilization in PS architecture
based on FatTree with 3 server and 18 workers, using VGG-19 model
with CIFAR-10 dataset.

Fig. 8. Communication and computation time of different layers in
10 Gbps Ethernet. We conduct the training of image classification tasks
on VGG-19 model with CIFAR-10 dataset using 32 batch size.
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near zero dominate the gradient tensors. Besides, different
layers hold different gradient distributions. For example,
the distribution curve of CONV1 layer varies from that of
FC1 layer, where the range of gradient value (X-axis) and
the frequency magnitudes (Y -axis) are widely different.
The deeper the layer is, the more extreme the non-uniform
distribution will be. Due to the spare and non-uniform
property of the gradient distribution, we cannot use tradi-
tional quantification technologies for compression, such as
mapping float-point values to integers [51], since this
method requires uniform data. Fortunately, with the
insight of layer diversity, we can use the quantile sketch
technologies [52], [53] into gradient compression, which is
suitable in non-uniform scenario without losing too much
gradient precision. Another important advantage is this
technology primely supports our inspiration about parti-
tioning gradient tensor into pieces (see Observation 3). The
details of using quantile sketch to compress gradients will
be discussed in Section 4.3.1.

Observation 3. The gradient tensor can be partitioned into
pieces and aggregated afterwards to fully exploit the power of par-
allelism and pipelining.

As aforementioned in Observation 1, an effectively way to
accelerate communication progress is to fully utilize the
capacity of multi-interface. This requires transmitting the
gradient tensor through different links simultaneously. We
find that a large gradient tensor can be partitioned into a
number of small pieces, so that the pieces can be transmitted
via multiple interfaces in parallel. Meanwhile, pieces
belonging to different parts of the gradient tensor can be
aggregated partially and merged into one, i.e., following the
reduce operation. Note that this kind of operation further
decreases the gradient volume that needs to be transmitted.
We use Fig. 10 to illustrate this procedure with two stages
(scatter and gather), where u and g represent global parame-
ters and local gradients, respectively. We take worker Wð1Þ
as an example. In the first stage of scatter, Wð1Þ partitions its

local gradients into three pieces (g1;1; g1;2 and g1;3) and sends
two pieces to other two workers (g1;2 to Wð2Þ and g1;3 to
Wð3Þ). At the same time, the other two workers do the simi-
lar operations. As a result, Wð1Þ receives two gradient pieces
from other two workers (g2;1 from Wð2Þ and g3;1 from Wð3Þ).
With its local piece g1;1; Wð1Þ can merge these three pieces
into one (i.e., u�;1  g1;1 þ g2;1 þ g3;1), containing the compu-
tation results of other workers. The same operation is done
on W2 and W3: In the second stage of gather, each worker
holds different parts of the latest model parameters and
these partial parameters can be directly broadcasted to other
workers (e.g., Wð1Þ broadcasts u�;1 to Wð2Þ and Wð3Þ). Eventu-
ally, all the three workers own the latest full parameters
(i.e., u�;�  u�;1 þ u�;2 þ u�;3) and the gradient exchange pro-
cedure is finished. Still as to Wð1Þ; we can observe that the
key of successfully decreasing gradient volume in this
example is the reduce operation that merges three gradient
pieces into one in the first stage (i.e., u�;1  g1;1 þ g2;1 þ g3;1
on Wð1Þ). Consequently, we intend to further exploit the
power of gradient partition and transmission parallelism in
multi-interface network.

Moreover, as shown in Fig. 11a, each iteration within a
DL training process can be represented by two stages, i.e.,
forward propagation (FP) and backward propagation (BP). To
conduct distributed DL training in a data-parallel manner,
we need to exchange parameters (i.e., the gradient matrices)
among different workers and promptly synchronize them
to avoid introducing delay errors during the BP stage. In
each layer, the computation operations for calculating gra-
dients are independent of the communication operations
for parameter synchronization among workers. Conse-
quently, it is natural to overlap the computation and
communication by adopting the pipelining technology.
However, it is worth noting that the magnitude relationship
between communication time and computation time also
impacts the efficiency of pipelining in practice. As shown in
Fig. 11b, to make the best use of pipelining among layers,
the communication time should not be longer than compu-
tation time. It turns out that only when communication
time is shorter than computation time, can pipelining effec-
tively accelerate the entire BP stage, compared with the tra-
ditional serialization scheme in Fig. 11c. Actually, some
state-of-the-art researches, e.g., Bytedance’s BytePS [54],
also shares some similar observations of tensor partition
and communication re-scheduling. However, their design
did not consider the property of the underlying network
topology mentioned in Section 2.5, which significantly
impacts the communication efficiency. Therefore, we
intend to jointly consider the tensor partition and network

Fig. 9. Distribution of gradient values in different layers of VGG-19 model
with CIFAR-10 dataset.

Fig. 10. Decentralized P2P paradigm.

ZHOU ET AL.: CANARY: DECENTRALIZED DISTRIBUTED DL VIA GRADIENT SKETCH AND PARTITION IN MULTI-INTERFACE NETWORKS 905

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 21,2021 at 21:13:09 UTC from IEEE Xplore.  Restrictions apply. 



topology (e.g., FatTree and BCube) to fully exploit the
power of data parallelism and pipelining. We find that the
gradient partition and aggregation operations can help us
reach this goal.

Observation 4. The common decentralized synchronization
algorithms can be abstracted into uniform programming interfa-
ces based on collective communication.

With the example mentioned in Fig. 10, we find that the
essence of decentralized gradient exchange is closely related
to the gradient partition and aggregation operations. This
property motivates us to abstract the semantics of these
operations. To make the semantics suitable for most decen-
tralized architectures, we analyse three typical network
topologies (Tree-based, Mesh-based and BCube topology)
and abstract two types of stages, i.e., (1) scatter/gather/all-
gather and (2) reduce/broadcast/allreduce, which are refined
fromMessage Passing Interface (MPI) [39].

Summary. These four observations motivate us to design
a new decentralized DL architecture that partitions gradient
into pieces via quantile sketch and conducts piece-level gra-
dient exchange through multi-interface in parallel, so as to
reduce the network traffic and accelerate the communica-
tion progress. Further, we will discuss the logical design of
our system following the thought of the first three observa-
tions in Section 4 and present the implementation details
corresponding to the last observation in Section 5.

4 Canary DESIGN

4.1 Definition of Terms and Notations

In order to give a clear explanation, we list the terms and
notations used in our paper.

� <i> : The index (subscript) of an iteration during DL
training. Note that iteration index starts from 1.

� ðiÞ : The index (subscript) of a worker, e.g., WðiÞ is the
i-th worker. Note that worker index starts from 1.

� ½i� : The index (superscript) of a colayer, e.g., c½i� is the
i-th colayer. Note that colayer index starts from 0.

� c
½i�
ðiÞ : The colayer c

½i� on workerWðiÞ:
� < i; j > : The index of a cube in multi-interface

network.
� t½i� : The index of a thread.

� < t½i�; j > : The index of a gradient piece.
� < t½i�; j > Wði;jÞ : The gradient piece with index of

< t½i�; j > on workerWði;jÞ:
� rr : The GEI row vector reflecting the status of gradi-

ent piece exchange among different workers.
� Q : The GEI matrix reflecting the progress of gradi-

ent piece exchange in time sequence with training
iteration.

� z : The row number of Q reflecting the latest index of
training iteration.

� s : The threshold of iteration staleness.
� p : The threshold of colayer proportion.

4.2 Overview

Our goal is to conduct a high-performance algorithm and
network co-design of computation and communication
stages for parallel DL training. We intend to illuminate the
overview of our system from two prospectives: (1) decen-
tralized gradient exchange in an asynchronous manner and
(2) data transmission collaborated with underlying network
topology. The former refers to how to elaborate an efficient
parameter synchronization mechanism with robust training
convergence and cluster scalability. The latter involves how
to adapt our synchronization mechanism to the distributed
network environment with low communication complexity
and low bandwidth/link waste. We address these two pro-
spectives with solutions Piece-level Gradient Exchange (PGE)
in Section 4.3 and Multi-interface Collective Communication
(MCC) in Section 4.4, respectively.

4.3 Piece-Level Gradient Exchange

4.3.1 Gradient Sketch

While the machines inside a multi-interface network own
more available bandwidth, the huge traffic amount is still a
crucial issue. In a commodity data center, the communica-
tion time may be unacceptably long when the available
bandwidth is shared by multiple communication-intensive
tasks. Consequently, apart from providing more available
bandwidth, reducing the volume of network traffic is also
important. To achieve this target, we compress gradient by
using quantile sketch [52], [53] and we call this method as
gradient sketch. In particular, we follow the gist of relaxed

Fig. 11. A typical DL training contains two stages, i.e., forward propagation (FP) and backward propagation (BP). Note that backward propagation
can be designed in two schemes, i.e., serialization and pipelining.
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quantization [55] and DataSketches [56] for implementation
convenience. Recall that the gradient distribution varies
among different layers, we take this property into consider-
ation when using gradient sketch. The core idea of gradient
sketch is to map the original large gradient tensor into a
compressed array with smaller element size. Each element
can be regarded as a category with a number of gradient
values and we can use this element to approximately repre-
sent all the gradient values belonging to this category. This
is similar to the principle of unsupervised clustering in part.
The trade-off behind gradient sketch is that we slightly
degrade the precision of gradient value to obtain a prominent size
decrease of gradient tensor. It is obvious that the estimated pre-
cision is related to the category number we transferred. In
practice, the category number will not exceed 256 [52], so
that we can use one byte (i.e., 8 bits) to encode the index of
all the categories. The gist of gradient sketch is similar to
the 8-bit data quantization that represents the full-precision
32-bit floating-point (FP32) numbers by the low-precision 8-
bit fixed-point (INT8) numbers. Meanwhile, the tensor ele-
ments are transferred from the wide-and-sharp distribution
into the small-range uniform distribution. This kind of
value mapping is the key to alleviate the computational
pressure of matrix operations and reduce the communica-
tion traffic of gradient exchanging. Therefore, we can imple-
ment the gradient sketch method by quantizing the
gradients into INT8-based data format in the BP stage. The
workflow of gradient sketch is described in Fig. 12, contain-
ing three steps:

Step 1: Seek Quantiles to Split the Gradient Tensor. The origi-
nal gradient tensor can be unfolded into a row vector, where
the values follow the non-uniform distribution. We seek the
quantiles of this row vector and split the entire vector into a
number of buckets (i.e., categories), each of which is deter-
mined by a start quantile and an end quantile [55]. The gra-
dient values located in the same domain will be put into the
same bucket. The principle to determine suitable quantiles
is that the number of gradients belonging to different buck-
ets should be almost the same, i.e., the bucket-level gradient
values follow the uniform distribution.

Step 2: Use the Mean of Start and End Quantiles to Approxi-
mate the Bucket. We calculate the mean of the start and end
quantiles. All the gradient values within this bucket can be
represented by this mean. That is to say, we use the mean
value to approximate the entire bucket, so as to make a
trade-off between gradient precision and tensor volume.

Step 3: Encode the Index of Bucket Array With Binary. As the
original tensor is simplified into an array of bucket index,
we can directly encode the index by using binary encoding.

More precisely, we will discuss how to use gradient
sketch in different layers of a neural network. Here are two
cases:

Case 1: Gradient Sketch in FC Layers. We can observe that
the number of the buckets determined by the quantiles in
Step 1 closely impacts the approximate precision of gradient
values, we need to restrict the bucket number within an
acceptable range. If too many buckets are splitted, the vol-
ume of gradient tensor will not effectively be reduced. On
the contrary, the precision loss will be high when we split
too few buckets. As we intend to use one byte to encode the
bucket index, the maximum of bucket index is 256. This

order of magnitude is enough for gradient sketch in most
layers.

However, as we mentioned in Fig. 9, the gradient values
of FC layers are in a wide range with plenty of near-zero
numbers, where large precision loss will be introduced
even by splitting the gradient tensor into 256 buckets.

In this case, we need to reduce the scale of gradient ten-
sor before conducting sketch.

To conquer this challenge, we introduce the matrix fac-
torization method (i.e., singular value decomposition [57]) to
represent the gradient tensor Ïaðw; bÞ as the matrix multipli-
cation by a few matrices or vectors. As a result, we can
reduce the scale of the gradient from a huge tensor to a few
factorized matrices. With this pretreatment on gradient ten-
sors, we can operate gradient sketch on these vectors.

Case 2: Gradient Sketch in CONV Layers. The scale of gradi-
ent tensors in CONV layers (e.g., CONV 1 and CONV 2) is
much smaller than that in FC layers. In this case, we can
directly sort the gradient tensor and search the quantiles by
counting the value number, so as to simplify the quantile
calculation. This simplification can further reduce the com-
putation time in some shallow CONV layers.

Summary. The above three steps inside gradient sketch
help us transfer the original float-point gradient tensor into
a small number of buckets (integer array), where the gradi-
ent values inside the same bucket are estimated by a single
integer with binary encoding. Therefore, we just need to
transmit the buckets instead of the original gradient tensor. This
is the key why gradient sketch can effectively reduce the
traffic volume. Note that the gradient sketch method is a
special case of the 8-bit parameter quantization for gradient
tensors, i.e., using small-size INT8 data to represent the gra-
dient values, rather than using the full-precision FP32 data
type [55]. The difference is that we can use fewer and flexi-
ble bits (instead of the fixed 8 bits) to compress the gradient
tensors, according to the property of different layers.

Apart from the traffic compression, the buckets gener-
ated by gradient sketch conforms to our idea that partition-
ing gradient into pieces and conducting piece-level gradient
exchange through multiple interfaces in parallel.

4.3.2 Colayer Bundling

Recall the difference about using gradient sketch in CONV
and FC layers, this detailed pretreatment derives from our
new abstraction called colayer. Colayer is introduced to bet-
ter handle the granularity of gradient sketch and pipelining
during BP stage. A colayer is defined as a set of layers with

Fig. 12. The workflow of gradient sketch with four buckets.
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analogous properties in terms of computation and commu-
nication. We can reorganize an entire neural network model
into several colayers. Given the VGG-19 model with config-
uration described in Fig. 8, we can arrange the layers follow-
ing the principle mentioned in Section 4.3.1. For example,
we can bundle FC3 to FC1, CONV5-4 to CONV5-1, CONV4-
4 to CONV4-1, CONV3-4 to CONV1-1 as four colayers,
denoted as c½0�; c½1�; c½2� and c½3�; respectively. Note that the
re-organization criterion and the number of colayers
depend on gradient distribution and parameter dimension.
Therefore, the colayer number changes during DL training.
In general, we mark each colayer with an index c½i�; which is
used to trace the entire gradient exchange progress. The
detailed function of colayer index will be illustrated in
Section 5.2. Introducing the abstraction of colayer brings the
following two advantages.

Advantage 1: Computation Conservation. As shown in
Fig. 11a, we can avoid recomputing the part of derivatives
during BP by better reusing the cached object z inside acti-
vation function a: Note that these last two CONV layers
yield relatively fewer float-point operations compared with
other CONV layers. Therefore, we bundle them together as
a colayer to improve system coding efficiency when con-
ducting gradient sketch. It is worth noting that the colayer
reorganization criterion is a trial-and-error exploration,
which can be regarded as a hyper-parameter search. Conse-
quently, the aforementioned colayer reorganization is the
empirical tailoring of hyper-parameter setting from our
experiments.

Advantage 2: Pipelining Acceleration. As the traffic volume
is reduced by using gradient sketch, the communication
time of a layer during BP stage is shorter than the computa-
tion time in most cases. Besides, by adopting the colayer-
level re-organization, we can ensure that the communica-
tion time is prominently shorter than the computation time.
This provides the opportunity to introduce pipelining tech-
nology to accelerate the BP stage. Note that using pipelining
is not new. The previous approach, Poseidon [2], provides
the wait-free backpropagation to achieve a similar function.
However, it conducts pipelining in an over fine-grained
manner, i.e., overlaps communication and computation in
each layer inside BP, regardless of inter-layer characteristics
and bandwidth availability. We handle pipelining in the
colayer level, where the computation and communication
properties of different layers are considered. This makes the
pipelining module in our system better overlap the compu-
tation and communication when handling DL training.

4.3.3 Gradient Exchange Algorithm

To build a high-performance decentralized DL system, we
design our gradient exchange algorithm with the support of
underlying multi-interface network. The server-centric
BCube topology is a good candidate as it provides lower
transmission latency and is RDMA friendly [15]. Conse-
quently, we use the BCube network as a pertinent case to
show the implementation of our algorithms. Other multi-
interface networks (e.g., Tree-based and Mesh-based net-
works) follow the same programming interfaces as men-
tioned in Observation 4, so that our algorithm can be easily
deployed on these networks. We observe that BML [14] has

pioneered how to collaborate with BCube network. How-
ever, the gradient synchronization algorithm used in BML
follows the BSP scheme, which may suffer from the poten-
tial stragglers because the barrier synchronization at the
end of each iteration is bounded by the slowest worker [5].
More seriously, the idle time on waiting for the stragglers
will be more obvious when workers own significant differ-
ences of computation capacity in the heterogeneous envi-
ronment. A natural approach to address this issue is to
introduce the asynchronous distributed SGD algorithm (i.e.,
ASP) for gradient exchange. However, this asynchronous
coordination manner will incur staleness which may lead to
poor convergence results. To make a trade-off between
straggler and staleness, we intend to design a new gradient
exchange algorithm based on SSP but in a manner that uses
piece-level collective communication.

The main idea of our algorithm is to asynchronously and
partially exchange gradient in the colayer granularity, using
gradient sketch to conduct traffic compression and gradient
partition. With the proposed Gradient Exchange Index (GEI)
data structures (Section 5.2), we can readily monitor the gra-
dient exchange progress of all workers. Meanwhile, we set
two thresholds to restrict the delay-bounded staleness: (1)
traditional staleness threshold s handling the synchroniza-
tion strides among workers and (2) the proportion threshold
p that controls how many coloayers on each worker should
exchange corresponding gradient tensors before s is
exhausted, otherwise gradient tensors that have been
exchanged are marked as out-of-date and should be
dropped. The details of staleness bounding are illustrated
in Section 5.3.

4.4 Multi-Interface Collective Communication

With the gradient exchange algorithm controlling parameter
synchronization, we need to design an efficient data trans-
mission mechanism that adapts our algorithm to the under-
lying multi-interface network. We select BCube network as
the candidate due to its better communication performance
over other networks [15]. Our synchronization algorithm can
also be easily transferred into other networks as we provide
the uniform programming interfaces (Section 5).

4.4.1 BCube Topology

Following the classical definition of BCube network [14],
[17], the total worker number n in BCube(a; b) can be
defined as: n ¼ ab; where a is the port number of each
switch and b is the recursive levels of cubes < �; � > : We
intend to partition gradient tensors into pieces and asyn-
chronously transmit these pieces through the underlying
BCube network in parallel, so as to avoid frequent traffic
burst and reduce the communication overhead. To achieve
this goal, we need to efficiently exploit two inherent proper-
ties of BCube network, i.e., (1) inter-cube connection and (2)
multi-level interfaces of each worker. The first property
ensures that workers belonging to the same cube can
directly communicate with each other in a P2P manner
instead of through a multi-hop route. Note that the cubes
follow the recursive topology with b levels and each worker
is located in b cubes at the same time. Also, the second
property provides b� more available bandwidth over
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commodity FatTree network and we can conduct communi-
cation of different cubes through these multi-interfaces. For
handling b interfaces on a worker, we employ b threads to
manage the communication on each interface. Meanwhile,
we identify a gradient piece as < t½��; � > Wð�Þ; whereWð�Þ
and t½�� represent the index of worker and thread, respec-
tively. Based on this identification, we can transmit gradient
pieces among workers via different interfaces simulta-
neously without inter-cube bandwidth competition.

4.4.2 Synchronization Algorithm

With gradient sketch, the gradient tensor is partitioned into
pieces (buckets), so that we can exchange them amongwork-
ers in a decentralized manner. We design a synchronization
algorithm based on the programming interfaces extracted
from Observation 4 to operate this asynchronous procedure.
To show the compatibility of our synchronization algorithm,
we will discuss the gradient exchange procedure in the
decentralized environment of BCube andMesh networks.

BCube Network. The algorithm contains two stages, i.e.,
allgather and allreduce, when deploying in the BCube net-
work. In the allgather stage, a worker collects all the gradi-
ent pieces with the same index from other workers. In the
allreduce stage, a worker exchanges each fully aggregated
gradient piece to other workers. Both two stages contain
intra- and inter-cube communication, which can be oper-
ated via multi-level threads in parallel.

As shown in Fig. 13, we use an example based on BCube
(3,2) with 9 workers to illustrate the communication proce-
dure. These 9 workers are marked by their index, ranging
from Wð0;0Þ to Wð2;2Þ: As each worker owns 2 interfaces, we
allocate 2 threads on each worker. Besides, we partition each
worker’s gradient into 4 (2� 2 ¼ 4) pieces, which are
marked by using index from < t½0�; 0 > to < t½1�; 1 > :
Therefore, we have 36 (9� 4 ¼ 36) gradient pieces in total.
All these pieces can be identified by using piece index from
< t½0�; 0 > Wð0;0Þ to < t½1�; 1 > Wð2;2Þ uniquely. For brief,
we takeWð0;0Þ as an example. The entire communication pro-
cedure is summarized in Table 2. Note that both allgather
and allreduce stages contain two steps. In the first step of all-
gather stage,Wð0;0Þ collects gradient pieces of level-0 cube <
0; 0 > (Fig. 13a) and level-1 cube < 1; 0 > (Fig. 13b) via
thread t½0� and t½1�; respectively. After combining its local
gradient pieces < t½0�; 0 > Wð0;0Þ and < t½1�; 0 > Wð0;0Þ;
Wð0;0Þ gets < t½0�; 0 > Wð0;�Þ and < t½1�; 0 > Wð�;0Þ: In the
second step, Wð0;0Þ exchanges the partial aggregated pieces
to other workers while handles cube < 0; 0 > and cube <
1; 0 > via thread t½1� and t½0�; respectively. After that,Wð0;0Þ
owns two fully aggregated pieces < t½0�; 0 > Wð�;�Þ and <
t½1�; 0 > Wð�;�Þ: Then, the synchronization comes to the allre-
duce stage. In the first step of allreduce stage, Wð0;0Þ

exchanges the two fully aggregated pieces to other workers,
and operates cube < 0; 0 > and cube < 1; 0 > via thread
t½1� and t½0�; respectively. After this exchanging,Wð0;0Þ owns
fully aggregated pieces < t½0�; � > Wð�;�Þ and < t½1�; � >
Wð�;�Þ: Finally, in the second step of allreduce stage, Wð0;0Þ
can simply combine these two pieces to form the final com-
plete gradient tensor.

Different from BML that conducts above procedure using
BSP, we handle this in an asynchronous scheme. In our syn-
chronization algorithm, each worker independently oper-
ates gradient exchange without a synchronized barrier at
the end of each iteration. Consequently, other workers may
be still under computation whenWð0;0Þ is operating gradient
exchange. Each worker will conduct gradient exchange
when it has finished the derivative computation. In a macro
view, the interleaved communication among workers is
operated through the BCube network in parallel. To avoid
extra traffic overhead, we stipulate that a worker will send
an empty packet when it is still under computation or has
exchanged current gradient in prior communication. In pro-
gramming practice, we implement this role with the sup-
port of two GEI data structures (Section 5.2).

Mesh Network. As to the case in the Mesh network, our
algorithm can be further simplified into one stage of allgather
with two steps.We use Fig. 14 to better illustrate the gradient
exchange procedure. In the first step, each worker scatters
the gradient pieces to the other N � 1 workers (assuming
there are N workers in total) by matching the piece index to
the worker index. Thus, each worker owns the partial-aggre-
gated gradient tensor (i.e., the 3 pieces in Fig. 14a). In the sec-
ond step, each worker gathers the partial-aggregated tensors
from other N � 1 workers and finally forms the fully aggre-
gated gradient tensors (i.e., the 9 pieces in Fig. 14b). The com-
munication of these two steps can be operated in parallel by
using the OpenMPI [40] or NVIDIANCCL [41] library.

5 IMPLEMENTATION

5.1 System Architecture and APIs

We implement Canary on PyTorch-1.4.0 [35] with CUDA-
10.1 [58] and NVIDIA NCCL [41]. With the programming-

Fig. 13. Gradient pieces are exchanged through intra- and inter-cube
communication.

TABLE 2
Synchronization Procedure of Intra- and Inter- Gradient

Exchange on WorkerWð0;0Þ

Fig. 14. The workflow of synchronization algorithm in Mesh network.
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friendly PyTorch, we utilize the Python-level libraries to
build the model training functions. Other functions related
to the distributed communications are developed via the
hybrid coding with C++, using the Open MPI [40] tools and
PyTorch distributed communication package [59]. Note that
the CUDA and NCCL toolkits will be invoked when GPUs
are available for training. As shown in Fig. 15, Canary fol-
lows a decentralized structure, where a cluster manager
called supervisor monitors the entire cluster and workers
communicate to each other in a P2P manner without the
message forwarding by the supervisor. On each worker, a
Canary daemon handles the DL training process and
machine execution status. The GEI handler records the
intermediate training data during BP stages and collabo-
rates with the consistency controller to restrict staleness in
an acceptable bound. All the gradient tensors are parti-
tioned under the control of GEI handler and are transmitted
via BCube driver. Note that the BCube driver abstracts the
underlying network topology to decouple the traffic trans-
mission with upper synchronization algorithm. Moreover,
we develop the Canary API (in Table 3) in Python for practi-
cal implementation. We can create a CanarySession

object to interact with Canary: For example, we handle the
allreduce stage as follows.

cs = new CanarySession(workerId=(0,0))

cs.all_reduce

(tensor, cubeId=<0,0>, piece_level=2)

With the Canary library, we can expediently conduct
parallel DL training and leverage the superior of BCube
network.

5.2 GEI Handler

The most crucial issue in practice is to make Canary online
applicable. To achieve this goal, we elaborate two data
structures, i.e., Gradient Exchange Index (GEI) Row Vector and
GEI Matrix to handle the global coordination of parameter
synchronization across the cluster. The GEI module is the
core of our gradient exchange algorithm.

GEI Row Vector: rr:Given a workerWðiÞ and colayer c½i�;we
use c

½i�
ðiÞ to represent colayer c½i� on worker WðiÞ:

2 With the
colayer total amount k; we use the GEI row vector rrðiÞ to
mark the gradient exchange progress of all colayers (from

c
½0�
ðiÞ to c

½k�1�
ðiÞ ) on WðiÞ: As shown in Fig. 16a, we illustrate rrðiÞ

in the format of a row vector containing k elements, each of
which records the parameter synchronization status of c

½i�
ðiÞ:

Note that rrðiÞ is unfolded from the right to the left, thus the

first element r
½0�
ðiÞ corresponds to the first colayer c

½0�
ðiÞ and the

last element r
½k�1�
ðiÞ corresponds to the last colayer c

½k�1�
ðiÞ : In a

n-worker cluster, each worker needs to receive n-1 gradient
tensors in total from other n-1 workers. On worker WðiÞ; we
encode the gradient piece index of all colayers (denoted as
c
½��
ðiÞ) with the unique integer value3 (i.e., 2ðiÞ�1) to distinguish

WðiÞ’s all colayers c
½��
ðiÞ from other workers’. Therefore, we

can cumulate another worker’s (e.g., WðjÞ) encoded gradient
index (e.g., index of c

½i�
ðjÞ) to r

½i�
ðiÞ whenWðiÞ has received gradi-

ent pieces of corresponding colayer c
½i�
ðjÞ from WðjÞ: Other-

wise, we cumulate 0 to r
½i�
ðiÞ to represent that WðiÞ has not

received any gradient pieces from other workers. Note that
the index of local gradient pieces generated byWðiÞ will also
be added to r

½i�
ðiÞ: Therefore, r

½i�
ðiÞ ¼ 0 indicates that WðiÞ has

not exchanged any gradient pieces of colayer c½i� with other
n-1 workers and the local gradient pieces of c

½i�
ðiÞ also has not

been figured out.
We use an example to illustrate this procedure. As shown

in Fig. 16b, assume that r
½6�
ð4Þ (corresponding to colayer c

½6�
ð4Þ on

worker Wð4Þ) is 233, we can search out which workers have
exchanged their gradients of c½6� to Wð4Þ by inspecting the
value of r

½6�
ð4Þ in binary format. As 233 is translated as

“0b 1110; 1001”, we figure out that Wð4Þ has received gradi-
ent pieces belonging to c½6� from workers with index of 1, 4,
6, 7 and 8. Note that worker index of 4 (i.e., Wð4Þ) is also
recorded in “0b 1110; 1001”. This indicates thatWð4Þ has also
sent its gradient piece of c½6� to other n-1 workers, thus we
add “0b 0000; 1000” into r

½6�
ð4Þ to record this operation.

GEI Matrix: Q: As to WðiÞ; the rrðiÞ records the status of
gradient piece exchange of all colayers. However, the DL
training on each worker contains a succession of iterations,
each of which exchanges gradient pieces among workers
during the BP stage. Therefore, we introduce the time
sequence (i.e., the index of training iteration <i> ) into rrðiÞ to
better describe the progress of entire distributed DL proce-
dure. The original row vector is modified as rrðiÞ; < i> ; where
subscript <i> represents the iteration index. As shown in
Fig. 16c, the multiple BP stages in this iterative training pro-
cess can be defined as a GEI matrix Q; each row of which is
a GEI row vector rr: The row number z of Q represents the
latest index of training iteration. In the parallel asynchro-
nous coordination, a new rrð�Þ; < iþ1> will be created once
any worker has stepped into a new iteration <iþ1> from

Fig. 15. Architecture overview of Canary.

TABLE 3
Canary API

2. To avoid confusion, we use subscript ðiÞ; superscript ½i� and sub-
script <i> to represent the index of workers, colayers and iterations,
respectively.

3. In our experiments, the worker number is 34. Although n may be
large in datacenter environment as the cluster contains plenty of work-
ers, it is still feasible to allocate an integer variable of this magnitude in
Python, even up to 21;000:
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current iteration < i> and this latest iteration index will be
spread to all workers. As a result, the row number z of Q is
determined by the fastest worker in the cluster. As each
worker independently maintains a local copy of Q; the first

<i�1> rows of rr are the same on all workers when the latest
iteration index is <i> : Only the last row may be slightly
delayed before the latest inter-worker communication is
done. Therefore, all workers own a same Q when each gra-
dient exchanging operation is completed.

Summary. With these two data structures, we can
handle the iterative training process of each colayer
among different workers and the asynchronously excha-
nge gradient pieces through our underlying communica-
tion module.

5.3 Staleness Bounding

Recall that we set two thresholds (i.e., staleness s and pro-
portion p) to restrict the delay-bounded staleness in our
algorithm, so as to guarantee the training convergence effi-
ciency in practice. As a result, how to effectively monitor
these two thresholds is also important. With the GEI data
structures proposed in Section 4.3.3, we can easily trace the
influence of these two thresholds. Given a worker WðiÞ; < i>

in current iteration < i> ; we mainly consider the following
three issues to monitor these two thresholds.

1. How to calculate current staleness value sðiÞ; < i> ? Current
staleness value sðiÞ; < i> is defined as the gap of current itera-
tion index between WðiÞ and the fastest worker, i.e., the dif-
ference of <i> and the row number z: As each worker
independently maintains a local copy of Q; we can readily
calculate sðiÞ; < i> as sðiÞ; < i> ¼ z�< i> (line 5 Pseudocode 1).

2. How to calculate current proportion value pðiÞ; < i> ?We can
count the number of colayers that have finished exchanging
gradient pieces, so as to calculate current proportion value
pðiÞ; < i> :We scan each element r

½i�
ðiÞ; < i> in rrðiÞ; < i> and inspect

the binary digit of r
½i�
ðiÞ; < i> to check whether WðiÞ; < i> has

exchanged the gradient pieces corresponding to colayer
c
½i�
ðiÞ; < i> : We need to inspect how many r

½i�
ðiÞ; < i> satisfying

this condition to figure out pðiÞ; < i> (lines 9–16 Pseudocode
1). Actually, we can use the bitwise operation to simplify this
process (line 2 Pseudocode 1). Moreover, based on pðiÞ; < i> ; it
is readily to check whetherWðiÞ has exchanged all the gradi-
ent tensor pieceswith other workers in iteration < i> :

3. Given two thresholds s and p; how to inspect whether the
local gradient on worker WðiÞ; < i> is out-of-date?With sðiÞ; < i>

and pðiÞ; < i> ; we can check whether pðiÞ; < i> is smaller than
threshold p (line 22 Pseudocode 1) when sðiÞ; < i> has
exceeded threshold s (line 19 Pseudocode 1). If this

condition is true, we will markWðiÞ; < i> as overtime and the
gradient tensors generated in current iteration will be
dropped. Then, WðiÞ; < i> will directly pull the latest model
parameters from the fastest worker. This bounding opera-
tion effectively avoids introducing too much delay error
that may degrade the training convergence.

Pseudocode 1. Staleness Bounding

GEI Data Structure (RequireWðiÞ; < i> ; s; p):
1: procedure BITWISEAND(Int r;Maskmk)
2: return binary(r) ^ binary(mk); " Bitwise “AND”.
3: end procedure
4: procedure CALCSTALENESS(Int r;Maskmk)
5: return sðiÞ; < i>  z�< i> ; " Current staleness value
6: end procedure
7: procedure CALCPROPORTION(GEI Row Vector rrðiÞ; < i> )
8: pðiÞ; < i>  0;

9: for r
½i�
ðiÞ; < i> 2 rrðiÞ; < i> do

10: if BITWISEAND(r
½i�
ðiÞ; < i> , ðiÞ) ¼¼ 1 then

11: pðiÞ; < i>  pðiÞ; < i> þ 2½i�;
12: else
13: pðiÞ; < i>  pðiÞ; < i> þ 0;
14: end if
15: end for
16: return pðiÞ; < i> ; " Current proportion value.
17: end procedure
18: procedure CHECKSTALENESS(sðiÞ; < i> ; Threshold s)
19: return ðsðiÞ; < i> � sÞ ? 1 : 0; " Boolean return.
20: end procedure
21: procedure CHECKPROPORTION(pðiÞ; < i> ; Threshold p)
22: return BITWISEAND(pðiÞ; < i> ; p); " Boolean return.
23: end procedure

It is worth noting that we can switch our algorithm to
BSP, ASP and traditional SSP by adjusting the threshold of
staleness s and proportion p: We use WðiÞ as an example.
First, we can set p as the colayer number or the length of
GEI row vector rr to shift our algorithm from piece-level gra-
dient exchange to full gradient exchange. Then, we control
the value of r

½i�
ðiÞ; < i> to distinguish the synchronous and

asynchronous coordination. As to BSP, we restrict r
½i�
ðiÞ; < i>

as 2n-1 and require WðiÞ receiving all the gradient pieces
from other n� 1 workers at the end of each iteration, i.e.,
sðiÞ; < i> is always 0. As to ASP and SSP, we can soften the
restriction and permit r

½i�
ðiÞ; < i> ranging from 0 to 2n-1. More

precisely, we can set sðiÞ; < i> � s to shift into SSP while ASP
has no requirements on sðiÞ; < i> :

Fig. 16. GEI data structures are employed to trace the gradient exchange process on each worker.
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6 EVALUATION

We evaluate Canarymainly in the following five aspects:

1. How does Canary perform in convergence? As to image
classification, Canary achieves robust training con-
vergence and minimizes the loss function under dif-
ferent benchmarks, in both CPU- and GPU-equipped
clusters.

2. How doesCanary perform in scalability? Canary can
provide stable test accuracy and good speedup of
image processing speed along with the increment of
worker number, ranging from the BCube(2, 2) to
BCube(5, 2) cluster.

3. How doesCanary reduce communication overhead? The
records of real-time bandwidth utilization demon-
strate that Canary requires less average bandwidth
utilization and yields less traffic burst compared
with the BML on PyTorch. Moreover, Canary gener-
ates less network traffic by up to 56.28 percent reduc-
tion over BML on PyTorch.

4. How is the performance ofCanary’s gradient sketch? The
gradient sketch method can effectively accelerate the
convergence speed, while not degrading the training
quality and not bringing extra computational over-
head to the distributed training system.

5. How doesCanary improve training efficiency? As to the
convergence time and test accuracy with given time,
Canary provides better performance over BML on
PyTorch, Ako on PyTorch and PS on TensorFlow.
Moreover, the gradient sketch method inside Canary
can apply to existing learning frameworks and fur-
ther improve the training efficiency.

6.1 Evaluation Setting

6.1.1 Testbed

Our experiments are conducted on a 34-node cluster in Ali-
baba Cloud [26]. We arrange the entire cluster into three
groups: (1) 16 nodes virtualized from two GN5 instances,
owning 16 NVIDIA Tesla P100 GPUs with 256 GB graphic
memory, 104-core vCPUs and 960 GB RAM in total; (2) 9
nodes virtualized from one GN6 instance, owning 8 NVI-
DIA Tesla V100 GPUs with 128 GB graphic memory, 88-
core vCPUs and 256 GB RAM in total; and (3) 9 nodes vir-
tualized from 9 C5 instances, each of which owns a 8� 2:5
GHz CPU with 16 GB RAM without GPU. Note that each
node enables 2 network interfaces and runs Ubuntu 16.04.2
LTS with GNU/Linux 4.8.0-36-generic kernel.

6.1.2 Network Construction

All the nodes are virtualized from the GN5 and GN6 instan-
ces with the support of Alibaba Cloud Elastic GPU Service
[60]. By using the tool of Elastic Network Interfaces (ENIs)
[61], we can configure multiple ENIs for each instance. To
construct the network links, we deploy the instances in a 10
Gbps Ethernet local area network, where all the nodes are
based on independent virtual machines, each of which owns
different ENIs and private IP addresses. We construct the
Tree-based andBCube(*,2) networkwith 4, 9, 16 and 25work-
ers by configuring IP address and routing table among
groups. The detailed network constructions of FatTree and

BCube topology are shown in Figs. 17a and 17b, respectively.
As to the FatTree topology, we use the PS example based on
1 server and 4 workers to show the network construction.
The server and four workers are located in the local area net-
work, communicatingwith each other via the router. Their IP
addresses can be easily set within the same network segment
(e.g., following the rule of 172.17.0.0/24). Meanwhile, we
use the case of BCube(2,2) to illustrate the BCube construc-
tion, where each worker owns two ENIs and connects to the
two-level (level-0 and level-1) routers. We identify each
router and worker with a unique index. The IP address
definition rule follows “172.17.router-index.worker-index”. For
example, the two interfacesen0 anden1 ofW1 can be identi-
fied as 172.17.3.1 and 172.17.1.1, respectively. Note
that a worker only communicates to others whose ENIs are
connected to the same routers. For example, the en0 of W1

can directly communicate to the en0 of W3 via R3: Overall,
we can establish the network links between two workers
with the support of ENIs and IP address assignment.

6.1.3 Workload and Benchmark

We conduct the DL training of image classification tasks
based on six models (AlexNet [27], VGG19 [28], Inception-V3
[29], ResNet18 [30], ResNeXt101 [31] and ResNeXt152 [31]
with three datasets (Fashion MNIST [32], CIFAR-10 [33], and
ImageNet [34]).We empirically set the global batch size as 256
and the local batch size will be adjusted under different num-
ber ofworkers. For example, the local batch size is round to 10
when theworker number is 25. Following the guidelines from
ConSGD [1],we set the initial learning rate as 0.1 andmultiply
it by 0.2 when every 25 percent training progress is done.
Besides, we implement three baselines: BML on PyTorch [35]
(BML-PT), Ako on PyTorch (Ako-PT) and PS on TensorFlow
[36] (PS-TF), both of which are based on BSP. Furthermore,
we apply the gradient sketchmethod into existing distributed
DL training frameworks, e.g., Horovod [37] and BytePS [54],
to inspect the improvement of image processing speed.

6.2 Convergence and Generalization

We mainly focus on the metrics of top one test accuracy and
training loss with certain epochs (40 for AlexNet, VGG19,
Inception, 100 for ResNet18, and 200 for ResNeXt101 and
ResNeXt152). Considering the attributes of different models
and datasets, we deploy the training in different groups of
cluster based on BCube(3, 2) and BCube(4, 2). As shown in
Fig. 18, regardless of different models and datasets, Canary
can achieve stable test accuracy and minimize loss function
after sufficient training epochs. For example, we conduct
image classification on Inception-V3 with Fashion MNIST

Fig. 17. The construction example of network links.

912 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on January 21,2021 at 21:13:09 UTC from IEEE Xplore.  Restrictions apply. 



and CIFAR-10 in GPU V100 (in Fig. 18e) and GPU P100
(in Fig. 18f) cluster, respectively. We observe that Canary
achieves good training generalization in both BCube(3, 2)
and BCube(4, 2) clusters, where the top one test accuracy is
up to 94.81 percent (with 0.29 percent training loss) and
94.29 percent (with 0.75 percent training loss) on Fashion
MNIST and CIFAR-10, respectively. Moreover, although
V100 and P100 own analogous computational capacity, the
training convergence time in V100 cluster is longer than
that in P100 cluster as BCube(4, 2) can provide more com-
munication power over BCube(3, 2). The details about
Canary’s scalability will be discussed in Section 6.3.

6.3 Scalability

The scalability is also a crucial metric to evaluate Canary in
realistic deployment. We mainly consider three aspects, i.e.,
top one test accuracy (in Fig. 19), image processing speed

and training speedup (in Fig. 20) with the increase of
worker number. Experiments are conducted on six models
with two datasets. As shown in Fig. 19, Canary can yield
acceptable top one accuracy until training convergence in
different cluster scales, from 4-node BCube(2, 2) to 25-node
BCube(5, 2). This indicates that the staleness-bounded asyn-
chronous gradient exchange provides Canary with good
robustness while avoiding being trapped in poor local con-
vergence. Meanwhile, we observe that the training perfor-
mance does not degrade in large-scale networks, where
Canary can make a good balance between consistency-con-
trol and communication overhead.

Moreover, we measure the image processing speed
(images/sec) and the corresponding speedup in different

Fig. 18. Sequence diagram of training convergence in terms of top one
test accuracy and training loss using different workload and testbed
configurations.

Fig. 19. Canary guarantees adequate top one test accuracy with differ-
ent umber of workers.

Fig. 20. Canary improves the image processing speed (images/sec) and
achieves good speedup on six models with three datasets.
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cluster scale in Fig. 20. Theoretically, the speedup of image
processing speed follows a linear relationship with increase
of tworker number, we use the black solid line to represent
the linear scaling. Although the speedup of Canary does not
strictly follow this linear relationship, Canary still provides
a stable improvement under different workload configura-
tion, especially when using more complex datasets. We can
observe that the speedup of ImageNet is higher than that of
other two datasets, because the computation of forward and
backward propagation will dominate the per-iteration time
in this scenario. Besides, the speedup of communication-
intensive models with more parameters is usually lower
than that of computation-intensive models. For example,
Inception-V3 owns a better speedup than VGG19, mainly
due to two reasons. First, the parameter size of Inception-V3
model (about 83.18 MB) is much smaller than that of
VGG19 model (about 532.61 MB), making Inception-V3
yield less communication overhead. Second, Inception-V3 is
more computation-intensive than VGG19, due to the large
amount of CONV and pooling operations. Consequently,
models with more computation demand while less commu-
nication overhead can achieve better speedup.

6.4 Communication Overhead

Measuring the communication overhead is significant to
inspect the online performance of Canary . We will discuss
how to measure the network traffic first. Recall that all the
nodes are based on independent virtual machines, each of
which owns different ENIs and private IP addresses. In our
program codes of distributed DL training, each node sends
and receives the gradient pieces via its ENIs. Therefore, we
can measure the communication overhead of a node by
checking the incoming and outgoing traffic of the ENIs. We
use the Linux console application called nload [62] to
monitor network traffic and bandwidth usage in real time.
As to performance comparison of network communication,
we mainly consider the real-time bandwidth utilization of
our system and BML-PT in a 16-node BCube(4, 2) network
on VGG19 model with CIFAR-10 dataset. As shown in
Fig. 21, we can observe that Canary occupies less bandwidth
utilization within the entire 5,000 seconds of network
records, where the peak bandwidth utilization of Canary
and BML-PT is 51.05 and 75.98 percent, respectively. More-
over, Canary yields less traffic burst while BML-PT’s curve
fluctuates more dramatically. This indicates that the asyn-
chronous gradient exchange can provide better traffic off-
loading over BML’s BSP. Actually, the accumulated
padding area represents the total traffic amounts during DL
training. In this aspect, Canary reduces the network traffic
by up to 56.28 percent over BML-PT on average.

6.5 Gradient Sketch Performance

As we reduce the traffic volume and communication over-
head by compressing the gradient tensors in low-precision
data type, it is necessary to check the training quality with
gradient sketch. Therefore, we control the percentile of
enabling gradient sketch during the training progress and
compare the convergence curves under different configura-
tions. The training is based on the AlexNet model with
Fashion MNIST dataset. As shown in Fig. 22a, the percentile
is adjusted from 0 percent (no gradient sketch) to 100 per-
cent (always enable gradient sketch). We can observe that
the top one test accuracy until convergence does not
decrease too much. Meanwhile, the early-stage training
speed is significantly accelerated by enabling gradient
sketch (the pink line), compared with the original training
configuration (the black line). This comparison shows that
our gradient sketch method can effectively accelerate the
convergence speed while not degrading the training quality.

Besides, we analyse the computational overhead of gradi-
ent sketch by measuring the time cost of the three-step work-
flow, under different training workload. As shown in
Fig. 22b, the time cost of operating gradient sketch (the green
column) is relatively short, even on the deep ResNeXt152
model with ImageNet dataset, where the major overhead is
from the operations of forward and backward propagation,
and the network transmission of gradient tensors. This phe-
nomenon indicates that the gradient sketch method will not
bring much extra computational overhead to the distributed
training system. Note that the efficiency of gradient sketch is
impacted by the property of models, datasets and computing
hardware. Therefore, we believe the gradient sketch method
could be further optimized. For example, we could employ
gradient sketch to certain layers instead of the whole model.
Also, this method can be implemented via dedicated hard-
ware, e.g., FPGA, to fully exploit the acceleration power.
These are interesting directions for futurework.

Fig. 21. The real-time bandwidth utilization of Canary on BCube(4, 2) is
much less than that of BML-PT.

Fig. 22. The gradient sketch method performs well in terms of training
quality and computational cost.
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6.6 Baseline Comparison and System Improvement

As to the statistical efficiency of realistic deployment, we
compare Canary with BML-PT and PS-TF in a 9-node clus-
ter using group (2) GPUs. Note that Canary and BML-PT
are deployed on a BCube(3, 2) network while PS-TF is
deployed in a tree-based topology with 1 server and 8 work-
ers. We consider two metrics: (1) training convergence time
and (2) top one test accuracy after given training time. As
shown in Fig. 23, Canary yields shorter convergence time
on six models with two datasets. Specifically, under DL
training configuration of s ¼ 18 and p ¼ 6 (total colayer
number is 10) on VGG19 model with Fashion MNIST data-
set, Canary is faster than BML-PT, Ako-PT and PS-TF by up
to 1:61�, 2:28� and 2:84�, respectively. Moreover, Canary
achieves the highest test accuracy after the same given time
in Fig. 24. For example, given 15 minutes on Inception-V3
model with Fashion MNIST dataset, Canary holds 90.63 per-
cent top one test accuracy, which is higher than BML-PT
and PS-TF.

We also apply the idea of gradient sketch to the state-of-
the-art frameworks (Horovod and BytePS) to check the sys-
tem improvement of training efficiency. The evaluation is
conducted on six models with three datasets, in BCube(4,2)
network with 10 Gbps Ethernet. As shown in Figs. 25, 26 and
27, we focus on the image processing speed in one iteration
under different cluster scale. As the ByteScheduler inside
BytePS shares the same features from Horovod, these two
systems own the similar performance. We observe that both
Horovod and BytePS can improve their image processing
speed by employing the gradient sketch method, especially
when training the communication-intensive models with
large parameter volume (e.g., VGG19 and ResNeXt152). The

key to achieve this improvement is the gradient sketch
method can effectively compress gradient tensors by restrict-
ing the original Float32 data within 8 bits, so as to reduce the
traffic size when exchanging the gradients. Consequently,
the gradient sketch method inside Canary can apply to other
distributed DL frameworks to accelerate the training speed.

7 CONCLUSION

We present Canary; a decentralized DL architecture con-
ducting piece-level gradient exchange in multi-interface net-
work. We conduct a co-design of traffic compression and
parameter synchronization to fully exploit the capacity of
multi-interface networkwithout aggravating network bottle-
neck. The experimental results demonstrate thatCanary out-
performs commodity PS on TensorFlow, Ako on PyTorch
and BML on PyTorch in terms of training convergence, scal-
ability and communication overhead. Specifically, Canary
reduces traffic volume, by up to 56.28 percent, on average,
less than the BML on PyTorch. Besides, Canary accelerate
training convergence, by up to 1:61�; 2:28� and 2:84� faster
than BML on PyTorch, Ako on PyTorch and PS on

Fig. 23. Canary reduces convergence time on different workload using
the 9-node cluster of group (2).

Fig. 24. Baseline comparison of test accuracy after given training time
using the 9-node cluster of group (2).

Fig. 25. The comparison of training Fashion MNIST dataset.

Fig. 26. The comparison of training CIFAR-10 dataset.

Fig. 27. The comparison of training ImageNet dataset.
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TensorFlow, respectively. Moreover, the gradient sketch
method inside Canary can apply to existing learning frame-
works and further improve the efficiency of distributed
training.
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