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Need for Counting

The problem of counting the number of different objects appears in many
computer science applications. Some examples:

All Java programs use identifiers. Say, each identifier is limited to 8
characters long, the first character must be a letter. How many possible
identifiers are there?

In GPS map routing application, we know the starting location, the
ending location, and the intermediate locations on the map, how many
different routes are there? (The routing program must select the best
route from these routes.)

In Facebook application, we are given three users A, B, C. We know the
set of the friends of A, B, C. How do we count the number of users who
are the friend of at least one of A, B, C?

We will discuss some commonly used counting methods.
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Product Rule

Product Rule
Suppose that a procedure can be broken into a sequence of two tasks.
If there are n1 ways to do the first task and n2 ways to do the second
task, then there are n1 · n2 ways to do the procedure.

Example 1:
The chairs in an auditorium are labeled by upper case English letters
followed by an integer between 0 and 99. What’s the largest numbers
of chairs that can be labeled this way?

Solution: There are 26 ways to pick letters. There are 100 ways to pick
integers. So, by Product Rule, there are 26 · 100 = 2600 ways to label
chairs.
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Product Rule

The Product Rule can be easily generalized from 2 tasks to k tasks for any
integer k.

Example 2:
How many different bit strings of length 8 are there?

Solution: 28 = 256.

Example 3:
Suppose that Java program identifiers consist of only upper and lower cases
English letters and digits. The first character must be an upper case letter.
The last character must be a digit. (They are not real requirements, just an
example). Count the number of possible identifiers of length exactly 6.

Solution: There are 26 choices for the 1st character. There are 26+26+10=62
choices for each of the 2nd - 5th character. There are 10 choices for the last
character. So the answer is 26 · 62 · 62 · 62 · 62 · 10.
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Product Rule

Notation: |A| denotes the number of elements in the set A.

Product Rule: |A1 × A2 × . . .× Am| = |A1| × |A2| × . . .× |Am|.

Example 4:
Show that the number of different subsets of a finite set S is 2|S|.

Let S = {s1, s2, . . . sn} be a finite set containing |S| = n elements. To describe a
subset A ⊆ S, we need to make the following choices:

whether to include s1 or not; (2 choices);

whether to include s2 or not; (2 choices);

. . .

whether to include sn or not; (2 choices);

The different choices in each step (n steps in total) will result in different
subsets. So the number of different subsets of S is 2n = 2|S|.
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Sum Rule

Sum Rule
Let A1,A2, . . . ,Am be different sets such that Ai ∩ Aj = ∅ for all i 6= j. Then:

|A1 ∪ A2 ∪ . . . ∪ Am| = |A1|+ |A2|+ · · ·+ |Am|

Example 5:
In a high school, 32 students take French class, 45 students take Spanish.
Assuming no student take both French and Spanish, how many students take
either French or Spanish?

Solution: Simple enough: 32+45= 77.

It is simple because we assumed Ai ∩ Aj = ∅. What if we drop this
assumption?
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Inclusion-Exclusion Principle

Inclusion-Exclusion Principle (with two sets)
Let A1,A2 be two sets. Then:

|A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|

Example 5a:
In a high school; 32 students take French class, 45 students take Spanish. 15
student take both French and Spanish. How many students take either
French or Spanish?

Solution: 32 + 45− 15 = 62.
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Inclusion-Exclusion Principle

Example 7:
Determine the number of 8-bits binary strings such that:

Either the first bit is 1;

Or the last two bits are 00.

Let A be the set of 8-bits binary strings whose first bit is 1.
Let B be the set of 8-bits binary strings whose last two bits are 00.
We want to determine |A ∪ B|.

|A| = 27 (because the first bit is fixed.)

|B| = 26 (because the last two bits are fixed.)

|A ∩ B| = 25 (because the first and the last two bits are fixed.)

So |A ∪ B| = 27 + 26 − 25 = 160.

This principle can be generalized to more than two sets.
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Inclusion-Exclusion Principle

Inclusion-Exclusion Principle (with three sets)
Let A1,A2,A3 be three sets. Then:

|A1∪A2∪A3| = |A1|+ |A2|+ |A3|− (|A1∩A2|+ |A1∩A3|+ |A2∩A3|)+ |A1∩A2∩A3|

Example 6:
In a high school, 32 students take French class, 45 students take Spanish, 20
take German. 15 students take both French and Spanish; 12 students take
both German and Spanish; 10 students take both French and German; 6
students take all three foreign languages. How many students take at least
one foreign language?

Solution: 32 + 45 + 20− (15 + 12 + 10) + 6 = 66.
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Inclusion-Exclusion Principle

Inclusion-Exclusion Principle (general case):
Let A1,A2, . . .Am be m sets. Then:

|A1 ∪ . . . ∪ Am| = |A1|+ |A2|+ . . .+ |Am|
−(sum of |Ai ∩ Aj| for all possible i 6= j)

+(sum of |Ai ∩ Aj ∩ Ak| for all possible i 6= j 6= k)

−(sum of |Ai ∩ Aj ∩ Ak ∩ Al| for all possible i 6= j 6= k 6= l)

. . .

+(−1)m−1|A1 ∩ A2 ∩ . . . ∩ |Am|

Exercise:
Write the general formula for the case m = 4.

Note:
For m > 4, this formula is too complicated to be useful.

c©Xin He (University at Buffalo) CSE 191 Discrete Structures 12 / 48



Outline

1 Basic Counting Rules

2 Sum Rule and Inclusion-Exclusion Principle

3 Permutations

4 Combinations

5 Binomial Coefficients and Identities

6 Pigeonhole Principle

7 Proofs based on parity argument

c©Xin He (University at Buffalo) CSE 191 Discrete Structures 13 / 48



Permutations

Definition
A permutation of a set of distinct objects is an ordered arrangement of
these objects.

An ordered arrangement of r elements of a set is called an
r-permutation.

The number of r-permutations of a set with n elements is denoted by
P(n, r).
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Permutations

Example 1:
In how many ways can we select 3 students from a group of 5 students to
stand in line for a picture?

Solution:

We can select any of the 5 students for the first position.

After the first position is selected, we can choose any of the 4 remaining
students for the 2nd position.

After the 1st and the 2nd positions are selected, we can choose any of
the 3 remaining students for the 3rd position.
So, the answer is: 5 · 4 · 3 = 60.

In this example, we are counting the number of distinct 3-permutations in a
set of 5 elements. What we have shown is:

P(5, 3) = 5 · 4 · 3 = 60
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Permutations

Definition:
The factorial of n is denoted by n! and defined by:

n! = n · (n− 1) · (n− 2) · · · 2 · 1

Note: For convenience, we define: 0!=1.

Theorem 1:

P(n, r) = n · (n− 1) · · · (n− r + 1)︸ ︷︷ ︸
r terms

=
n!

(n− r)!

P(n, n) = n · (n− 1) · · · 2 · 1 = n!
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Permutations

Example 2:
How many ways are there to select a first-prize winner; a second-prize
winner; and a third-prize winner from 100 different people?

Solution: P(100, 3) = 100 · 99 · 98 = 970200.

Example 3:
A salesman must visit eight different cities. He must begin his trip from a
specific city (his home), but he can visit other seven cities in any order, then
he must return to his home city. How many possible orders can he use?

Solution: 7! = 5040.
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Permutations

Example 3:
How many permutations of the letters in {A,B,C,D,E,F,G} contain the string
ABC.

Solution: There are 7 letters. Is 7! the solution?
No. Since the string ABC must appear as a block, it is like a single symbol. So
we are really asking the number of permutations from 5 symbols. So the
solution is 5! = 120.
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Combinations

Definition
A r-combination of elements of a set is an unordered selection of r
elements from the set.

So a r-combination is simply a subset with r elements.

The number of r-combinations of a set with n elements is denoted by

C(n, r) or
(

n
r

)
.

Example 1:
How many different ways to select a committee of three members from 10
students?

Solution: Each committee is just a subset of three elements. So the answer is
simply C(10, 3).
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Combinations

Theorem 2:
For any non-negative integer n and r such that 0 ≤ r ≤ n:

C(n, r) =
n!

r!(n− r)!
=

n · (n− 1) · · · (n− r + 1)
r · (r − 1) · · · 2 · 1

Proof: Consider any r-combination, which is just a r element set A.
There are r! different orderings of the elements in A. Each of which is an
r-permutation of the set. Thus:

P(n, r) = C(n, r)× r!

Since P(n, r) = n!
(n−r)! , we have:

C(n, r) =
P(n, r)

r!
=

n!
r!(n− r)!

=

r terms︷ ︸︸ ︷
n · (n− 1) · · · (n− r + 1)

r!
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Combinations

Example 1:
How many different ways to select a committee of three members from 10
students?

Solution: C(10, 3) = 10·9·8
3·2·1 = 120.

Example 2:

(a) How many poker hands of 5 cards can be selected from a standard
52 cards?

(b) How many hands of 47 cards can be selected from a standard 52
cards?

Solution:
(a) C(52, 5) = 52·51·50·49·48

5·4·3·2·1 = 2, 598, 960.
(b) C(52, 47) = 52·51·50···7·6

47·46···3·2·1 . Is there a better way?
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Combinations

Corollary

C(n, r) = C(n, n− r)

Proof: Both of them equal to n!
r!(n−r)! .
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Combinations

Example 3:
In CSE department, there are 8 full professors, 7 associate professors, and
11 assistant professors. We want to form a committee to evaluate BS degree
program. The committee must consist of 4 full professors, 3 associate
professors and 3 assistant professors. How many different ways to select the
committee?

The number of ways to select full professors: C(8, 4)

The number of ways to select associate professors: C(7, 3)

The number of ways to select assistant professors: C(11, 3)

By product rule, the solution is:

C(8, 4) · C(7, 3) · C(11, 3) =
8!

4!4!
· 7!

3!4!
· 11!

3!8!
= 404250
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Binomial Coefficients and Identities

(
n
r

)
is also called a binomial coefficient. Why?

Example:

(x + y)0 = 1 =

(
0
0

)
(x + y)1 = x + y =

(
1
0

)
x +

(
1
1

)
y

(x + y)2 = x2 + 2xy + y2 =

(
2
0

)
x2 +

(
2
1

)
xy +

(
2
2

)
y2

(x+ y)3 = x3 +3x2y+3xy2 + y3 =

(
3
0

)
x3 +

(
3
1

)
x2y+

(
3
2

)
xy2 +

(
3
3

)
y3

. . .

(x + y)n is called a binomial.
(

n
r

)
is a coefficient in the expansion of the

binomial.
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Binomial Coefficients and Identities

The Binomial Theorem:
Let x and y be variables and n be a non-negative integer. Then:

(x + y)n =
∑n

j=0

(
n
j

)
xn−jyj =(

n
0

)
xn +

(
n
1

)
xn−1y +

(
n
2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n
n

)
yn

Proof: The general terms in the product are of the forms xn−jyj for 0 ≤ j ≤ n.

We need to count the number of the terms of the form xn−jyj.

To get such a term, we must pick n− j x’s (so that the remaining j terms
in the product are y’s).

So the number of the terms xn−jyj is
(

n
n− j

)
, which is also

(
n
j

)
.
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Binomial Identities

Corollary 1:
∑n

j=0

(
n
j

)
= 2n.

Proof: Let x = 1 and y = 1 in the Binomial Theorem, we have:

2n = (1 + 1)n =

n∑
j=0

(
n
j

)
1n−j1j =

n∑
j=0

(
n
j

)

Corollary 2:
∑n

j=0(−1)j

(
n
j

)
= 0.

Proof: Let x = 1 and y = −1 in the Binomial Theorem, we have:

0n = (1− 1)n =

n∑
j=0

(
n
j

)
1n−j(−1)j =

n∑
j=0

(−1)j
(

n
j

)
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Pascal Identity

Pascal Identity:
Let n and k be positive integers and n ≥ k. Then(

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)
Proof: Recall that

(
n + 1

k

)
is the # of k-element subsets of a set S with

n + 1 elements. Fix an element a ∈ S. These k-element subsets can be
divided into two groups:
1. The subsets that contain a. So we are choosing other k − 1 elements from

S− {a}. So there are
(

n
k − 1

)
such subsets.

2. The subsets that do not contain a. So we are choosing other k elements

from S− {a}. So there are
(

n
k

)
such subsets.

So the sum of the two groups equals to LHS.
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Pascal Triangle

Pascal’s Triangle (
0
0

)
(

1
0

) (
1
1

)
(

2
0

) (
2
1

) (
2
2

)
(

3
0

) (
3
1

) (
3
2

) (
3
3

)
(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
· · ·

It’s values:
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

· · ·

Note: The left- and the right-most numbers are always 1. Any other number is the sum of the two numbers “on its shoulder”.
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Pigeonhole Principle
The idea of Pigeonhole Principle is very simple. But when used properly, we
can get very interesting results.

Pigeonhole Principle (Version 1):
If you put n pigeons into m pigeonholes with n > m, then at least one
pigeonhole contains at least two pigeons.

Pigeonhole Principle (Version 1, equivalent statement):
If k is a positive integer and k + 1 or more objects are put into k boxes, then at
least one box contains two or more objects.

Proof: This statement is so obvious that really needs no formal proof. But for
completeness, here is a proof by contraposition.

Suppose that none of k boxes contains more than one object.

Then the total number of objects in all boxes is at most k.

This is a contradiction, because there are k + 1 objects.
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Pigeonhole Principle

Pigeonhole Principle (Version 2):
If you put N pigeons into k pigeonholes, then at least one pigeonhole
contains at least dN/ke pigeons.

dxe denotes the smallest integer that is ≥ x.
For example: d0.6e = 1; d3e = 3; d4.0000001e = 5.
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Pigeonhole Principle examples

Example 1:
At lease two people in NYC have the same number of hairs.

Example 2:
At lease 16 people in NYC have the same number of hairs.

There are 8 million people in NYC.
It is known that the maximum number of hairs a person can have
is 500,000.
Each person is a “pigeon”.
The “ith pigeonhole” holds the people with i hairs. So there are
500,001 “pigeonholes”.
So at least one pigeonhole contains at least
d8000000/500001e = d15.999968e = 16 people.
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Pigeonhole Principle examples

Example 3:
At any moment, at least 1574 ATT cell phones are connected to a ATT
cell phone tower in US.

There are 40,032 ATT towers, and 63,000,000 ATT cell phones
(the numbers are not current, just example)
So at least d63000000/40032e = 1574 cell phones are connected to
a tower.

c©Xin He (University at Buffalo) CSE 191 Discrete Structures 35 / 48



Pigeonhole Principle examples

Example 4:
How many cards must be selected from a standard deck of 52 cards to
ensure that at least three cards of the same suit are chosen?

Example 5:
How many cards must be selected from a standard deck of 52 cards to
ensure that at least three hearts are selected?

Example 6:
If we pick 5 numbers from the integers 1,2,. . ., 8, then two of them
must add up to 9.

We will discuss these examples in class.
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More difficult examples

Example:
At least two people in this room have the same number of friends in
this room. (Of course we must assume there are at least two people in
this room.)

Proof: Let k be the number of people who has at least one friend in
this room.
Case 1 k = 0: Then all people have 0 friends.
Case 2 k > 0: Among these k people:

the numbers of friends they can have are 1, 2,. . . , (k − 1). These
choices are k − 1 pigeonholes.
But there are k people, each is a “pigeon”.
So at least one pigeonhole contains at least two pigeons. In other
words, at least two people have the same number of friends.
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More difficult examples

Example:
During a month of 30 days, a baseball team plays at least one game
per day. They played exactly 45 games during these 30 days.
Show that there must be a period of consecutive days during which the
team must play exactly 14 games.

An equivalent description:
We have arbitrary 30 integers a1, . . . , a30.
Each integer ai (1 ≤ i ≤ 30) satisfies 1 ≤ ai.
The sum of the 30 integers is 45.
Show that there is always a continuous section of integers that
add up to exactly 14.

We will discuss this problem in class.
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More difficult examples

Theorem: Approximate irrational number by rational numbers
with small errors:
For any real number a, there exist infinitely many rational numbers p/q
(p and q are integers) such that |a− p/q| < 1

q2 .

What we are trying to do?
Computer can only store finite precision numbers.
When we store π = 3.1416, we are saying: π ≈ 31416/10000 with
error at most 1/10000.
In general, we want to approximate an irrational number a by a
rational number p/q with error as small as possible.
If we insist on that the denominator q must be a power of 10, we
can only guarantee the error ≤ 1

q .
This theorem shows that if we allow arbitrary integer q as the
denominator, we can double the accuracy: error < 1

q2 .
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More difficult examples

Example:
π ≈ 3/1 = 3

≈ 22/7 = 3.1428571 . . .
≈ 223/71 = 3.1408450 . . .
≈ 333/106 = 3.1415094 . . .

. . .

Proof: For any number x, let {x} denote the fractional part of x, (i.e.
the part after the decimal point.) Example:

{0.34} = 0.34.
{100.28} = 0.28.
{π} = 0.1415926 . . ..

[c, d) denotes the interval of real numbers x such that c ≤ x < d
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More difficult examples

Let a be the real number we try to approximate by rational numbers.
Consider any positive integer Q.

Consider the fractional parts of the numbers:
{0}, {a · 1}, {a · 2}, . . . {a · Q} (these are Q + 1 pigeons).
Consider the Q intervals: [0, 1

Q), [
1
Q ,

2
Q), . . . , [

Q−1
Q , 1). (These are

the Q pigeonholes.)
By pigeonhole principle, at least one pigeonhole contains at least
two pigeons. In other words, there are q1 and q2 (0 ≤ q1, q2 ≤ Q)
such that {a · q1} and {a · q2} are in the same interval.
Then |{a · q1} − {a · q2}| < 1

Q .
Suppose: a · q1 = x1.{a · q1} and a · q2 = x2.{a · q2}. (Here x1 is the
integer part of a · q1 and x2 is the integer part of a · q2.)
Let q = q1 − q2 and p = x1 − x2.
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More difficult examples

|q · a− p| = |(q1 − q2) · a− (x1 − x2)|
= |q1 · a− q2 · a− (x1 − x2)|
= |x1.{q1 · a} − x2.{q2 · a} − (x1 − x2)|
= |(x1 − x2) + {q1 · a} − {q2 · a} − (x1 − x2)|
= |{q1 · a} − {q2 · a}|
< 1

Q

This implies: |a− p/q| < 1
Q·q ≤

1
q2

This completes the proof.

c©Xin He (University at Buffalo) CSE 191 Discrete Structures 42 / 48



More difficult examples

Example: Let a = π and Q = 8.

0 · π = 0.
1 · π = 3.14159265.
2 · π = 6.28318531.
3 · π = 9.42477961.
4 · π = 12.56637061.
5 · π = 15.70796327.
6 · π = 18.84955592.
7 · π = 21.99114858.
8 · π = 25.13274112.

Note that {1 · π} = 0.14159265 and {8 · π} = 0.13274112 are in the
same interval [1/8, 2/8). So we pick q1 = 8, q2 = 1. Then
p = 25− 3 = 22 and q = 8− 1 = 7. We have π ≈ 22/7.
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Outline

1 Basic Counting Rules
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Proofs based on parity argument.

Definition
The parity of an integer specifies whether it is even or odd.

Example:
the parity of 8 and 0 are even.
the parity of 1 and −7 are odd.

The parity of integers is a simple concept. But based on parity,
sometimes we can prove interesting or even surprising results.
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Proofs based on parity argument.

Example:
We are given an 8× 8 checkerboard (each square is painted white and
black alternately). If we remove the top-left and the bottom-right white
squares, can we cover the remaining 62 squares by using 1× 2
dominoes?

No. Because:
Each domino covers 1 white and 1 black square.
So the portion of the checkerboard covered by dominoes must
have the same number of white and black squares.
If we remove two white squares, there are 32 black and 30 white
squares left. So it is impossible to cover them all.

Example:
If we remove the top-left and the bottom-left squares, can we cover the
remaining 62 squares by using 1× 2 dominoes?
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Proofs based on parity argument.

A number game:
Ask a friend do the following: (He does these steps while you are NOT
watching.)

Pick any odd integer n.
Write the numbers 1, 2, 3, . . . , 2n on a piece of paper.
Pick any two numbers i and j on the paper.
Erase i and j.
Write |i− j| on the paper.
Repeat these steps, until only one number remains.

At this point, you will guess the parity of the remaining number.

Hint: You always say “odd”.
Why you are always right?
Try to make this game more interesting.
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Proofs based on parity argument.

Fact:
The number of people (in this room) who has an odd number of friends
(in this room) must be even.

We will proof this fact by using parity arguments.

Fact:
Among any 6 people, there must be:

Either three mutual friends.
Or three mutual strangers.

Try to prove this fact. (Not by parity argument).
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