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Introduction to Elementary Number Theory

Number Theory is one of the oldest branch of mathematics.

It studies the properties of integers, especially prime numbers.

There are several simple looking, yet very challenging problems in
number theory.

There are a number of applications in Computer Science. The most
important and well known is the RSA Public Key Cryptosystem, which is
the basis of virtually all current computer security systems.

We will study some of the basic topics in number theory, so that we can
describe and understand RSA Public Key Cryptosystem.
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Some example problems in Number Theory

Fermat’s Last Theorem:
For any integer n ≥ 3, there is no integer solution x, y, z for the equation

xn + yn = zn

This problem had been open for more than 350 years. It was proved by
Andrew Wildes in 1995.

Goldbach’s Conjecture:
Every even integer n ≥ 2 is the sum of two prime numbers.

Example: 4=2+2; 6=3+3; 8=3+5; . . ., 20=3+17; 22 = 3+19= 11+11; . . ..

It has been verified that this conjecture is true for n up to 1.6 · 1018.

British publisher Tony Faber offered a $1,000,000 prize if a proof was
submitted before April 2002. The prize was not claimed.

It remains unsolved today.
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Integer division

Let a be an integer and d be a positive integer. Then there are unique
integers q and r (0 ≤ r < d), such that a = dq + r.

This is the the division of a by d.
q is the quotient of this division. We write q = a div d.
r is the remainder of this division. We write r = a mod d.
If r = 0, then we say d divides a, and write d|a.

Example:
We divide 13 by 3, and get that 13 = 3 × 4 +1.

So, 13 div 3 = 4 and 13 mod 3 = 1.

Since the remainder is not 0, we say that 3 does not divide 13.
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Example for integer division

Divide 27 by 5. What is the quotient and what is the remainder?

Does 14 divide 98?

Divide 1000 by 333.

Does 1111 divide 2345?
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Basic properties of division

Theorem:
Let a, b, c be integers. Then:

1 If a|b and a|c, then a|(b + c).

2 If a|b, then a|(bc) for all integers c.

3 If a|b and b|c, then a|c.

Proof: (1) Let d = b div a and d′ = c div a. Then b + c = da + d′a = (d + d′)a.
So a|(b + c).
(2) Let d = b div a. Then bc = adc. So a|bc.
(3) Let d = b div a and d′ = c div b. Then c = d′b = d′da. So a|c.
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Example for properties of division

Example
Suppose a, b, c are integers such that a|b and a|c. Then, for all integers
m, n, a|(mb + nc).

Proof: Let d = b div a and d′ = c div a. Then:

mb + nc = mda + nd′a = (md + nd′)a

So, a|mb + nc.

Note: you should memorize this result.
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Congruence

Definition
Let a and b be integers, and m be a positive integer. Then we say a is
congruent to b modulo m if a mod m = b mod m. We write a ≡ b (mod m).

Example:

13 mod 4 = 1 = 21 mod 4

So, we have 13 ≡ 21 (mod 4).
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Equivalent definition for congruence

Theorem:
Let a, b be integers and m be a positive integer. Then a ≡ b (mod m) if and
only if m|(a− b).

Proof: Let a = mq + r and b = mq′ + r′. With out loss of generality, assume
r ≥ r′. So a− b = m(q− q′) + (r − r′).

a ≡ b mod m ⇔ r = r′ (the remainders of a, b divided by m are the same)
⇔ (a− b) = m(q− q′)
⇔ m|(a− b)

Example for congruence

Is 101 congruent to 91 mod 9?

101 ≡ 91 (mod ???)

100 ≡ 99 (mod ???)
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Addition of congruence

Theorem:
Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then
a + c ≡ b + d (mod m).

Proof:
a ≡ b (mod m)⇔ m|(a− b) ⇔ (a− b) = k1 · m for some integer k1.
c ≡ d (mod m)⇔ m|(c− d) ⇔ (c− d) = k2 · m for some integer k2.

Hence: (a + c)− (b + d) = (a− b) + (c− d) = m · k1 + m · k2 = m · (k1 + k2).

This means m|[(a + c)− (b + d)]. By the equivalent definition of congruence,
(a + c) ≡ (b + d) (mod m).
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Example for addition of congruence

Example
10001 + 20000005 + 3004 ≡? (mod 10)

Solution:
10001 ≡ 1(mod 10)
20000005 ≡ 5(mod 10)
3004 ≡ 4(mod 10)

So 10001+20000005+3004 ≡ 1+5+4 (mod 10) ≡ 10 (mod 10) ≡ 0 (mod 10).
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Multiplication of congruence

Theorem:
Let m be a positive integer. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd
(mod m).

Proof:
a ≡ b (mod m)⇔ m|(a− b) ⇔ (a− b) = k1 · m for some integer k1.
c ≡ d (mod m)⇔ m|(c− d) ⇔ (c− d) = k2 · m for some integer k2.

Hence:
ac−bd = ac−ad+ad−bd = a(c−d)+d(a−b) = am·k2+dm·k1 = m·(ak2+dk1).

This means m|(ac− bd). By the equivalent definition of congruence, ac ≡ bd
(mod m).

Example: 10001 X 20000005 ≡ ? (mod 13)

Solution: 10001 ≡ 4 (mod 13) and 20000005 ≡ 12 (mod 13)
So, 10001 X 20000005 ≡ 4 X 12 (mod 13) ≡ 48 (mod 13) ≡ 9
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Addition and residue

Theorem:
Let m be a positive integer and a, b be integers. Then,

(a + b) mod m = ((a mod m)+(b mod m)) mod m.

Proof: Clearly, we have a ≡ a mod m (mod m), and b ≡ b mod m (mod m).
So, we get that a + b ≡ (a mod m) + (b mod m) (mod m), which is equivalent
to that (a + b) mod m = ((a mod m)+(b mod m)) mod m.

Theorem:
Let m be a positive integer and a, b be integers. Then,

ab mod m = ((a mod m)(b mod m)) mod m.

The proof is analogous to the previous theorem and so we skip it here.
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Example for calculating residue

Example: What is 20082008 mod 3?

20082008 = (2008× . . .× 2008︸ ︷︷ ︸
2008 times

) mod 3

= ((2008 mod 3)× . . .× (2008 mod 3)︸ ︷︷ ︸
2008 times

) mod 3

= (2008 mod 3)2008 mod 3
= 12008 mod 3 = 1
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Prime numbers

A positive integer p (> 1) is called prime if the only positive integers that
divide p are 1 and p itself.

A positive integer (> 1) that is not a prime is called composite.

Example:
Prime: 2, 3, 5, 7, 11, 13, 17, 19
Composite: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18
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Fundamental theorem of arithmetic

Theorem:
Every positive integer n > 1 can be written uniquely as a prime or as the
product of two or more primes where the prime factors are written in order of
non-decreasing size:

n = pr1
1 × pr2

2 × · · · × prk
k

which is called the (prime) factorization of n.

Example:
We can write 100= 2× 2× 5× 5 = 22 × 52.
We can write 241= 241.

Example:
625 = ?
891 = ?
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Prime factor test

Theorem:
If n is a composite, then n has a prime factor less than or equal to

√
n.

Proof: We prove by contradiction. Suppose that n is a composite and does
not have any prime factor ≤

√
n.

By the fundamental theorem of arithmetic, we know that n = p1 · p2 · · · pk,
where the prime factors p1 >

√
n, p2 >

√
n, . . . pk >

√
n.

Furthermore, since n is a composite, k ≥ 2. So we have

n = p1 · p2 · · · pk > p1 · p2 >
√

n ·
√

n = n

Contradiction.

Example: Show 71 is a prime.

Note that
√

71 = 8.4.... The only primes ≤ 8.4... are 2, 3, 5, 7. So we divide 71
by 2,3,5,7. None of them is a factor of 71. Then we can conclude 71 is a
prime.
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Number of primes

Theorem: There are infinitely many primes.

Proof: We prove by contradiction. Suppose that there are only a finite number
of primes: p1, p2, . . . , pn. Now consider

p = p1 · p2 · · · pn + 1

On one hand, p must be a composite since it is greater than any of the above
n primes. So by the fundamental theorem of arithmetic, it can be written as
the product of two or more primes.
On the other hand, it is easy to verify that any prime pi (1 ≤ i ≤ n) cannot
divide p since the remainder of the division is 1. Contradiction.
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Greatest common divisor

Definition
Let a and b be integers, not both 0. The largest integer d such that d|a and d|b
is called the greatest common divisor of a and b. We write:

d = gcd(a, b)

Example:
gcd(30, 6) = 6 since 6|30.
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Calculating gcd(a, b)

How to calculate gcd(a, b)?

1 Express a and b as products of powers of increasing primes.

2 Select the prime divisors a and b have in common.

3 For each of the common prime divisor, pick the smaller exponent.

4 Calculate the product of the powers of these common prime divisors,
where the exponents are what we just selected.

Example: how can we calculate gcd(168, 196)?

168 = 23 × 3× 7; and 196 = 22 × 72.

2 and 7 are the common prime divisors of 168 and 196.

For prime divisor 2, we have exponents 3 (for 168) and 2 (for 196).
Hence, we select 2; for prime divisor 7, we have exponents 1 (for 168)
and 2 (for 196). Hence, we select 1.

Calculate 22 × 71 = 28. So gcd(168, 196) = 28.
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Coprime

Definition
The integers a and b are coprime (relatively prime) to each other if
gcd(a, b) = 1.

Use the method just learned to calculate gcd(a, b), you know whether a and b
are coprime to each other.

Example:

15 and 25 are not coprime to each other since gcd(15, 25) = 5.

15 and 24 are not coprime to each other since gcd(15, 24) = 3.

15 and 28 are coprime to each other since gcd(15, 28) = 1.
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Coprime: extended definition

Definition
Consider n integers a1, a2, . . . , an. They are called pairwise coprime if
gcd(ai, aj) = 1 for any i 6= j.

Example:

15, 17, 25 are not pairwise coprime since gcd(15, 25) = 5.

15, 17, 28 are pairwise coprime since
gcd(15, 17) = gcd(15, 28) = gcd(17, 28) = 1.
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Least common multiple

Definition
The least common multiple of positive integers a and b is the smallest positive
integer that can be divided by both a and b. We denote it by lcm(a, b).

Example:
lcm(30, 6) = 30 since 6|30.
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Calculating lcm(a, b)

How can we calculate lcm(a, b)?

1 Express a and b as products of powers of increasing primes. (Analogous
to calculating gcd).

2 Select the prime divisors a and b have in common. (Analogous to
calculating gcd)

3 For each of the common prime divisor, pick the larger exponent.

4 Calculate the product of the powers of these common prime divisors,
where the exponents are what we just selected, and also all primes that
only one of them has. (Different from calculating gcd)
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Calculating lcm(a, b)

Example: how can we calculate lcm(168, 196)?

168 = 23 × 3× 7 and 196 = 22 × 72.

2 and 7 are the common prime divisors of 168 and 196.

For prime divisor 2, we (Different from calculating gcd) have exponents 3
(for 168) and 2 (for 196). Hence, we select 3; For prime divisor 7, we
have exponents 1 (for 168) and 2 (for 196). Hence, we select 2.

Calculate lcm(168, 196) = 23 × 72 × 3 = 1176.
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GCD vs. LCM

Theorem:
Suppose a and b are positive integers. Then ab = gcd(a, b) · lcm(a, b).

Example:

gcd(168, 196) = 28 and lcm(168, 196) = 1176.

168× 196 = 32928 = 28× 1176.

This tells us that if we can calculate the gcd, then we can easily get the lcm,
and vice versa.
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Euclidean GCD algorithm

The gcd (and lcm) algorithms described above rely on finding the
factorization of n.

Although it looks very simple, it is very time consuming even for super
computers to find prime factors of large integers.

This fact (that it is difficult to find prime factors) is the basis of the
cryptography (to be discussed later).

Euclidean algorithm is a much faster algorithm for finding gcd(a, b). It
does not rely on prime factorization.
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Euclidean GCD algorithm

Euclidean-GCD (a, b: positive integers)

1 x := a

2 y := b

3 while y 6= 0

r := x mod y
x := y
y := r

4 return x (gcd(a, b) is x)
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Example of Euclidean GCD algorithm

Example:
287 = 91 · 3 + 14
91 = 14 · 6 + 7
14 = 7 · 2

So gcd(287, 91) = 7

Why Euclidean-GCD algorithm work?

Lemma
Let a, b are positive integers and r = a mod b. Then gcd(a, b) = gcd(b, r).

Proof: We have a = b · q + r. Thus r = a− b · q.
Let d be a common divisor of a and b. Namely d|a and d|b. This implies that
d|(a− b · q). Namely d|r.
Similarly we can show if d|b and d|r, then d|(b · q + r). Namely d|a.
Hence {a, b} and {b, r} have exactly the same set of divisors. So
gcd(a, b) = gcd(b, r).
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Euclidean GCD algorithm

In the Euclidean-GCD algorithm, let r0 = a and r1 = b. We have

r0 = r1q1 + r2 0 ≤ r2 < r1
r1 = r2q2 + r3 0 ≤ r3 < r2
...
rn−2 = rn−1qn−1 + rn 0 ≤ r2 < r1
rn−1 = rn · qn

So
gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = . . . = gcd(rn−2, rn−1) = gcd(rn−1, rn) = rn.
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Bézout’s Theorem

Bézout’s Theorem
Let a and b be positive integers. Then there exist integers s and t such that
gcd(a, b) = sa + tb.

By reversing Euclidean GCD algorithm, we can find s and t.

Example: a = 287, b = 91. We have:

287 = 91 · 3 + 14
91 = 14 · 6 + 7
14 = 7 · 2

So gcd(287, 91) = 7. Now going backward:

7 = 91− 14 · 6
= 91− (287− 91 · 3) · 6
= −6 · 287 + 19 · 91

Hence s = −6 and t = 19.

This process for finding s and t is called Extended Euclidean Algorithm.
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Factoring and Primality Testing Problems

P1: Factoring Problem
Input: an integer X.
Output: Find its prime factorization.

If X = 117, the output: X = 3 · 3 · 13.

P2: Primality Testing
Input: an integer X.
Output: ”yes” if X is a prime number; ”no” if not.

If X = 117, output ”no”.

If X = 456731, output = ?
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Factoring and Primality Testing Problems

P1 and P2 are related.
If we can solve P1, we can solve P2 immediately.

The reverse is not true: even if we know X is not a prime, how to
find its prime factors?
P1 is harder than P2.
How to solve P1?

Find-Factor(X)
1: if X is even then
2: return ”2 is a factor of X” and stop
3: end if
4: for i = 3 to

√
X by +2 do

5: test if X mod i = 0, if yes, return ”i is a factor of X” and stop
6: end for
7: return ”X is a prime”
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To solve P1, we call Find-Factor(X) to find the smallest prime
factor i of X. Then call Find-Factor(X/i) ...

The runtime of Find-Factor: Suppose the input size is n (Namely
X is represented by n bits).
Since X is n bits long, the value of X is ≥ 2n−1.
In the worst case, we need to perform 1

2

√
2n−1 = 1

2(1.414)n−1

divisions. So this is an exponential time algorithm.
Minor improvements can be (and had been) made. But basically,
we have to perform most of these tests. No poly-time algorithm for
Factoring is known.
It is strongly believed, (but not proven), no poly-time algorithm for
solving the Factoring problem exists.
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How long does it take?

Suppose we want to factor a number X with 220 digits.
Since X is 220 digits long, the value of X is ≥ 10219.
So we need to perform 1

2

√
X > 10108 divisions.

Say we use a super computer with speed of 109 divisions/sec.
This translates into: 1099 CPU sec, about 3 · 1091 years.
For comparison: the age of the universe: about 1.5 · 1010 years.
The number of atoms in the known universe: ≤ 1080.
If every atom in the known universe is a supercomputer and starts
at the beginning of the big bang, we have only done
1.5·1010×1080

3·1091 = 5% of the needed computations!
Moore’s law: CPU speed doubles every 18 months. If the run time
function is T(n) = 2n. Then, instead of solving the problem of size
n = say 100, we can solve the problem of size 101.
An exponential time algorithm cannot be used to solve problems
of realistic input size, no matter how powerful the computers are!
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Encryption

A customer (Alice) wants to send a message M to her bank (Bob).
If an intruder (Evil) intercepts M, we must make sure Evil cannot
understand it.

So M must be encrypted:
Alice computes an encrypted message C = PA(M) (PA() is the
encryption function), and send C to Bob.
Bob receives C, and computes M = SA(C) (SA() is the decryption
function), to retrieve the original M
Even if Evil sees C, he doesn’t know SA(), so cannot recover M.
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1-1 Encryption:

Alice and Bob agree a particular method (secret key) for encryption.
Only Alice and Bob know this particular secret key, and keep it
secret.
For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.
However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Xin He (University at Buffalo) CSE 191 Descrete Structures 45 / 58



1-1 Encryption:
Alice and Bob agree a particular method (secret key) for encryption.

Only Alice and Bob know this particular secret key, and keep it
secret.
For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.
However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Xin He (University at Buffalo) CSE 191 Descrete Structures 45 / 58



1-1 Encryption:
Alice and Bob agree a particular method (secret key) for encryption.
Only Alice and Bob know this particular secret key, and keep it
secret.

For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.
However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Xin He (University at Buffalo) CSE 191 Descrete Structures 45 / 58



1-1 Encryption:
Alice and Bob agree a particular method (secret key) for encryption.
Only Alice and Bob know this particular secret key, and keep it
secret.
For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.
However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Xin He (University at Buffalo) CSE 191 Descrete Structures 45 / 58



1-1 Encryption:
Alice and Bob agree a particular method (secret key) for encryption.
Only Alice and Bob know this particular secret key, and keep it
secret.
For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.

However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Xin He (University at Buffalo) CSE 191 Descrete Structures 45 / 58



1-1 Encryption:
Alice and Bob agree a particular method (secret key) for encryption.
Only Alice and Bob know this particular secret key, and keep it
secret.
For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.
However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Xin He (University at Buffalo) CSE 191 Descrete Structures 45 / 58



RSA Public-Key Cryptosystem

Invented by Rivest, Shamir and Aldeman in 1977. Most current
computer security systems are based on this.

Everyone uses the same public key for encryption.
Bob: chose a pair of large prime numbers p and q, say 128 digits
each.
Bob: compute n = p · q.
Bob: computes two numbers d and e, such that d · e ≡ 1
(mod [(p− 1) · (q− 1)]). (We will discuss how to do this later. For
now, it’s enough to know we can calculate d, e easily from p and q.
But if we only know n, it is nearly impossible to calculate e and d.)
The pair (n, e) is the public key. Bob makes it public.
(n, d) is the secret key. Only Bob knows it.

Example
p = 7, q = 29. Then n = 7 · 29 = 203, and (p− 1) · (q− 1) = 168.
Pick e = 11 and d = 107, then 11 · 107 = 1177 ≡ 1 (mod 168).
Thus (203, 11) is the public key. (203, 107) is the secret key.
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RSA Public-Key Cryptosystem

Alice (and Dave and everyone else): Get public key (n, e)
(= (203, 11) in our example).

Treat her message M as an integer. (It can be just the value of the
binary string representing M. For example M = 100).

Compute the encrypted message C = PA(M)
def
= Me (mod n). (In

our example C = 10011 (mod 203) = 4).
Send C(= 4) to Bob.
Bob: Receiving C(= 4). Recover the original message
M = SA(C)

def
= Cd (mod n). (In our example 4107 (mod 203) = 100).

Because of the the choice of e, d, the number theory ensures the
result M is the same as the original message M. (Namely
(Me)d = M (mod n) for all M.)
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RSA Public-Key Cryptosystem

If Evil intercepts C, he doesn’t know the secret key d, so he cannot
recover M = Cd (mod n).

But Evil knows n (since this is public).
If Evil can factor n = p · q, he can calculate d. Then he knows
every thing that Bob knows.
But he must factor a 256 digit number n. This will need much
much much .... longer time than the previous problem of factoring
a number of 220-digits!
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RSA Public-Key Cryptosystem

RSA received 2002 Turing Award (the Nobel prize equivalent in
CS) for this (and related) work.

This system works because the strong (but not proven) belief: The
Factoring (P1) problem cannot be solved in poly-time.
For long time, it is not known if the problem P2 (Primality Testing)
can be solved in poly-time.
In 2001, Agrawal, Kayal and Saxena found a poly-time algorithm
for solving P2.
Had they found a poly-time algorithm for solving P1 (Factoring),
RSA system (and the entire computer security industry) would
have collapsed overnight!
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Number Theoretic Foundation of RSA Encryption

Fact
Consider the set R of real numbers. For any a ∈ R, the equation

a + x = 0

has a unique solution −a ∈ R, which is called the additive inverse of a.

Fact
Consider the set R of real numbers. For any a ∈ R, a 6= 0, the equation

a · x = 1

has a unique solution a−1 ∈ R, which is called the multiplicative inverse of a.

Fact:
If we replace R by Q, the set of rational numbers, the above facts are still true.
Namely, every a ∈ Q has an additive inverse −a ∈ Q and every a ∈ Q, a 6= 0
has a multiplicative inverse a−1 ∈ Q.
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Number Theoretic Foundation of RSA Encryption

Caution:
Consider Z, the set of integers. Every a ∈ Z still has an additive inverse
−a ∈ Z. However for a ∈ Q, a 6= 0, a has NO multiplicative inverse in
Z: a−1 6∈ Z (unless a = 1 or a = −1).

Definition
Let n be a positive integer. Zn = {0, 1, 2, . . . , n− 1}. For elements in
a, b ∈ Zn, define:

a + b = (a + b) mod n
a · b = (a · b) mod n
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Number Theoretic Foundation of RSA Encryption

For any a ∈ Zn, there is an additive inverse in Zn.
Example: n = 14, and a = 5. Then −4 = 10 mod 14.
Thus -4 = 10 in Z14.
On the other hand, a ∈ Zn, a 6= 0 may not have a multiplicative
inverse:
For example:

4 · x = 1 mod 14

has no solution in Z14.
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Number Theoretic Foundation of RSA Encryption

Definition Z∗n = {i | 1 ≤ i ≤ n− 1 and gcd(i, n) = 1}

Example: Z∗14 = {1, 3, 5, 9, 11, 13}

Fact:
For any a, b ∈ Z∗n , a · b ∈ Z∗n .

Example: n = 14:
3 · 5 = 1 mod 14, and 1 ∈ Z∗14.
3 · 11 = 5 mod 14, and 5 ∈ Z∗14.
5 · 11 = 13 mod 14, and 13 ∈ Z∗14.
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Number Theoretic Foundation of RSA Encryption

Fact:
Every a ∈ Z∗n , a 6= 0 has a unique multiplicative inverse a−1 in Z∗n . In
other words, the equation

a · x = 1 mod n

has an unique solution in Z∗n .

Example: n = 14

Since 3 · 5 = 1 mod 14, so 3−1 = 5 in Z∗14.
Since 9 · 11 = 1 mod 14, so 9−1 = 11 in Z∗14.
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Euler Totient Function

Definition: Euler Totient Function.
We define φ(n) = |Z∗n |.

Namely φ(n) is the number of integers in {1, . . . , n− 1} that are coprime to n.

Fact:
If p is a prime, then φ(p) = p− 1.

If n = a · b and gcd(a, b) = 1, then φ(n) = φ(a) · φ(b).

Example:

Z∗7 = {1, 2, 3, 4, 5, 6}. So φ(7) = 7− 1 = 6.

φ(14) = φ(7) · φ(2) = (7− 1) · (2− 1) = 6.
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(Fermat-)Euler Theorem

(Fermat-)Euler Theorem:
For any n and all a ∈ Z∗n ,

aφ(n) ≡ 1 mod n

Example: n = 14, φ(14) = 6, and a = 3
32 ≡ 9 mod 14;
33 ≡ 27 ≡ 13 mod 14;
34 ≡ 13 · 3 ≡ 39 ≡ 11 mod 14;
35 ≡ 11 · 3 ≡ 33 ≡ 5 mod 14;
36 ≡ 5 · 3 ≡ 15 ≡ 1 mod 14;
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Number Theoretic Foundation of RSA Encryption

Bob picks two prime numbers p, q and calculate n = p · q.

Since p and q are primes, gcd(p, q) = 1.

So we have φ(n) = φ(p) · φ(q) = (p− 1) · (q− 1).

Bob pick any integer e so that gcd(e, φ(n)) = 1.

This means that there exists integers d and y such that

d · e + y · φ(n) = 1

d and y can be calculated by using the extended Euclidean GCD
algorithm.

Thus
d · e ≡ 1 mod φ(n)

Bop publishes (n, e) as the public key. And keep (n, d) as the secrete key.
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Number Theoretic Foundation of RSA Encryption
Recall that RSA Encryption works like this:

Alice wants to send a message, represented by a number M, to Bob.

She encrypts M by calculating C ≡ Me mod n, and send C to Bob.

Bob receives C, and decrypt C by calculating Cd mod n.

For the RSA encryption to work, all we need to do is to show:

Theorem
For any M ∈ Zn, we have (Me)d ≡ M mod n.

If M ∈ Z∗n we have:

(Me)d = Med mod n = M(ed−1)+1 mod n
= ((Med−1 mod n) · (M mod n)) mod n
= ((Mφ(n) mod n) · (M mod n)) mod n
= (1 · (M mod n)) mod n
= (M mod n) mod n
= M

If M ∈ Zn−Z∗n , we can still show Med = M mod n. (The proof is more involved.)
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