Mathematical Induction

CSE 191, Class Note 08 Computer Sci & Eng Dept SUNY Buffalo

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

1 / 14

Climbing ladder

- Suppose we have a ladder of *n* rungs. Let's say we can guarantee two things:
 - We can reach the first rung of the ladder.
 - If we can reach the *i*th rung of the ladder, then we can reach the next (i.e., the (i + 1)st) rung.
- What can we conclude, then?
- We can conclude that we can reach the nth rung for any n.

Mathematical induction

Similar to the above argument, we have a proof method called mathematical induction:

- Goal: to prove P(n) is true (where n is a positive integer).
- First step (called the basis step): show P(1) is true.
- Second step (called the inductive step): show $P(k) \rightarrow P(k+1)$ is true for every positive integer k. Here P(k) is called the inductive assumption (or inductive hypothesis).

Clearly, the above method makes sense because from

$$P(1), P(1) \to P(2), P(2) \to P(3), \dots, P(n-1) \to P(n)$$

we can easily get P(n).

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

4 / 14

First example

Example: Show that, for any positive integer n, $2^n > n$.

Proof: Basis step: When n = 1, we have $2^n = 2 > 1 = n$. So the proposition is true for n = 1.

Inductive step: Assume that the proposition is true for n = k (where k is a positive integer), i.e., $2^k > k$.

Now we prove that it is also true for n = k + 1, i.e., $2^{k+1} > k + 1$.

From $2^k > k$ we get that $2^{k+1} = 2 \times 2^k > 2 \cdot k > k+1$.

This completes the induction proof.

Understanding first example

In the first example, we have shown two things:

- (a) $2^1 > 1$;
- (b) If $2^k > k$ for positive integer k, then $2^{k+1} > k+1$.

Hence, we have the following statements being true:

- (1) $2^1 > 1$; (This is (a))
- (2) If $2^1 > 1$, then $2^2 > 2$; (This is (b) when k = 1)
- (3) If $2^2 > 2$, then $2^3 > 3$; (This is (b) when k = 2)
 - :
- (n) If $2^{n-1} > n-1$, then $2^n > n$; (This is (b) when k = n-1)

Putting all of them together, we see that $2^n > n$.

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

6 / 14

Second example

Example 2: Show that $3|n^3 - n$ for positive integer n.

Proof: Basis step: When n = 1, we have $n^3 - n = 0$. Clearly, $3|n^3 - n$.

Inductive step: Assume that $3|k^3 - k$ for positive integer k. We'll show that $3|(k+1)^3 - (k+1)$.

It is easy to see $(k+1)^3 - (k+1) = k^3 + 3k^2 + 2k = (k^3 - k) + 3(k^2 + k)$. Since $3|k^3 - k$, we can write $k^3 - k = 3j$ where j is an integer. So,

$$(k+1)^3 - (k+1) = 3j + 3(k^2 + k) = 3(j + k^2 + k)$$

Hence, $3|(k+1)^3 - (k+1)$.

Understanding second example

In the second example, we have shown two things:

- (a) $3|1^3-1$;
- (b) If $3|k^3 k$ for positive integer k, then $3|(k+1)^3 (k+1)$.

Hence, we have the following statements being true:

- (1) $3|1^3 1$; (This is (a))
- (2) If $3|1^3 1$, then $3|2^3 2$; (This is (b) when k = 1)
- (3) If $3|2^3 2$, then $3|3^3 3$; (This is (b) when k = 2)
 - . . .
- (n) If $3|(n-1)^3 (n-1)$, then $3|n^3 n$; (This is (b) when k = n-1)

Putting all of them together, we see that $3|n^3 - n$.

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

8 / 14

Variants of mathematical induction

- In the mathematical induction we just studied, the constraint is that n is a positive integer. In fact, we can have variants:
 - n is a non-negative integer;
 - or, n is a positive integer $\geq m$.
- To deal with the above situations, all we need is:
 - adjust the basis step, so that it considers n = 0 or n = m instead of n = 1.
 - adjust the inductive step, so that $P(k) \to P(k+1)$ is proved for all non-negative integer k or all integer $k \ge m$.

Example for variant

Example:

Suppose that, for a finite set S, |S| = n. Show that $|P(S)| = 2^n$.

- Note that we cannot consider n = 1 in the basis step! Because S could be the empty set and thus n could be 0.
- That means, we have to make sure the above statement is true for all non-negative integer n (not just all positive integer n).
- If we consider n = 1 in the basis step, then the entire proof ignores the possibility of n = 0.
- Similarly, when we do the inductive step, we cannot just prove it for all positive integer k. We should prove it for all non-negative integer k.

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

10 / 14

Example for variant

Proof: Basis step: When n = 0, S is the empty set. Hence, $P(S) = \{\emptyset\}$, which means $|P(S)| = 1 = 2^0$.

Inductive step: Assume that, for all S such that |S| = k (where k s a non-negative integer), $|P(S)| = 2^k$.

Now we show that, for all S' such that |S'| = k + 1, $|P(S')| = 2^{k+1}$.

Clearly, all S' such that |S'| = k + 1 can be written as $S' = S \cup \{a\}$, where |S| = k and a is not in S.

To count |P(S')|, i.e., the number of subsets of S', we only need to count:

- (a) |P(S)|, i.e., the number of subsets of S; By the inductive assumption, we know that $|P(S)| = 2^k$.
- (b) The number of subsets of S' that contains a.

We note that each subset containing a uniquely corresponds to a subset not containing a (by eliminating a from the subset).

Hence, this number is also $|P(S)| = 2^k$.

We sum up these two numbers and get that $|P(S')| = 2^k + 2^k = 2^{k+1}$.

Strong induction

- We have another important variant called strong induction:
 - Goal: to prove P(n) is true (where n is a positive integer).
 - Basis step: show P(1) is true.
 - Inductive step: show $P(1) \wedge P(2) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$ is true for every positive integer k.
- Clearly, the above method makes sense because from P(1), $P(1) \rightarrow P(2)$, $P(1) \land P(2) \rightarrow P(3)$, ..., $P(1) \land P(2) \land \cdots \land P(n-1) \rightarrow P(n)$ we can easily get P(n).

Example:

Show that any positive integer n > 1 can be written as the product of primes.

Note this is actually part of the fundamental theorem of arithmetic. Here we prove it using strong induction.

Proof: Basis step: Here we consider n = 2 in stead of n = 1, because there is a restriction n > 1.

When n = 2, since 2 is by itself a prime, the proposition is clearly true.

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

12 / 14

Example for strong induction

Inductive step: Assume every n such that $1 < n \le k$ (where k is an integer > 1) can be written as the product of primes.

Now we show that k + 1 can also be written as the product of primes. We consider two cases:

Case A: k + 1 is a prime. Then we are done.

Case B: k + 1 is a composite.

- Then there exist positive integers a > 1 and b > 1 such that $k + 1 = a \cdot b$.
- Since a > 1, we know $a \ge 2$, and thus $b \le (k+1)/2 < k$.
- By the inductive assumption, b can be written as the product of primes.
- Similarly, *a* can also be written as the product of primes.
- Combining these two results, we see that $k + 1 = a \cdot b$ can be written as the product of primes.

Understanding example for strong induction

In this example, we have shown two things:

- (a) 2 can be written as the product of primes;
- (b) If all n such that $1 < n \le k$ can be written as the product of primes, then k + 1 can be written as the product of primes.

Hence, we have the following statements being true:

- (1) 2 can be written as the product of primes; (This is (a))
- (2) If 2 can be written as the product of primes, then 3 can be written as the product of primes; (This is (b) when k = 2)
- (3) If 2 and 3 can be written as the product of primes, then 4 can be written as the product of primes; (This is (b) when k = 3) ...
- (*n*-1) If 2, 3, . . ., and n-1 can be written as the product of primes, then n can be written as the product of primes; (This is (b) when k=n-1)

Putting all of them together, we see that n can be written as the product of primes.

©Xin He (University at Buffalo)

CSE 191 Descrete Structures

14 / 14