Solution for Midterm I – Version A

CSE 191 Oct. 3, 2014 12:00 - 12:50pm

First Name (Print):	Last Name (Print):	
UB ID number:		

- 1. This is a closed book, closed notes, and closed neighbor exam.
- 2. The logic equivalence rules and the logic inference laws (that you can use) are provided.
- 3. You must support your answer.
- 4. Print your name and UB ID number.
- 5. There are 6 problems and 25 points in this exam.
- 6. Once the instructor announces "time's up", you must stop writing immediately. It's your responsibility to give your exam to TA within 2 mins.

- 1 (2+2 = 4 points). Let p, q, r be the following propositions:
 - p: Hiking is safe on the trail.
 - q: Berries are ripe along the trail.
 - r: Grizzly bears have been seen in the area.

Write the following propositions using p, q, r and logical operators.

1. Grizzly bears have not been seen in the area and hiking on the trail is safe, and berries are ripe along the trail.

$$\neg r \wedge p \wedge q$$

2. If berries are ripe along the trail, then hiking is not safe if grizzly bears have been seen in this area.

$$q \to (r \to \neg p)$$

2 (4 points). Construct the truth table for the proposition $(p \to \neg t) \lor (s \land t)$.

p	t	s	$\neg t$	$p \to \neg t$	$s \wedge t$	$(p \to \neg t) \lor (s \land t)$
T	Т	Т	F	F	Т	Т
T	Т	F	F	F	F	F
T	F	Т	Т	Т	F	Т
T	F	F	Т	Т	F	Т
F	Т	Т	F	Т	Т	Т
F	Т	F	F	Т	F	Т
F	F	Т	Τ	Т	F	Т
F	F	F	Τ	Т	F	T

Table: Logic Equivalences

Equivalence	Name
$ p \wedge T \equiv p $ $ p \vee F \equiv p $	Identity laws
$ \begin{array}{c} p \lor T \equiv T \\ p \land F \equiv F \end{array} $	Domination laws
$ \begin{array}{c} p \lor p \equiv p \\ p \land p \equiv p \end{array} $	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation laws
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \lor q) \equiv \neg p \land \neg q$ $\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv T$ $p \land \neg p \equiv F$	Negation laws

Logical Equivalences Involving Conditional Statements

$$p \to q \equiv \neg p \lor q$$

3 (4 points). By using the rules of logical equivalences given above, show the following propositions are logically equivalent:

$$(s \to r) \land (q \to r) \equiv (s \lor q) \to r$$

$$LSH \equiv (\neg s \lor r) \land (\neg q \lor r)$$

$$\equiv (\neg s \land \neg q) \lor r$$

$$\equiv \neg (s \lor q) \lor r$$

$$\equiv (s \lor q) \rightarrow r$$

$$\equiv RHS$$

Substitution for " \rightarrow "
Distributive law
De Morgan's law
Substitution for " \rightarrow "

4 (2+2=4 points). Rewrite the following propositions so that all negation symbols immediately precede predicates.

1.
$$\neg \forall x \exists y (P(x, y) \lor \neg R(x))$$

 $\exists x \forall y (\neg P(x, y) \land R(x))$

2.
$$\neg \forall z (Q(z) \lor \exists x \neg R(x, z))$$

 $\exists z (\neg Q(z) \land \forall x R(x, z))$

5 (4 points). Prove the following statement:

 $\sqrt{5}$ is irrational.

Namely, you need to show $\sqrt{5} \neq \frac{a}{b}$ for any integers a, b.

Assume $\sqrt{5} = \frac{a}{b}$, without loss of generality, we can assume that a and b have no common divisors.

Then $a^2 = 5b^2$.

So a has divisor 5.

Then a = 5k for some integer k.

So
$$5b^2 = (5k)^2 = 25k^2$$

So
$$b^2 = 5k^2$$

Then b must have divisor 5.

It contradicts to the assumption that a and b have no common divisors.

So $\sqrt{5} \neq \frac{a}{b}$ for any inters a,b.

So $\sqrt{5}$ is irrational.

Table: Rules of Inference

Rule of Inference	Tautology	Name
$\begin{array}{c} p \\ \underline{p \to q} \\ q \end{array}$	$(p \land (p \to q)) \to q$	Modus ponens (MP)
$ \begin{array}{c} \neg q \\ \underline{p \to q} \\ \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tonens (MT)
$ \begin{array}{c} p \to q \\ \underline{q \to r} \\ p \to r \end{array} $	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism (HS)
$ \begin{array}{c c} p \lor q \\ \hline \hline \begin{matrix} \neg p \\ q \end{matrix} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism (DS)
$\frac{p}{p \vee q}$	$p \to (p \vee q)$	Addition
$\frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
$\begin{array}{ c c }\hline p\\ \hline q\\ \hline p\land q \end{array}$	$((p) \land (q)) \to (p \land q)$	Conjunction
$\begin{array}{ c c c }\hline p \lor q \\ \hline \neg p \lor r \\ \hline q \lor r \\ \hline \end{array}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

6 (5 points). Given premises: (1)
$$\neg q$$
, (2) $p \rightarrow q$, (3) $\neg p \rightarrow (t \lor q)$ Conclusion: t .

By using laws of inferences given above, write a valid logical argument that shows the premises lead to the conclusion.

premise
premise
Modus tonens from $(1),(2)$
premise
Modus ponens from $(3),(4)$
Disjunctive syllogism from $(1),(5)$