Solution, Midterm I – Version B CSE 191 Oct. 3, 2014 12:00 - 12:50pm

First Name (Print):______ Last Name (Print):_____

UB ID number:_____

- 1. This is a closed book, closed notes, and closed neighbor exam.
- 2. The logic equivalence rules and the logic inference laws (that you can use) are provided.
- 3. You must support your answer.
- 4. Print your name and UB ID number.
- 5. There are 6 problems and 25 points in this exam.
- 6. Once the instructor announces "time's up", you must stop writing immediately. It's your responsibility to give your exam to TA within 2 mins.

Name

1 (2+2 = 4 points). Let p, q, r be the following propositions:

- p: Hiking is safe on the trail.
- q: Berries are ripe along the trail.
- r: Grizzly bears have been seen in the area.

Write the following propositions using p, q, r and logical operators.

1. Grizzly bears have been seen in the area and hiking on the trail is not safe, and berries are ripe along the trail.

$$r \wedge \neg p \wedge q$$

2. If berries are ripe along the trail, then hiking is safe only if grizzly bears have not been seen in this area.

$$q \to (p \to \neg r)$$

2 (4 points). Construct the truth table for the proposition $(\neg p \rightarrow t) \lor (s \land t)$.

p	t	s	$\neg p$	$\neg p \to t$	$s \wedge t$	$(\neg p \to t) \lor (s \land t)$
Τ	Т	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	Т
Т	F	Т	F	Т	F	Т
Т	F	F	F	Т	F	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	Т
F	F	Т	Т	F	F	F
F	F	F	Т	F	F	F

Equivalence	Name
$p \wedge T \equiv p$	Identity laws
$p \lor F \equiv p$	
$p \lor T \equiv T$	Domination laws
$p \wedge F \equiv F$	Domination laws
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation laws
$p \lor q \equiv q \lor p$	Commutative laws
$p \wedge q \equiv q \wedge p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$\neg (p \land q) \equiv \neg p \lor \neg q$	De morgan s laws
$p \lor (p \land q) \equiv p$	Absorption laws
$p \land (p \lor q) \equiv p$	
$p \lor \neg p \equiv T$	Negation laws
$p \land \neg p \equiv F$	

Table: Logic Equivalences

Logical Equivalences Involving Conditional Statements

$$p \to q \equiv \neg p \lor q$$

3 (4 points). By using the rules of logical equivalences given above, show the propositions $(s \to r) \land (q \to r)$ and $(s \lor q) \to r$ are logically equivalent. Namely show:

$$(s \to r) \land (q \to r) \equiv (s \lor q) \to r$$

$LSH \equiv (\neg s \lor r) \land (\neg q \lor r)$	Substitution for " \rightarrow "
$\equiv (\neg s \land \neg q) \lor r$	Distributive law
$\equiv \neg(s \lor q) \lor r$	De Morgan's law
$\equiv (s \lor q) \to r$	Substitution for " \rightarrow "
$\equiv \mathrm{RHS}$	

4 (2+2 = 4 points). Rewrite the following proposition so that all negation symbols immediately precede predicates.

1.
$$\neg \exists y \forall x (P(x, y) \lor \neg Q(x))$$

 $\forall y \exists x (\neg P(x, y) \land Q(x))$

2.
$$\neg \exists z (Q(z) \land \forall x \neg R(x, z))$$

 $\forall z (\neg Q(z) \lor \exists x R(x, z))$

5 (4 points). Prove the following statement:

$\sqrt{3}$ is irrational.

Namely, you need to show $\sqrt{3} \neq \frac{a}{b}$ for any integers a, b.

Assume $\sqrt{3} = \frac{a}{b}$, without loss of generality, we can assume that a and b have no common divisors.

Then $a^2 = 3b^2$. So *a* has divisor 3. Then a = 3k for some integer *k*. So $3b^2 = (3k)^2 = 9k^2$ So $b^2 = 3k^2$ Then *b* must have divisor 3. It contradicts the assumption that *a* and *b* have no common divisors. So $\sqrt{3} \neq \frac{a}{b}$ for any inters a,b. So $\sqrt{3}$ is irrational.

Rule of Inference	Tautology	Name
$\begin{array}{c} p \\ p \rightarrow q \\ q \end{array}$	$(p \land (p \to q)) \to q$	Modus ponens (MP)
$\boxed{\begin{array}{c} \neg q \\ p \to q \\ \neg p \end{array}}$	$(\neg q \land (p \to q)) \to \neg p$	Modus tonens (MT)
$\begin{array}{ c c c } p \to q \\ \hline q \to r \\ p \to r \end{array}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism (HS)
$\begin{array}{ c c c }\hline p \lor q \\ \hline \neg p \\ \hline q \\ \hline \end{array}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism (DS)
$\frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition
$\boxed{\frac{p \wedge q}{p}}$	$(p \land q) \to p$	Simplification
$\boxed{\begin{array}{c} p \\ \frac{q}{p \wedge q} \end{array}}$	$((p) \land (q)) \to (p \land q)$	Conjunction
$ \begin{array}{ c c }\hline p \lor q \\ \hline \neg p \lor r \\ \hline q \lor r \end{array} $	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Table: Rules of Inference

6 (5 points). Given premises: (1) $\neg q$, (2) $p \rightarrow q$, (3) $\neg p \rightarrow (s \lor q)$ Conclusion: s.

By using laws of inferences given above, write a valid logical argument that shows the premises lead to the conclusion.

$(1) \neg q$	premise
(2) $p \to q$	premise
$(3) \neg p$	Modus tonens from $(1),(2)$
$(4) \neg p \rightarrow (s \lor q)$	premise
(5) $s \lor q$	Modus ponens from $(3),(4)$
$(6) \ s$	Disjunctive syllogism from $(1), (5)$