## Midterm II – Version B

CSE 191 Solution Nov 7, 2014 12:00 - 12:50pm

| First Name (Print): | _ Last Name (Print): |  |
|---------------------|----------------------|--|
|                     |                      |  |
| UB ID number:       | _                    |  |

- 1. This is a closed book, and closed neighbor exam. You may use a calculator, and a two-sided sheet of notes.
- 2. Support your answer.
- 3. Write your name on the top right-hand corner of every page.
- 4. There are 6 problems and 25 points in this exam.
- 5. Once the instructor announces "time's up", you must stop writing immediately. It's your responsibility to give your exam to TA within 2 mins.

Name

1 (2 + 2 = 4 points).

(a) Let A and B be two sets. Suppose that:

- $A B = \{1, 5, 7, 8\};$
- $B A = \{3, 6, 9\};$
- $A \cap B = \{2, 10\}.$

What is A and B?

$$A = (A - B) \cup (A \cap B) = \{1, 2, 5, 7, 8, 10\};$$
  
$$B = (B - A) \cup (A \cap B) = \{2, 3, 6, 9, 10\};$$

(b) Let A, B, C be three sets. Suppose  $A \cup C = B \cup C$ . Can you conclude A = B? If your answer is "yes", prove it. If your answer is "no", give a counter example.

No.

Counter example:

$$A = \{1\}, B = \{1, 2\}, C = \{1, 2, 3\};$$
  
 $A \cup C = B \cup C$ , but  $A \neq B$ .

2 (3 points). Let A be the set of binary strings that satisfy the following conditions:

- The length of the binary string is 7.
- Either the first two bits are 00; or the last bit is 1.

Determine |A|. (Namely, determine the number of elements in A.)

Let B be the set of 7-bit binary strings of which the first two bits are 00;

Let C be the set of 7-bit binary strings of which the last bit is 1.

Then 
$$|B| = 2^5 = 32, |C| = 2^6 = 64.$$

Note that  $B \cap C$  is the set of 7-bit strings whose first two bits are 00 and last bit is 1.

So 
$$|B \cap C| = 2^4 = 16$$
.

So 
$$|A| = |B \cup C| = |B| + |C| - |B \cap C| = 80.$$

## Name

Note: For problem 3, the solutions may involve factorial, combinations, permutations and powers, such as 6!, C(6,3), P(10,5), or  $(-5)^k$ . In such cases, your solutions must be given in terms of these expressions. The numerical solution is not enough, and is not required. For example, if the solution is  $P(7,3) \times 2^5$ , you can just write it this way, or  $7 \times 6 \times 5 \times 2^5$ . Its numerical value 6720 is neither enough, nor required.

- 3 (6 points). How many ways can a photographer at a wedding arrange 7 people (including the bride and the groom) in a row, if:
  - (a) the bride is NOT next to the groom?

The total number of possible arrangements: P(7,7).

The total number of arrangements that the bride is at the left and next to the groom: P(6,6).

The total number of arrangements that the bride is at the right and next to the groom: P(6,6).

So the answer is:  $P(7,7) - 2 \times P(6,6)$ 

(b) the bride is next to the groom?

The total number of arrangements that the bride is at the left and next to the groom: P(6,6). The total number of arrangements that the bride is at the right and next to the groom: P(6,6). So the answer is:  $2 \times P(6,6)$ 

(c) the bride is positioned somewhere to the left of the groom?

(Hint: a row satisfies this requirement if and only if the reverse of the row does NOT satisfy this requirement).

Solution 1: There are P(7,7) ways to arranged 7 people. Exactly half of these arrangements satisfy the requirement. So the answer is P(7,7)/2.

Solution 2: Choose 2 positions for bride and groom, C(7,2) ways.

Arrange bride and groom in these 2 positions, 1 way (bride on the left side of the groom).

Arrange other 4 people, P(5,5) ways.

So, there are  $C(7,2) \times 1 \times P(5,5) = P(7,7) \cdot \frac{1}{2}$  ways.

4 (3 + 3 = 6 points). For this problem, you only need to give answer. **Support is NOT required**.

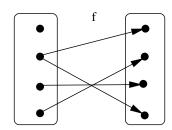
Let R be the set of real numbers;  $R^+$  be the set of positive real numbers; Z be the set of integers;  $Z^+$  be the set of positive integers.

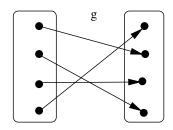
- (a) Consider the following functions:
- $f: R \to R: f(x) = 3x 1.$
- $g: Z \to Z: g(x) = 3x 1.$
- $h: R^+ \to R: \ h(x) = x^2 + 1.$

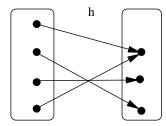
Fill the following table by "yes" or "no":

|   | 1-to-1? | onto? |
|---|---------|-------|
| f | yes     | yes   |
| g | yes     | no    |
| h | yes     | no    |

(b) Let f, g and h be the functions represented by the following arrow diagrams.







Fill the following table by "yes" or "no":

|   | function? | 1-to-1? | onto? |
|---|-----------|---------|-------|
| f | no        | -       | -     |
| g | yes       | yes     | yes   |
| h | yes       | no      | yes   |

Note: because f is not a function, you don't need to answer the 2nd and 3rd columns of the 1st row.

3

## Name

5 (2 points) Determine the cardinality of the following sets. (Namely: is it finite? countable infinite? uncountable?)

- $(0,0.02) = \{x \in R \mid 0 < x < 0.02\}$  = the set of real numbers between 0 and 0.02 uncountable infinite
- $P(Z^+)$  = the power set of positive integers. (Namely the set of subsets of positive integers.) uncountable infinite
- $Z^+ \times Z^+ = \{(a, b) \mid a \text{ and } b \text{ are positive integers } \}$  countable infinite
- $\bullet\,$  The number of atoms in the solar system.

finite

- 6 (2+1+1 = 4 points).
  - (a) Find the value of the following sum:

$$\sum_{i=0}^{6} (4^i - 4 \cdot 2^i)$$

You must use the summation formula, (not by calculating the sum term by term.)

$$\sum_{i=0}^{6} (4^{i} - 4 \cdot 2^{i}) = \sum_{i=0}^{6} (4^{i}) - \sum_{i=0}^{6} (4 \cdot 2^{i}) = \frac{4^{7} - 1}{4 - 1} - 4 \cdot \frac{2^{7} - 1}{2 - 1} = 4953$$

(b) Find the value of the following sum:  $\sum_{i=0}^{\infty} (3/4)^i = 1 + (3/4)^1 + (3/4)^2 + (3/4)^3 + \cdots$ 

$$\sum_{i=0}^{\infty} (3/4)^i = \lim_{n \to \infty} \frac{(3/4)^n - 1}{3/4 - 1} = 4$$

(c) Convert the periodic decimal  $x=0.91328328328\cdots=0.91\dot{3}2\dot{8}$  to a fraction.

Solution 1 (using the formula discussed in class):  $0.91\dot{3}2\dot{8} = \frac{91328 - 91}{99900}$ 

Solution 2:

$$0.91\dot{3}2\dot{8} = 0.91 + 0.00328(1 + (1/1000)^2 + (1/1000)^3 + \cdots)$$

$$= \frac{91}{100} + 0.00328 \cdot \lim_{n \to \infty} \frac{(1/1000)^n - 1}{1/1000 - 1} = \frac{91}{100} + \frac{328}{99900} = \frac{91237}{99900}$$