Solution of Assignment \#2, CS/191

Fall, 2014

1. Page 35, problem 10,
(0 points) (b)

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \rightarrow q) \wedge(q \rightarrow r)$	$p \rightarrow r$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Since $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is always T , it is a tautology.
(0 points) (c)
sol:

sol.	q	$p \rightarrow q$	$p \wedge(p \rightarrow q)$	$[p \wedge(p \rightarrow q)] \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Since $[p \wedge(p \rightarrow q)] \rightarrow q$ is always T , it is a tautology.
(0 points) (d)

p	q	r	$p \vee q$	$p \rightarrow r$	$q \rightarrow r$	$(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)$	$[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	T	T	T	T	F
T	F	F	T	F	T	T	T
F	T	T	T	T	T	F	T
F	T	F	T	T	F	T	
F	F	T	F	T	T	F	T
F	F	F	F	T	T	F	T

Since $[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r$ is always T , it is a tautology.
2. (0 points), Page 35 , problem 14.
sol:

$c p$	q	$p \rightarrow q$	$\neg p \wedge(p \rightarrow q)$	$[\neg p \wedge(p \rightarrow q)] \rightarrow \neg q$
T	T	T	F	T
T	F	F	F	T
F	T	T	T	F
F	F	T	T	T

So $[\neg p \wedge(p \rightarrow q)] \rightarrow \neg q$ is not a tautology.
3. (0 points), page 35 , problem 18.

$$
\begin{aligned}
& p \rightarrow q \\
\equiv & \neg p \vee q \\
\equiv & q \vee(\neg p) \\
\equiv & \neg(\neg q) \vee(\neg p) \\
\equiv & \neg q \rightarrow \neg p
\end{aligned}
$$

$$
\equiv \neg p \vee q \quad \text { by the implication law (the first law in Table 7.) }
$$ by commutative laws by double negation law

by implication law
4. (0 points), page 35 , problem 23.

$$
\begin{aligned}
& (p \vee q) \rightarrow r \\
\equiv & \neg(p \vee q) \vee r \\
\equiv & (\neg p \wedge \neg q) \vee r \\
\equiv & (\neg p \vee r) \wedge(\neg q \vee r) \\
\equiv & (p \rightarrow r) \wedge(q \rightarrow r)
\end{aligned}
$$

by implication law by de Morgan's laws by distributive laws by implication laws twice
5. (0 points), page 35 , problem 24.

$$
\begin{aligned}
& (p \rightarrow q) \vee(p \rightarrow r) \\
\equiv & (\neg p \vee q) \vee(\neg p \vee r) \\
\equiv & (\neg p \vee \neg p) \vee(q \vee r) \\
\equiv & \neg p \vee(q \vee r) \\
\equiv & p \rightarrow(q \vee r)
\end{aligned}
$$

$$
\equiv(\neg p \vee q) \vee(\neg p \vee r) \quad \text { by implication law, twice }
$$

$$
\equiv(\neg p \vee \neg p) \vee(q \vee r) \quad \text { by commutative and associative laws }
$$

by Idempotent laws
by implication law
6. (0 points), page 35 , problem 26 .
7. (0 points), page 35 , problem 30. Show that $(p \vee q) \wedge(\neg p \vee r) \rightarrow(q \vee r)$ is a tautology. sol:

$$
\begin{aligned}
& (p \vee q) \wedge(\neg p \vee r) \rightarrow(q \vee r) \\
\equiv & \neg[(p \vee q) \wedge(\neg p \vee r)] \vee(q \vee r) \\
\equiv & {[\neg(p \vee q) \vee \neg(\neg p \vee r)] \vee(q \vee r) } \\
\equiv & {[(\neg p \wedge \neg q) \vee(p \wedge \neg r)] \vee(q \vee r) } \\
\equiv & {[(\neg p \wedge \neg q) \vee q] \vee[(p \wedge \neg r) \vee r] } \\
\equiv & {[(\neg p \vee q) \wedge(\neg q \vee q)] \vee[(p \vee r) \wedge(\neg r \vee r)] } \\
\equiv & (\neg p \vee q) \vee(p \vee r) \\
\equiv & (\neg p \vee p) \vee(q \vee r) \\
\equiv & T
\end{aligned}
$$

$$
\equiv \neg[(p \vee q) \wedge(\neg p \vee r)] \vee(q \vee r) \quad \text { by implication law }
$$

$$
\equiv[\neg(p \vee q) \vee \neg(\neg p \vee r)] \vee(q \vee r) \quad \text { by de Morgan's law }
$$ by de Morgan's law by commutative and associative laws by distributive laws by negation and identity laws by communicative and associative laws by negation and domination laws

$$
\begin{aligned}
& \neg p \rightarrow(q \rightarrow r) \\
& \equiv p \vee(q \rightarrow r) \quad \text { by implication law } \\
& \equiv p \vee(\neg q \vee r) \quad \text { by implication law } \\
& \equiv \neg q \vee(p \vee r) \quad \text { by commutative and associative laws } \\
& \equiv q \rightarrow(p \vee r) \quad \text { by implication law }
\end{aligned}
$$

8. (0 points), page 64 , problem 6 .
(d) sol: There is a student in your school who is enrolled in Math 222 and in CS 252.
(e) sol: There are two different students x and y such that if the student x takes the class z, then the student y also takes the class z for every classes z.
(f) sol: There are two different students x and y such that x takes z if and only if y takes z for all classes z.
9. page 65 , problem 10,
(0 points)
(a) sol: $\forall x F(x$, Fred $)$
(b) sol: $\forall y F(E v e l y n, y)$
(c) sol: $\forall x \exists y F(x, y)$
(e) sol: $\forall x \exists y F(y, x)$
(0 points)
(f) sol: $\neg \exists x(F(x$, Fred $) \wedge F(x$, Jerry $))$
(i) sol: $\neg \exists x F(x, x)$
10. page 67 , problem 28 ,
(0 points)
(c) sol: True. Let x be 0 .
(e) sol: True. Let $y=1 / x$
(f) sol: False
(0 points)
(g) sol: True. Let y be $1-x$.
(i) sol: False. Let $x=0$. Then $x+y=2$ and $2 x-y=1$ imply $y=2$ and $y=-1$. So for $x=0$ there exists no y such that $x+y=2$ and $2 x-y=1$.
(j) sol: True. Let $z=(x+y) / 2$
11. page 67 , problem 30 ,
(0 points)
(b) sol: $\exists x \forall y \neg P(x, y)$
(c) sol: $\forall y(\neg Q(y) \vee \exists x R(x, y))$
(0 points)
(d) sol: $\forall y(\forall x \neg R(x, y) \wedge \exists x \neg S(x, y))$
(e) sol: $\forall y(\exists x \forall z \neg T(x, y, z) \wedge \forall x \exists z \neg U(x, y, z))$
