Solution of Assignment #2, CS/191 Fall, 2014

oints	s) (b)				
q	r	$p \to q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$
Т	Т	Т	Т	Т	Т	Т
Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	F	Т
\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}	Т	Т
\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	F	Т
Т	Т	Т	Т	Т	Т	Т
Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т	Т
\mathbf{F}	Т	Т	Т	Т	Т	Т
\mathbf{F}	F	Т	Т	Т	Т	Т
	$\begin{array}{c} q \\ T \\ T \\ F \\ F \\ T \\ T \\ F \\ F \end{array}$	$\begin{array}{c c} q & r \\ \hline T & T \\ T & F \\ F & T \\ F & F \\ T & T \\ T & F \\ F & T \\ \end{array}$	$\begin{array}{cccc} T & T & T \\ T & F & T \\ F & T & F \\ F & F & F \\ T & T & T \\ T & F & T \\ F & T & T \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1. Page 35, problem 10, (0, n = 1, 1)

Since $[(p \to q) \land (q \to r)] \to (p \to r)$ is always T, it is a tautology.

(0	points)	(c)
(~	P)	(~)

sol:				
p	q	$p \to q$	$p \wedge (p \to q)$	$[p \land (p \to q)] \to q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

Since $[p \land (p \to q)] \to q$ is always T, it is a tautology.

	0	• • •	、 .	(1)
((1)	points) (d)
١.	0	pomos	, ,	, uj

(I			/				
p	q	r	$p \vee q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r) \land (q \to r)$	$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т
Т	\mathbf{F}	Т	Т	Т	Т	Т	Т
Т	\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}	Т
\mathbf{F}	Т	Т	Т	Т	Т	Т	Т
\mathbf{F}	Т	\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	Т
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	Т	Т	\mathbf{F}	Т
F	F	F	F	Т	Т	\mathbf{F}	Т

Since $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is always T, it is a tautology.

2.	(0)	points)),]	Page	35,	problem	14.
----	-----	---------	------	------	-----	---------	-----

sol:	_			
p	q	$p \rightarrow q$	$\neg p \land (p \to q)$	$[\neg p \land (p \to q)] \to \neg q$
T	T	T	F	T
T	F	F	F	T
F	T	T	T	F
F	F	T	T	T

So $[\neg p \land (p \rightarrow q)] \rightarrow \neg q$ is not a tautology.

3. (0 points), page 35, problem 18.

$p \rightarrow q$	
$\equiv \neg p \lor q$	by the implication law (the first law in Table 7.)
$\equiv q \lor (\neg p)$	by commutative laws
$\equiv \neg(\neg q) \lor (\neg p)$	by double negation law
$\equiv \neg q \to \neg p$	by implication law

4. (0 points), page 35, problem 23.

$$(p \lor q) \rightarrow r$$
 $\equiv \neg (p \lor q) \lor r$ by implication law $\equiv (\neg p \land \neg q) \lor r$ by de Morgan's laws $\equiv (\neg p \lor r) \land (\neg q \lor r)$ by distributive laws $\equiv (p \rightarrow r) \land (q \rightarrow r)$ by implication laws twice

5. (0 points), page 35, problem 24.

$(p \to q) \lor (p \to r)$	
$\equiv (\neg p \lor q) \lor (\neg p \lor r)$	by implication law, twice
$\equiv (\neg p \vee \neg p) \vee (q \vee r)$	by commutative and associative laws
$\equiv \neg p \lor (q \lor r)$	by Idempotent laws
$\equiv p \to (q \lor r)$	by implication law

6. (0 points), page 35, problem 26.

$\neg p \to (q \to r)$	
$\equiv p \lor (q \to r)$	by implication law
$\equiv p \lor (\neg q \lor r)$	by implication law
$\equiv \neg q \lor (p \lor r)$	by commutative and associative laws
$\equiv q \to (p \lor r)$	by implication law

7. (0 points), page 35, problem 30. Show that $(p \lor q) \land (\neg p \lor r) \to (q \lor r)$ is a tautology. sol:

$(p \lor q) \land (\neg p \lor r) \to (q \lor r)$	
$\equiv \neg [(p \lor q) \land (\neg p \lor r)] \lor (q \lor r)$	by implication law
$\equiv [\neg (p \lor q) \lor \neg (\neg p \lor r)] \lor (q \lor r)$	by de Morgan's law
$\equiv [(\neg p \land \neg q) \lor (p \land \neg r)] \lor (q \lor r)$	by de Morgan's law
$\equiv [(\neg p \land \neg q) \lor q] \lor [(p \land \neg r) \lor r]$	by commutative and associative laws
$\equiv [(\neg p \lor q) \land (\neg q \lor q)] \lor [(p \lor r) \land (\neg r \lor r)]$	by distributive laws
$\equiv (\neg p \lor q) \lor (p \lor r)$	by negation and identity laws
$\equiv (\neg p \lor p) \lor (q \lor r)$	by communicative and associative laws
$\equiv T$	by negation and domination laws

8. (0 points), page 64, problem 6.

(d) sol: $\forall y (\forall x \neg R(x, y) \land \exists x \neg S(x, y))$

(e) sol: $\forall y (\exists x \forall z \neg T(x, y, z) \land \forall x \exists z \neg U(x, y, z))$

(d) sol: There is a student in your school who is enrolled in Math 222 and in CS 252.

(e) sol: There are two different students x and y such that if the student x takes the class z, then the student y also takes the class z for every classes z.

(f) sol: There are two different students x and y such that x takes z if and only if y takes z for all classes z.

9. page 65, problem 10, (0 points)(a) sol: $\forall x F(x, Fred)$ (b) sol: $\forall y F(Evelyn, y)$ (c) sol: $\forall x \exists y F(x, y)$ (e) sol: $\forall x \exists y F(y, x)$ (0 points)(f) sol: $\neg \exists x (F(x, \text{Fred}) \land F(x, \text{Jerry}))$ (i) sol: $\neg \exists x F(x, x)$ 10. page 67, problem 28, (0 points)(c) sol: True. Let x be 0. (e) sol: True. Let y = 1/x(f) sol: False (0 points)(g) sol: True. Let y be 1 - x. (i) sol: False. Let x = 0. Then x + y = 2 and 2x - y = 1 imply y = 2 and y = -1. So for x = 0there exists no y such that x + y = 2 and 2x - y = 1. (j) sol: True. Let z = (x + y)/211. page 67, problem 30, (0 points) (b) sol: $\exists x \forall y \neg P(x, y)$ (c) sol: $\forall y(\neg Q(y) \lor \exists x R(x, y))$ (0 points)