Solution #7, CSE 191 Fall, 2014

1. (0 points). Page 153, Prob 10 and 11.

sol:

- (a) f is both 1-to-1 and onto.
- (b) f is neither 1-to-1, nor onto.
- (c) f is neither 1-to-1, nor onto.
- $2.\ (0\ \mathrm{points}).$ Page 153, Prob 12 and 13.

sol:

- (a) f is both 1-to-1 and onto.
- (b) f is neither 1-to-1, nor onto.
- (c) f is 1-to-1, but not onto.
- (d) f is not 1-to-1 but is onto.
- 3. (0 points). Page 153, Prob 20 (a), (b), (c), (d). sol:
 - (a) f(x) = x + 1.
 - **(b)** $f(x) = \lfloor \frac{x}{2} \rfloor$.
 - (c) $f(x) = \begin{cases} x+1 & x \text{ is even,} \\ x-1 & x \text{ is odd.} \end{cases}$
 - (d) $f(x) = \lfloor \frac{x}{2} \rfloor + 1$.
- 4. (0 points). Page 153, Prob 22 (b), (c), (d) sol:
 - (b) no. $f(x) = -3x^2 + 7$ is not an one-to-one function since f(1) = 4 = f(-1).
 - (c) Strictly speaking, the function f is **not even a function from** R **to** R, because f is undefined at -2.

If we consider the domain $R' = R - \{-2\}$. Then $f: R' \to R$ is:

- **one to one:** for any $x_1, x_2 \in \mathbf{R}'$ such that $f(x_1) = f(x_2)$, we need to show $x_1 = x_2$. We have: $f(x_1) = f(x_2) \Leftrightarrow \frac{x_1+1}{x_1+2} = \frac{x_2+1}{x_2+2} \Leftrightarrow x_1x_2 + 2x_1 + x_2 + 2 = x_1x_2 + x_1 + 2x_2 + 2 \Leftrightarrow x_1 = x_2$.
- but not onto: because $f(x) = \frac{x+1}{x+2} \neq 1$ for any $x \in R'$. So 1 has no pre-image for f.
- (d) yes.
 - **one to one:** for any $x_1, x_2 \in \mathbf{R}$ such that $(x_1)^5 + 1 = (x_2)^5 + 1$, then we have $(x_1)^5 = (x_2)^5 \Leftrightarrow x_1 = x_2$.

onto: any $a \in \mathbf{R}$, $x^5 + 1 = a \Leftrightarrow x = \sqrt[5]{a - 1}$.

- 5. (0 points). Page 154, Prob 30 (a), (b), (d).
 - (a) $f(S) = \{1\}.$
 - (b) $f(S) = \{-1, 1, 5, 9, 15\}.$
 - (c) $f(S) = \{0, 1, 2\}.$
 - (d) $f(S) = \{0, 1, 5, 16\}.$
- 6. (0 points). Page 154, Prob 32. sol:
 - (a) even integers.
 - (b) 0 or even positive integers.
 - (c) R.
- 7. (0 points). Page 154, Prob 36 and 37.

sol:

$$f \circ g = x^2 + 4x + 5$$

$$g \circ f = x^2 + 3$$

$$(f+q)(x) = x^2 + x + 3$$

$$(fg)(x) = x^3 + 2x^2 + x + 2$$

- 8. (4 points). Page 167, Prob 6 (b), (c), (d), (e).
 - sol:
 - **(b)** 1, 3, 6, 10, 15, 21.
 - (c) 1, 5, 19, 65, 211, 665.
 - **(d)** 1, 1, 1, 2, 2, 2.
 - (e) 1, 5, 6, 11, 17, 28.
- 9. (0 points). Page 168, Prob 10 (c), (d), (e).

sol:

(c)
$$a_0 = 1$$
, $a_1 = 3 \cdot 1^2 = 3$; $a_2 = 3 \cdot 3^2 = 27$;

$$a_3 = 3 \cdot (3^3)^2 = 3^7;$$

$$a_4 = 3 \cdot (3^7)^2 = 3^{15};$$

$$a_5 = 3 \cdot (3^{15})^2 = 3^{31}$$
.

(d)
$$a_0 = -1;$$
, $a_1 = 0;$

$$a_2 = 2 \cdot 0 + 1^2 = 1;$$

$$a_3 = 3 \cdot 1 + 0^2 = 3$$
;

$$a_4 = 4 \cdot 3 + 1^2 = 13;$$

$$a_5 = 5 \cdot 13 + 3^2 = 74.$$

(e)
$$a_0 = 1$$
; $a_1 = 1$; $a_2 = 2$;

$$a_3 = 2 - 1 + 1 = 2$$
:

$$a_4 = 2 - 2 + 1 = 1;$$

$$a_5 = 1 - 2 + 2 = 1$$
.

10. (0 points). Page 168, Prob 16 (b), (c), (d), (e).

sol:

(b)
$$a_0 = 1$$
; $a_1 = 1 + 3 = 4$; $a_2 = 4 + 3 = 7$; $a_3 = 7 + 3 = 10...$

So $a_n = 3n + 1$.

(c)
$$a_0 = 4$$
; $a_1 = 4 - 1 = 3$; $a_2 = 3 - 2 = 1$, $a_3 = 1 - 3 = -2$; $a_4 = -2 - 4 = -6$; $a_5 = -6 - 5 = -11$:...

So
$$a_n = 4 - \sum_{i=1}^n i = 4 - n(n+1)/2$$
.

(d)
$$a_0 = -1$$
; $a_1 = 2(-1) - 3 = -5$; $a_2 = 2(-5) - 3 = -13$; $a_3 = 2(-13) - 3 = -29$; $a_4 = 2(-29) - 3 = -61$;

So
$$a_n = -2^{n+2} + 3$$
.

(e)
$$a_0 = 2$$
; $a_1 = 2 \cdot 2 = 4$; $a_2 = 3 \cdot 4 = 12$; $a_3 = 4 \cdot 12 = 48$;

So
$$a_n = 2 \cdot (n+1)!$$

11. (0 points). Page 168, Prob 18 (b), (c).

sol:

(b)
$$1000 * (1.09)^n$$
.

(c)
$$1000 * (1.09)^{100} = 5529040.791825879$$

12. (0 points). Page 169, Prob 32 (c), (d).

sol:

$$\sum_{j=0}^{8} (2 \cdot 3^{j} + 3 \cdot 2^{j}) = 2 \cdot \frac{3^{9} - 1}{3 - 1} + 3 \cdot \frac{2^{9} - 1}{2 - 1} = 21216.$$

$$\sum_{j=0}^{8} (2^{j+1} - 2^j) = \sum_{j=0}^{8} (2^j \cdot (2-1)) = \frac{2^9 - 1}{2 - 1} = 511.$$

13. (0 points).

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$$

sol: As discussed in class, $\sum_{i=1}^{n} i^3$ is a polynomial of n with degree 4. Namely:

$$\sum_{i=1}^{n} i^3 = a_4 n^4 + a_3 n^3 + a_2 n^2 + a_1 n^1 + a_0$$

for some constants a_4 , a_3 , a_2 , a_1 , a_0 . Plug-in n = 0, 1, 2, 3, 4 into above equation, we have:

Solving these equations, we have: $a_4 = 1/4$, $a_3 = 2/4$, $a_2 = 1/4$, $a_1 = 0$ and $a_0 = 0$. Thus:

$$\sum_{i=1}^{n} i^3 = \frac{n^4 + 2n^3 + n^2}{4} = \frac{n^2(n+1)^2}{4}$$

14. (0 points). Page 176, Prob 2 (b), (c), (d), (e), (f). sol:

- (b) countably infinite. f(x) = -2x + 1 is a bijection from Z^+ to the given set.
- (c) finite.
- (d) uncountable.
- (e) countably infinite.

$$f(x) = \begin{cases} (2, \frac{x}{2}) & x \text{ is even,} \\ (3, \frac{x+1}{2}) & x \text{ is odd.} \end{cases}$$

(f) countably infinite.

$$f(x) = \begin{cases} 10 \cdot \frac{x}{2} & x \text{ is even,} \\ -10 \cdot \frac{x+1}{2} & x \text{ is odd.} \end{cases}$$

15. (0 points). Page 176, Prob 10.

sol:

- (a) Let A = [0, 1) and B = (0, 1). Then $A B = \{0\}$.
- (b) Let $A = \{1, 2, \dots, \} \cup \{x \in \mathbf{R} | x < 1\}$ and $B = \{2, 4, 6, 8, \dots, \} \cup \{y \in \mathbf{R} | y < 1\}$. Then $A B = \{1, 3, 5, 7, \dots, \}$.
- (c) Let $A = \{x \in \mathbf{R} | x > 1\}$ and $B = \{y \in \mathbf{R} | y > 1\}$. Then $A B = \{x \in \mathbf{R} | 1 < x \le 2\}$.
- 16. (0 points). Page 176, Prob 11.

sol:

- (a) Let A = [-1, 0] and B = [0, 1]. Then both A and B are uncountable. But $A \cap B = \{0\}$ is countable (it contains only 1 element).
- (b) Let $A = (0,1) \cup Z^+$ and $B = (3,4) \cup Z^+$. Then both A and B are uncountable. But $A \cap B = Z^+$ is countably infinite.
- (c) Let A = [-2, 1] and B = [0, 2]. Then both A and B are uncountable. $A \cap B = [0, 1]$ is also uncountable.